
Software Version 2021.3
Document Revision 23

SIEMENS EDA

Tessent™ Shell User’s
Manual

Unpublished work. © 2021 Siemens

This material contains trade secrets or otherwise confidential information owned by Siemens Industry Software, Inc.,
its subsidiaries or its affiliates (collectively, "Siemens"), or its licensors. Access to and use of this information is
strictly limited as set forth in Customer's applicable agreement with Siemens. This material may not be copied,
distributed, or otherwise disclosed outside of Customer's facilities without the express written permission of
Siemens, and may not be used in any way not expressly authorized by Siemens.

This document is for information and instruction purposes. Siemens reserves the right to make changes in
specifications and other information contained in this publication without prior notice, and the reader should, in all
cases, consult Siemens to determine whether any changes have been made. Siemens disclaims all warranties with
respect to this document including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement of intellectual property.

The terms and conditions governing the sale and licensing of Siemens products are set forth in written agreements
between Siemens and its customers. Siemens' End User License Agreement may be viewed at:
www.plm.automation.siemens.com/global/en/legal/online-terms/index.html.

No representation or other affirmation of fact contained in this publication shall be deemed to be a warranty or give
rise to any liability of Siemens whatsoever.

TRADEMARKS: The trademarks, logos, and service marks ("Marks") used herein are the property of Siemens or
other parties. No one is permitted to use these Marks without the prior written consent of Siemens or the owner of
the Marks, as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a source of a
product, but is intended to indicate a product from, or associated with, a particular third party. A list of Siemens'
trademarks may be viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The registered
trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a world-wide basis.

Support Center: support.sw.siemens.com
Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form

https://www.plm.automation.siemens.com/global/en/legal/online-terms/index.html
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form

Revision History ISO-26262

Author: In-house procedures and working practices require multiple authors for documents. All
associated authors for each topic within this document are tracked within the Siemens
documentation source. For specific topic authors, contact the Siemens Digital Industries
Software documentation department.

Revision History: Released documents include a revision history of up to four revisions. For
earlier revision history, refer to earlier releases of documentation on Support Center.

Revision Changes Status/
Date

23 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.

All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released

Sep 2021

22 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.

All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released

Jun 2021

21 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.

All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released

Apr 2021

20 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.

All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released

Mar 2021
Tessent™ Shell User’s Manual, v2021.3

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.34

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table of Contents

Revision History ISO-26262

Chapter 1
Tessent Shell Introduction . 23

What Is Tessent Shell?. 23
What Can You Do With Tessent Shell? . 24
Tessent Shell Tcl Interface . 26

Command Conventions. 26
Command Completion . 27
Dofile Transcription . 28
Tcl Command Registration. 29

Chapter 2
Tool Invocation, Contexts, Modes, and Data Models . 31

Tool Invocation . 31
Contexts and System Modes . 33

Contexts . 33
System Modes. 35
Context and System Mode Combinations . 35
Design Levels . 36

Design Data Models. 38
Flat Design Data Model . 38
Hierarchical Design Data Model . 38
ICL Data Model . 40
Object Attributes. 40

Chapter 3
Design Introspection and Editing . 43

Design Introspection . 44
Object Specification Format . 44
Collections . 44
Design Introspection Examples . 47
Design Introspection Command Summary. 51
Bundle Object Introspection . 53

Bundle Object. 53
Bundle Object Data Model. 58
Introspection . 61
Bundle Object Introspection Examples . 65
Fanin and Fanout Tracing of Complex Signals and Bundle Object Tracing 68
Connectivity Through Complex Signals . 72

Design Editing . 77
Design Editing Examples . 78
Tessent™ Shell User’s Manual, v2021.3 5

Table of Contents
Design Editing Command Summary . 83
Simulation Contexts. 85

Simulation Context Overview . 85
Introspection and Analysis Using Simulation Contexts . 86

Automatic Design Mapping. 89
ICL and TCD Post-Synthesis Update . 89
Updating ICL Attributes From the Design . 90
Matching Rules for Port Names in Post-Synthesis Update . 91
Controlling the Name Mapping . 91

ICL Objects vs. Design Objects Introspection. 92

Chapter 4
DFT Architecture Guidelines for Hierarchical Designs . 95

Hierarchical DFT Overview . 96
Physical Layout Regions in Hierarchical Test . 96
Pattern Retargeting . 97
Wrapped Cores and Wrapper Cells . 97
Internal Mode and External Mode . 98
On-Chip Clock Controller . 99
Graybox Model . 100

Top-Down Planning Before Bottom-Up Implementation . 102
Clocking Architecture. 102
Resource Availability . 103
Test Scheduling. 103
Specific Tasks That May Require Planning . 106
Sample DFT Planning Steps . 107

DFT Implementation Strategy . 107

Chapter 5
Tessent Shell Workflows . 111

Tessent Shell Flow for Flat Designs . 112
Overview of the RTL and Scan DFT Insertion Flow . 113
First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan 116
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC 120

Loading the Design. 121
Specifying and Verifying the DFT Requirements . 123
Creating the DFT Specification . 126
Generating the EDT, Hybrid TK/LBIST, and OCC Hardware . 130
Extracting the ICL Module Description . 130
Generating ICL Patterns and Running Simulation. 131

Performing Synthesis . 132
Performing Scan Chain Insertion (Flat Design) . 133
Performing ATPG Pattern Generation . 135
Simulating LBIST Faults . 137
Considerations for Using Gate-Level Verilog Netlists. 139

Tessent Shell Flow for Hierarchical Designs . 141
Hierarchical DFT Terminology . 142
How the DFT Insertion Flow Applies to Hierarchical Designs . 144
6 Tessent™ Shell User’s Manual, v2021.3

Table of Contents
RTL and Scan DFT Insertion Flow for Physical Blocks . 146
First DFT Insertion Pass: Performing Block-Level MemoryBIST 147
Second DFT Insertion Pass: Inserting Block-Level EDT and OCC 149
Specifying and Verifying the DFT Requirements: DFT Signals for Wrapped Cores . . . 152
Performing Scan Chain Insertion: Wrapped Core . 154
Verifying the ICL Model . 157
Performing ATPG Pattern Generation: Wrapped Core . 158
Running Recommended Validation Step for Pre-Layout Design Sign Off 163

RTL and Scan DFT Insertion Flow for the Top Chip. 165
Top-Level DFT Insertion Example . 166
First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary Scan. . . 168
Second DFT Insertion Pass: Inserting Top-Level EDT and OCC 171
Top-Level Scan Chain Insertion Example . 175
Top-Level ATPG Pattern Generation Example . 175
Performing Top-Level ATPG Pattern Retargeting. 177

RTL and Scan DFT Insertion Flow for Sub-Blocks . 180
DFT Insertion Flow for the Sub-Block . 180
DFT Insertion Flow for the Next Parent Level . 181

RTL and Scan DFT Insertion Flow for Instrument Blocks . 184
DFT Insertion Flow for the Instrument Block . 184
Instrument Block DFT Insertion Flow for the Next Parent Level 187

RTL and DFT Insertion Flow With Third-Party Scan . 189
DFT Insertion Flow With Third-Party Scan Insertion . 189
Wrapped Core DFT Insertion With Third-Party Scan . 191
Top Chip DFT Insertion with Third-Party Scan. 206

Tessent Shell Post-Layout Validation Flow . 215
Overview of the Post-Layout Validation Flow. 215
Soft Link TSDB and Post-Layout Netlist . 216
Verify MemoryBIST, Boundary Scan and IJTAG Patterns . 217
Verifying the Scan-Inserted ATPG Patterns. 218
Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic 220

Test Bench Generation and Simulation in RTL Mode . 224
Simulation Wrapper Creation . 224
Test Bench Examples . 227

Hybrid TK/LBIST Flow for Flat Designs . 232
RTL and Scan DFT Insertion Flow With Hybrid TK/LBIST . 232
Perform the First DFT Insertion Pass: Hybrid TK/LBIST . 233
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST. 236
Perform Test Point Insertion. 241
Perform Scan Chain Insertion (Hybrid Flow). 244
Performing ATPG Pattern Generation: Hybrid TK/LBIST . 246
Performing LogicBIST Fault Simulation . 249
Perform LogicBIST Pattern Generation . 251

Running Multi-Load ATPG on Wrapped Core Memories with Built-In Self Repair 254
Overview of Multi-Load ATPG on Memories for Wrapped Cores With Built-in Self Repair

254
Performing Multi-Load ATPG Pattern Generation . 255
Performing Multi-Load Top-Level ATPG Pattern Retargeting . 258

Built-in Self Repair in Hierarchical Tessent MemoryBIST Flow . 261
Tessent™ Shell User’s Manual, v2021.3 7

Table of Contents
Performing Block Level BISR Insertion . 261
Performing Chip Level BISR Insertion . 264

Functional Repair Clock. 264
Connection of the BISR Controller to Existing BISR Chains . 264
Connection of the BISR Controller to an External Fuse Box . 265
Connection of the BISR Controller to System Logic. 266

Verification of Block and Chip Level BISR. 266

Chapter 6
Tessent Shell Automotive Workflow . 269

Introduction to Tessent Automotive . 270
Test Case Overview and Objective . 271
Core-Level DFT Insertion for Automotive . 276

DFT Insertion Flow for the Processor Core Physical Block . 277
First DFT Insertion Pass: processor_core. 278
Second DFT Insertion Pass: processor_core . 281
Test Point, X-Bounding, and Scan Insertion: processor_core . 285
ATPG Pattern Generation: processor_core . 289
LogicBIST Fault Simulation: processor_core . 291
LogicBIST Pattern Generation: processor_core. 292
Interconnect Bridge/Open UDFM Generation: processor_core. 294
Cell-Neighborhood UDFM Generation: processor_core . 296
Automotive-Grade ATPG Pattern Generation: processor_core . 300

DFT Insertion Flow for the GPS Baseband Physical Block . 307
DFT Insertion Pass With In-System Test: gps_baseband . 308
LogicBIST Fault Simulation With One NCP: gps_baseband . 312
Interconnect Bridge/Open UDFM Generation: gps_baseband. 312
Cell-Neighborhood UDFM Generation: gps_baseband . 313
Automotive-Grade ATPG Pattern Generation: gps_baseband. 313

Top-Level DFT Insertion for the Automotive Flow . 314
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan. 314
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test 320
Scan Insertion for the Top Design . 325
ATPG Pattern Generation for the Top Design . 327
ATPG Pattern Retargeting for the Top Design. 328
Interconnect Bridge/Open UDFM Generation for the Top Design 328
Cell-Neighborhood UDFM Generation for the Top Design. 328
Automotive-Grade ATPG Pattern Generation for the Top Design 329
UDFM Generation for Cell-Aware ATPG . 329
TCA Based Pattern Sorting. 331

Functional Mode Fault Tolerance for Static IJTAG Signals . 333

Chapter 7
TSDB Data Flow for the Tessent Shell Flow . 339

Core-Level or Flat TSDB Data Flow. 339
Top-Level TSDB Data Flow . 344
8 Tessent™ Shell User’s Manual, v2021.3

Table of Contents
Chapter 8
Streaming Scan Network (SSN). 351

Tessent SSN Workflows . 352
Block-Level SSN Insertion and Verification . 355

First DFT Insertion Pass: Performing Block-Level MemoryBIST 357
Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and SSN 357
Synthesis for Block-Level Insertion. 364
Creating the Post-Synthesis TSDB View (Block-Level) . 365
Performing Scan Chain Insertion With Tessent Scan (Block-Level). 367
Verifying the ICL-Based Patterns After Synthesis (Block-Level). 370
Generating Block-Level ATPG Patterns . 373

Top-Level SSN Insertion and Verification . 380
First DFT Insertion Pass: Performing Top-Level MemoryBIST 382
Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN 385
Synthesis for Top-Level Insertion . 393
Creating the Post-Synthesis TSDB View (Top-Level) . 394
Performing Scan Chain Insertion With Tessent Scan (Top-Level) 394
Verifying the ICL-Based Patterns After Synthesis (Top-Level) 395
Generating Top-Level ATPG Patterns . 395
Retargeting ATPG Patterns . 397
Performing Reverse Failure Mapping for SSN Pattern Diagnosis. 400

Advanced Topics . 405
Streaming-Through-IJTAG Scan Data . 405
On-Chip Compare With SSN . 408
Types of Clock Networks To Use With SSN . 417
Broadcast to Identical SSN Datapaths . 421
Yield Statistics on ATE With SSN . 422
Manufacturing Patterns With SSN . 427

Manufacturing Pattern Quick Reference . 428
SSN Pattern Structure. 429
How To Write Complete SSN Patterns . 430
How To Write ssn_setup and ssn_end Procedures to Separate Files 432
How To Write SSN On-Chip Compare Patterns . 435
How To Write Streaming-Through-IJTAG Patterns . 436
SSN Debug on the Tester . 438

Signoff Patterns With SSN . 444
Block-Level Signoff Patterns . 445
Top-Level Signoff Patterns . 449
Signoff Pattern Quick Reference . 452

SSN SDC Constraints in the Design Flow . 453
Overview of SSN-Related SDC Procs and Constraints . 454
SSN/SSH SDC Constraint Descriptions. 462

Tessent SSN Examples and Solutions . 484
Third-Party OCCs With SSN . 484

SSN Frequently Asked Questions . 486
SSN Limitations. 488
Tessent™ Shell User’s Manual, v2021.3 9

Table of Contents
Chapter 9
Tessent Examples and Solutions . 491

How to Avoid Simulation Issues When Using the Two-Pin Serial Port Controller 491
How to Handle Clocks Sourced by Embedded PLLs During Logic Test 494
How to Design Capture Windows for Hybrid TK/LBIST. 500
How to Use Boundary Scan in a Wrapped Core . 502
How to Use an Older Core TSDB With Newly-Inserted DFT Cores 504
TAP Configuration . 506

Insert a Stand-Alone TAP in a Design . 506
Insert a TAP with an IJTAG Host Scan Interface. 508
Insert a Compliance Enable TAP with an IJTAG Interface . 509
Insert a Daisychained TAP . 511
Insert a Primary TAP . 512
Insert a Secondary TAP . 514
Connecting to a Third-Party TAP. 517

How to Set Up Third-Party Synthesis . 517
How to Set Up Support for Third-Party OCCs . 520

How to Configure Files for Third-Party OCCs . 520
Test Logic Insertion . 521
Configuration for Scan Insertion . 523
Pattern Generation and Simulation . 523

Post-Synthesis Update . 527
ICL and TCD Post-Synthesis Update . 527
Limitations Related to SystemVerilog Interface Arrays. 528
Updating ICL Attributes From the Design . 529
Matching Requirements for Port Names in Post-Synthesis Update 530
Design Name Mapping Commands . 531

Design Name Mapping. 531
Default Matching Rules for the get_pins, get_ports, and get_instances -match_rtl_reg

Commands . 531

Chapter 10
Test Procedure File . 533

Test Procedure File Creation . 534
Test Procedure File Syntax . 534
Test Procedure File Structure . 539

#include Statement . 539
Set Statement . 540
Alias Definition. 543
Timing Variables . 545
Timeplate Definition. 548
Multiple-Pulse Clocks. 554

The pulse_clock Statement. 554
Inferred Timing . 555
Differences Between Default add_clock and 1x Multiplier Clock 556

Always Block . 556
Procedure Definition. 557
Clock Control Definition . 567
10 Tessent™ Shell User’s Manual, v2021.3

Table of Contents
The Procedures . 576
Test_Setup (Optional). 577
Shift (Required) . 580
Alternate Shift Procedure (Optional) . 582
Load_Unload (Required) . 583
Shadow_Control (Optional) . 586
Master_Observe (Sometimes Required) . 588
Shadow_Observe (Optional). 588
Skew_Load (Optional) . 589
Clock_run (Optional) . 591
Capture Procedures (Optional) . 593

Rules for Creating and Editing a Default Capture Procedure . 594
Rules for Creating and Editing Named Capture Procedures . 594
Slow and Load Types in the Cycle Statement . 596
launch_capture_pair Statement . 597

Clock_po (Optional) . 598
Clock_sequential (Optional) . 599
Init_force (Optional) . 599
Test_end (Optional, all ATPG tools) . 600
Sub_procedure . 602

Additional Support for Test Procedure Files . 604
Creating Test Procedure Files for End Measure Mode . 605
Serial Register Load and Unload for LogicBIST and ATPG . 609

Register Load and Unload Use Models . 609
Static Versus Dynamic Register Variables . 609
Test Procedure File Modifications . 610
Dofile Modifications. 613
Serial Load and Unload DRC Rules . 616

P13 and P54 . 616
P66 . 616
W5 . 617
Procedure Examples . 618

Notes About Using the stil2mgc Tool . 622
Extraction of Strobe Timing Information from STIL (SPF). 622
The STIL ClockStructures Block . 622

Test Procedure File Commands and Output Formats . 623

Chapter 11
Tessent Visualizer . 625

Invoking Tessent Visualizer . 626
Framework Overview . 627
Tessent Visualizer Components and Preferences . 630

Tables . 631
Table Toolbar Features. 632
Columns and Filters Editor. 634
Table Filters . 635
Data Sorting . 637
Row Highlighting . 637
Tessent™ Shell User’s Manual, v2021.3 11

Table of Contents
Schematics . 639
Toolbar . 640
Schematic Symbols . 643
Context Tables . 655
Signal Net Tracing Strategies. 665
Displayed Property . 668
Tessent Shell Attributes . 668
Mouse Gestures . 670

Tessent Visualizer Preferences . 671
Macros . 672
Tooltips . 673
Gate Report Settings . 674
Saving and Restoring the Session State . 675
Window Title Prefixes . 675

Tessent Visualizer GUI Reference. 677
Hierarchical Schematic . 677
Flat Schematic. 682
Instance Browser. 684
Wave Generator . 686
Cell Library Browser . 688
DRC Browser . 689
Pin Data. 691
Transcript . 692
Text/HDL Viewer . 693
Diagnosis Report Viewer . 695

Search Features . 697
Using Tessent Visualizer to Debug Design Issues . 699
Accessing Tutorials for Tessent Visualizer . 703
Accessing Videos for Tessent Visualizer . 704

Chapter 12
Configuration Data Visualizer. 707

Modifying the Contents of the Configuration Data Visualizer . 707
Adding a Test Data Register to a SIB Example. 708
Adding a Multiplexer to a SIB Example . 708
Customizing the DFT Specification for EDT . 710

Chapter 13
Timing Constraints (SDC) . 715

Generating and Using SDC for Tessent Shell Embedded Test IP . 716
SDC File Generation with Tessent Shell . 716
SDC Design Synthesis with Tessent Shell . 718

Preparation Step 1: Sourcing SDC File . 718
Preparation Step 2: Setting and Redefining Tessent Tcl Variables 718
Preparation Step 3: Verifying the Declaration of Functional Clocks 720
Preparation Step 4: Redefining Other Tessent Tcl Variables . 721
Synthesis Step 1: Applying the SDC Constraints . 722
Synthesis Step 2: Preparing the DFT Logic for Synthesis . 722
12 Tessent™ Shell User’s Manual, v2021.3

Table of Contents
Synthesis Step 3: Synthesizing Your Design . 723
Synthesis Step 4: Writing Out Your Final SDC . 723
Synthesis Step 5: Writing Out Your Final Netlist . 723

Running Layout with Tessent Shell DFT . 723
SDC for Modal Static Timing Analysis. 726

Checking Your Functional Logic Alone. 726
Checking Your Embedded Test Logic . 726

VHDL and Mixed Language Designs . 728
VHDL Generate Blocks . 728

SDC File Contents . 730
tessent_set_default_variables . 730
tessent_create_functional_clocks . 731
tessent_<design_name>_set_dft_signals . 731
<ltest_prefix>_disable . 732
tessent_set_non_modal . 732
tessent_<design_name>_kill_functional_paths . 733
IJTAG Instrument . 734
LOGICTEST Instruments. 735
MemoryBIST Instrument . 748
BoundaryScan Instrument. 751
Hierarchical STA in Tessent. 752
Mapping Procs . 756
Synthesis Helper Procs . 758

Example Scripts using Tessent Tool-Generated SDC . 760
Example Design Compiler Synthesis Script . 760
Example Genus Synthesis Script . 761
Example PrimeTime STA Script . 764

Appendix A
The Tessent Tcl Interface. 771

General Tcl Guidelines in Tessent Shell . 771
Guidelines for Modifying Existing Dofiles for Use with Tcl . 773
Special Tcl Characters . 775
Custom Tcl Packages in Tessent Shell . 777
Tcl Resources. 778

Appendix B
Synthesis Guidelines for RTL Designs with Tessent Inserted DFT 779

DFT Insertion With Tessent . 780
Synthesis Guidelines . 781
SystemVerilog and Port Name Matching . 783

Appendix C
Clocking Architecture Examples. 785

Clocks Driven by Primary Inputs . 785
Clock Generators Outside the Cores . 786
Clock Generators Inside the Cores . 786
Clock Sourced From A Core With Embedded PLL . 787
Tessent™ Shell User’s Manual, v2021.3 13

Table of Contents
Clock Mesh Synthesis . 788

Appendix D
Tessent Visualizer Keyboard Shortcuts . 791

Appendix E
Formal Verification . 793

Constraints for Formality Scripts. 793
Constraints for Conformal Scripts . 794

Appendix F
Transitioning from the Classic Point Tools . 797

Transitioning from the Classic FastScan Point Tool . 797
Transitioning from the Classic TestKompress Point Tool. 798
Transitioning from the Classic DFTAdvisor Tool. 799
Transitioning from the Classic Diagnosis Tool . 800

Appendix G
Getting Help . 801

The Tessent Documentation System . 801
Global Customer Support and Success . 802

Index

Third-Party Information
14 Tessent™ Shell User’s Manual, v2021.3

List of Figures

Figure 2-1. Hierarchical Design Example . 39
Figure 3-1. Hierarchical Design Example With Colors. 48
Figure 3-2. Complex Signals with Tessent Visualizer . 74
Figure 3-3. Hierarchical Design Example . 79
Figure 3-4. Inverter Inception . 81
Figure 3-5. Tessent Visualizer Flat Schematic (gate level) . 87
Figure 4-1. Wrapped Cores . 97
Figure 4-2. Internal Mode . 98
Figure 4-3. External Mode. 99
Figure 4-4. On-Chip Clock Controller. 100
Figure 4-5. Graybox Model . 101
Figure 4-6. Compression Analysis Example . 105
Figure 5-1. Two-Pass Insertion Flow for RTL, Flat Designs . 114
Figure 5-2. DFT-Ready Design . 115
Figure 5-3. After the First DFT Insertion Pass . 115
Figure 5-4. After the Second DFT Insertion Pass . 116
Figure 5-5. Flow for the Second DFT Insertion Pass . 120
Figure 5-6. Flow for Loading the Design . 121
Figure 5-7. Flow for Specifying and Verifying the DFT Requirements 123
Figure 5-8. Flow for Creating the DFT Specification . 126
Figure 5-9. Flow for Inserting the Second-Pass Hardware . 130
Figure 5-10. Flow for Extracting ICL . 131
Figure 5-11. Flow for Generating and Simulating ICL Patterns . 132
Figure 5-12. Two-Pass Insertion Flow for RTL, Gate-Level Designs 140
Figure 5-13. Hierarchical Design Levels . 143
Figure 5-14. Two-Pass Insertion Flow, Physical Blocks. 146
Figure 5-15. Flow for Specifying and Verifying the DFT Requirements for Wrapped Cores 152
Figure 5-16. ATPG Pattern Generation Flow for Wrapped Cores . 159
Figure 5-17. Two-Pass Insertion Flow for RTL, Top Level . 165
Figure 5-18. Top-Level Example, Before DFT Insertion . 167
Figure 5-19. Top-Level Example, After DFT Insertion for Wrapped Cores. 167
Figure 5-20. Top-Level Example, After DFT Insertion at the Top Level 168
Figure 5-21. Two-Pass Insertion Flow for RTL, Wrapped Cores, and Third-Party Scan . . . 191
Figure 5-22. DFT Signals and Multiplexer Logic Support Hierarchical ATPG 194
Figure 5-23. At-Speed Flows in the Wrapper Chain . 196
Figure 5-24. Current Level Path to Child Core Wrapper Chains . 200
Figure 5-25. Two-Pass Insertion Flow for RTL, Top Level, and Third-Party Scan 206
Figure 5-26. Top Level EDT Connection to Child Cores . 210
Figure 5-27. Post-Layout Validation Flow . 215
Figure 5-28. Post-Layout Validation Flow with Ungrouped IJTAG/OCC/EDT Logic 220
Tessent™ Shell User’s Manual, v2021.3 15

List of Figures
Figure 5-29. Two-Pass Insertion Flow With Hybrid TK/LBIST. 233
Figure 5-30. Two-Pass Insertion Flow for RTL, Wrapped Cores . 255
Figure 5-31. Two-Pass Insertion Flow for RTL, Top Level . 258
Figure 6-1. Integrated Tessent DFT Solution for Automotive . 270
Figure 6-2. Initial Design for Automotive Test Case . 273
Figure 6-3. DFT Integration at the Core Level for Automotive . 273
Figure 6-4. DFT Integration at the Top Level for Automotive . 274
Figure 6-5. DFT Insertion Flow for Automotive Test Case . 275
Figure 6-6. DFT Insertion Flow for processor_core . 277
Figure 6-7. Enhanced Clocking and DFT Controls After Second DFT Insertion Pass 282
Figure 6-8. ATPG Pattern Generation Flow for processor_core . 289
Figure 6-9. Interconnect Bridge/Open UDFM Generation Flow for processor_core 295
Figure 6-10. Cell-Neighborhood UDFM Generation Flow for processor_core 298
Figure 6-11. ATPG Topoff Run Flow With a UDFM for processor_core 302
Figure 6-12. ATPG Run Flow With All UDFM for processor_core. 305
Figure 6-13. DFT Insertion Flow for gps_baseband . 307
Figure 6-14. Dofile Example for Top-Level Scan Chain Insertion, Automotive Flow. 326
Figure 6-15. Cell-Aware UDFM Generation Flow . 330
Figure 6-16. TCA Based Pattern Sorting Flow . 332
Figure 6-17. Hardware Fault Tolerant Module Example. 335
Figure 6-18. HFT Module in the Single-Pass Flow. 336
Figure 6-19. HFT Modules in the Two-Pass Flow . 337
Figure 7-1. TSDB Data Flow, Core Level, First Insertion Pass . 341
Figure 7-2. TSDB Data Flow, Core Level, Second Insertion Pass . 342
Figure 7-3. TSDB Data Flow, Core Level, Scan Insertion . 343
Figure 7-4. TSDB Data Flow, Core Level, Pattern Generation. 343
Figure 7-5. TSDB Data Flow, Top Level, First Insertion Pass . 345
Figure 7-6. TSDB Data Flow, Top Level, Second Insertion Pass . 346
Figure 7-7. TSDB Data Flow, Top Level, Scan Insertion . 347
Figure 7-8. TSDB Data Flow, Top Level, ATPG Pattern Generation. 348
Figure 7-9. TSDB Data Flow, Top Level, ATPG Pattern Generation With Pattern Retargeting

349
Figure 8-1. Directory Structure of Reference Testcase . 353
Figure 8-2. SSN Block-Level Workflow. 356
Figure 8-3. SSN Top-Level Workflow . 381
Figure 8-4. Multiplexer Node for Bypassing the gps_baseband Blocks 389
Figure 8-5. Simplified Tessent Diagnosis Two-Step Flow . 401
Figure 8-6. Streaming-Through-IJTAG Mode . 406
Figure 8-7. Faults in Comparator Logic That Could Mask Real Faults 412
Figure 8-8. SSN Datapath in Tiling Architecture . 420
Figure 8-9. Stepping Down the Clock Tree on the Last Pipeline Stage 421
Figure 8-10. Packet Rotation on the SSN Bus. 423
Figure 8-11. Procedure and Data Structure of an SSN Pattern . 430
Figure 8-12. SSN Procedures With test_setup and test_end in Pattern Order. 431
Figure 8-13. SSN Patterns With the -maxloads 50 Option . 432
16 Tessent™ Shell User’s Manual, v2021.3

List of Figures
Figure 8-14. SSN Pattern Files With Order for Application on Tester 434
Figure 8-15. SSN Pattern Files With Combined Setup Showing Tester Order 435
Figure 8-16. SSN Pattern Files With On-Chip Compare Self-Test . 436
Figure 8-17. Tester Application Order for Streaming-Through-IJTAG 438
Figure 8-18. Order To Apply Patterns for SSN Pattern Failure Debugging 439
Figure 8-19. Order To Apply ICLNetwork Verify Patterns to the Tester 440
Figure 8-20. Order To Apply SSN Continuity Patterns to the Tester 441
Figure 8-21. Order To Apply SSN On-Chip Compare Self-Test Patterns 441
Figure 8-22. Order To Apply SSH Loopback Patterns . 442
Figure 8-23. Order To Apply SSH Loopback, Chain, and Scan Patterns 443
Figure 8-24. FIFO MCP Example . 470
Figure 8-25. SSH Clock Signal Generation. 473
Figure 8-26. SSH Clock Group Constraints . 476
Figure 8-27. SSH scan_en and edt_update Generation Circuit . 476
Figure 8-28. scan_en Margin Definition Diagram. 477
Figure 8-29. Gated Scan Clocks With All *extra_cycle* Variables Set to 1 (Default). 478
Figure 8-30. Gated Scan Clocks With All *extra_cycle* Variables Set to 0 479
Figure 8-31. Divided Shift Clocks With Ratio of 4 and *extra_cycle* Variables at 0 479
Figure 8-32. Divided Shift Clocks With Ratio of 4 and *extra_cycle* Variables at 1 479
Figure 8-33. SSH Scan Chain Interface Circuit. 480
Figure 8-34. Localized Scan Timing With Shift-Only Mode OCC. 485
Figure 9-1. TRST Pulse Generator inside TPSP . 493
Figure 9-2. Example Chip with PLL Embedded Inside Lower Core 496
Figure 9-3. Active OCCs During Internal Test Modes of corec and coreb 497
Figure 9-4. Active OCCs During Internal Test Modes of corea and coreb 498
Figure 9-5. Active OCCs During Test Modes of Top Level . 499
Figure 9-6. Wrapped Core Boundary Scan Flow . 503
Figure 10-1. 200ns Timing Waveform . 555
Figure 10-2. Shift Procedure . 580
Figure 10-3. Timing Diagram for Shift Procedure . 581
Figure 10-4. Load_Unload Procedure . 584
Figure 10-5. Timing Diagram for Load_Unload Procedure . 585
Figure 10-6. Shadow_Control Procedure . 586
Figure 10-7. Master_Observe Procedure . 588
Figure 10-8. Shadow_Observe Procedure . 589
Figure 10-9. Skew_Load Procedure . 590
Figure 10-10. Skew_load applied within Pattern. 591
Figure 10-11. Full Clock Sequential Pattern . 599
Figure 10-12. Init_force Procedure Usage. 600
Figure 11-1. Tessent Visualizer Split View. 629
Figure 11-2. Common Table Toolbar Features . 632
Figure 11-3. Columns and Filters Editor . 634
Figure 11-4. Selection Colors . 638
Figure 11-5. Schematic With Overview Pane and Attributes Table 640
Figure 11-6. Schematic Elements: Toolbar, Address Bar, and Selection Buttons 641
Tessent™ Shell User’s Manual, v2021.3 17

List of Figures
Figure 11-7. Hierarchical Schematic Showing Pins, Ports, Instances, and Nets 643
Figure 11-8. Hierarchical Instance With Callout and Pin Data . 644
Figure 11-9. Showing the Internal Connectivity of a Hierarchical Instance 645
Figure 11-10. Hierarchical Instance With DRC Callout . 645
Figure 11-11. Hierarchical Cell . 646
Figure 11-12. Hierarchical Instance Representing an Assign Statement. 646
Figure 11-13. Black-Boxed Instance Example . 647
Figure 11-14. Objects in the Flat Schematic Tab . 647
Figure 11-15. Persistent Buffer Symbol . 648
Figure 11-16. Bus Index Displayed at Rip Point . 649
Figure 11-17. Collapsed Buffers and Inverters With No Hidden Fanout 652
Figure 11-18. Expanded Buffers and Inverters With No Hidden Fanout 652
Figure 11-19. Collapsed Buffers/Inverters With Hidden Fanout . 653
Figure 11-20. Expanded Buffers/Inverters With Hidden Fanout. 653
Figure 11-21. Expanded Buffers/Inverters With Fanout Revealed . 654
Figure 11-22. Unfolding an Instance . 655
Figure 11-23. Folded Cell Group. 655
Figure 11-24. Unfolded Cell Group. 655
Figure 11-25. Schematic Elements: Context Table . 656
Figure 11-26. Tracer Context Table . 657
Figure 11-27. Context Table for Instance Pins (Hierarchical Schematic) 658
Figure 11-28. Context Table for Instances (Hierarchical Schematic) 659
Figure 11-29. Context Table for Nets (Hierarchical Schematic). 660
Figure 11-30. Fanout Replaced by User-Added Primary Input. 661
Figure 11-31. Flat Sink . 661
Figure 11-32. Fanout Replaced by Multiple User-Added Primary Inputs 662
Figure 11-33. Multiple Flat Sinks . 662
Figure 11-34. Context Table for Multiple Flat Sinks . 663
Figure 11-35. User-Added Primary Inputs . 664
Figure 11-36. Netlist Driver and Context Table for User-Added Primary Inputs 665
Figure 11-37. User-Added Primary Inputs (Flat Schematic). 665
Figure 11-38. Decision Point Strategy on Hierarchy Boundary at q[6] Port. 666
Figure 11-39. Choosing a Path From the Tracing Table . 666
Figure 11-40. Decision Point Strategy. 667
Figure 11-41. Tessent Shell Attributes Table . 669
Figure 11-42. Mouse Gestures in Tessent Visualizer Schematics. 670
Figure 11-43. Light, Dark, and High-Contrast Color Themes. 671
Figure 11-44. Preferences Dialog Box (Text Viewers Tab) . 672
Figure 11-45. Macro Editor . 673
Figure 11-46. Running a Macro. 673
Figure 11-47. Tooltip for a Collapsed Buffer Indicator. 674
Figure 11-48. Tooltip for a Filter Box . 674
Figure 11-49. Tooltip for an Action Button. 674
Figure 11-50. Setting a Window Title Prefix . 676
Figure 11-51. Visualizer Window Label . 676
18 Tessent™ Shell User’s Manual, v2021.3

List of Figures
Figure 11-52. Hierarchical Instances With Pins Shown and Hidden. 678
Figure 11-53. Hierarchical Schematic Symbols . 679
Figure 11-54. Bus Tracing in the Hierarchical Schematic. 680
Figure 11-55. Bus Sub-Ranges . 681
Figure 11-56. Example of a Tied-Value Marker With Associated Pin Table 682
Figure 11-57. Flat Schematic (Cell Grouping On) . 683
Figure 11-58. Instance Browser Elements . 685
Figure 11-59. Debugging in the Instance Browser . 686
Figure 11-60. Wave Generator . 687
Figure 11-61. A GTKWave Viewer Application Invoked From Wave Generator 688
Figure 11-62. Cell Library Browser . 689
Figure 11-63. DRC Browser With Data Grouped By Rule . 690
Figure 11-64. Flat Schematic Showing a DRC Violation . 691
Figure 11-65. Pin Data Tab . 692
Figure 11-66. Transcript Tab With an Interactive Command Line . 693
Figure 11-67. Text/HDL Viewer . 694
Figure 11-68. Diagnosis Report Viewer (Text View) . 696
Figure 11-69. Diagnosis Report Viewer (Table View) . 697
Figure 11-70. Search Tab: Instances . 698
Figure 11-71. Search Tab: Pins . 698
Figure 11-72. Search Tab: Gate Pins . 699
Figure 11-73. Searching by Name . 702
Figure 13-1. tessent_test_clock and tessent_shift_capture_clock Creation. 737
Figure 13-2. Generated Clock Muxed Multi-Clock Memories . 750
Figure B-1. Problem Occurrence Creating the Gate Level Netlist . 779
Figure C-1. OCCs for Clocks Driven by Primary Inputs . 785
Figure C-2. OCCs With Clock Generators at Chip Level, Asynchronous Clocks 786
Figure C-3. OCCs With Clock Generators Inside the Cores, Asynchronous Clocks 787
Figure C-4. Clock Sourced From A Core With Embedded PLL, With MUX 787
Figure C-5. Clock Sourced From A Core With Embedded PLL, Without MUX 788
Figure C-6. Clock Mesh Synthesis . 789
Tessent™ Shell User’s Manual, v2021.3 19

List of Figures
20 Tessent™ Shell User’s Manual, v2021.3

List of Tables

Table 1-1. Tessent Shell Command Conventions . 26
Table 1-2. Commands for Tcl Command Registration . 29
Table 2-1. Application-Specific Environment Variables . 32
Table 2-2. Tessent Shell Contexts . 33
Table 2-3. Tessent Shell System Modes . 35
Table 2-4. Tessent Shell Context and System Mode Commands . 36
Table 3-1. Commands That Interact With Collections . 46
Table 3-2. Design Introspection Commands . 51
Table 3-3. Attribute Introspection Commands . 52
Table 3-4. base_class and base_type System Verilog Examples . 59
Table 3-5. Complex Signals Design Introspection Commands . 65
Table 3-6. Design Editing Commands . 77
Table 3-7. Design Editing Command Summary . 84
Table 4-1. Test Schedule Example . 106
Table 5-1. Test Pattern Bit Name Assignments . 228
Table 7-1. Core-Level TSDB Data Flow Inputs and Outputs . 340
Table 7-2. Top-Level TSDB Data Flow Inputs and Outputs . 344
Table 8-1. SSN Manufacturing Pattern Summary . 427
Table 8-2. Manufacturing Pattern Quick Reference . 428
Table 8-3. Block-Level Verification Pattern Summary . 448
Table 8-4. Top-Level Verification Pattern Summary . 451
Table 8-5. Signoff Pattern Quick Reference . 452
Table 8-6. set_load_unload_timing_options Arguments and SDC Variables 474
Table 8-7. SSH Chain Interface Circuit SDC False Paths . 481
Table 8-8. SSH Chain Interface Circuit SDC Multicycle Paths . 482
Table 10-1. Reserved Punctuation Characters . 535
Table 10-2. Procedure File Tool Command Summary . 623
Table 11-1. Filtering Summary . 636
Table 11-2. Schematic Toolbar Actions . 641
Table 11-3. Marker Symbols . 649
Table A-1. Common Dofile Issues and Solutions . 774
Table A-2. Common Tcl Characters . 775
Table D-1. Global Shortcuts . 791
Table D-2. Schematic Shortcuts . 791
Table D-3. Instance Browser Shortcuts . 792
Table D-4. Filter Editing Shortcuts . 792
Table D-5. Text Search Shortcuts . 792
Tessent™ Shell User’s Manual, v2021.3 21

List of Tables
22 Tessent™ Shell User’s Manual, v2021.3

Tessent™ Shell User’s Manual, v2021.3 23

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
Tessent Shell Introduction

Tessent™ Shell is a platform from which you can run all the Tessent tools. The platform
includes shared design data, a common database, and powerful scripting utilities that provide a
fully automated design-for-test (DFT) flow as well as the ability to customize the flow to fit
specific requirements.

What Is Tessent Shell? . 23

What Can You Do With Tessent Shell?. 24

Tessent Shell Tcl Interface . 26
Command Conventions. 26
Command Completion . 27
Dofile Transcription . 28
Tcl Command Registration. 29

What Is Tessent Shell?
Tessent™ Shell is a DFT environment within which you can perform all the tasks required to
insert DFT hardware, generate manufacturing test patterns, and perform post-silicon tasks such
as diagnosis and yield analysis.

Tessent Shell provides a flexible design flow that supports a high level of automation or
customization. Key aspects of the environment that support automation as well as enhance
flexibility:

• Shared Data Models — Tessent Shell uses data models to store your design data. The
Tessent environment shares these models across all tools and functions, and you can
access the data stored within them to customize your design flow.

For standard automated flows, you do not need to be aware of this infrastructure. For
those that need to extend the native tool commands, they have the same access to the
design data model as the Tessent Shell tools do.

For more information about the data models, refer to “Design Data Models” on page 38.

• Attributes — Attributes are characteristics associated with design objects, such as
library cells, pins, and modules, that are stored within data models. Some are predefined,
and you can also create your own attributes. Using attributes increases visibility into
your design, enabling you to manipulate and query the features of the design objects.

• Design Introspection — Introspection is the act of examining the design objects and
attributes stored within the data models. Introspection enables you to retrieve the design

Tessent™ Shell User’s Manual, v2021.324

Tessent Shell Introduction
What Can You Do With Tessent Shell?

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

data you need so that you can use Tcl scripting techniques to automate your own custom
designs flows.

For more information about design introspection, refer to “Design Introspection” on
page 44.

• Tcl — Use this scripting language across all Tessent tools and functions. Through
scripting, you can customize and extend the Tessent Shell standard flows as needed for
your design requirements.

For more information about Tcl usage, refer to “Tessent Shell Tcl Interface” on page 26.

• Tessent Shell Database (TSDB) — The TSDB is a database that stores all the
directories and files that Tessent Shell generates as you move through a design flow.
The TSDB enhances flow automation by acting as the central location where Tessent
tools can access the data it requires for the current task, whether that task be reading in a
design, performing DRC, inserting logic test hardware, or performing ATPG pattern
generation.

For more information about the TSDB, refer to “TSDB Data Flow for the Tessent Shell
Flow” on page 339.

• IJTAG Automation — By default, the DFT instruments that you create with Tessent
Shell are controlled through an IJTAG network and the IEEE 1687 protocol. Tessent
Shell automatically inserts the IJTAG infrastructure. This simplifies test setup and
control of all the instruments at all levels of hierarchy, and enables reuse in hierarchical
designs and test-benching at any stage of chip development.

For more information about IJTAG, refer to the “Tessent IJTAG User’s Manual.”

What Can You Do With Tessent Shell?
The Tessent Shell platform is a jumping-off point for accomplishing the full array of DFT tasks
available within the Tessent tool suite. Specific DFT tasks may require different licenses, but all
tools may be launched from and managed via Tessent Shell.

DFT tasks include:

• Instrument Insertion — Generate and insert logic test hardware such as EDT
(embedded deterministic testing) and OCC (on-chip clock controller), in addition to
LogicBIST, MemoryBIST, in-system test, and boundary scan.

• Scan Analysis and Insertion — Perform scan analysis and scan chain insertion.

• ATPG — Generate ATPG patterns and perform fault simulation, including compression
technology.

Tessent Shell Introduction
What Can You Do With Tessent Shell?

Tessent™ Shell User’s Manual, v2021.3 25

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Defect Diagnosis and Yield Analysis — Perform test failure diagnosis to determine a
defect’s most probable failure mechanism, as well as statistical analysis of diagnostic
failures to find systemic defects.

Additionally, Tessent Shell provides general-purpose design editing support so that you can
modify your design netlists as needed. You can work on the command line as described in
“Design Editing,” or use the Tessent Visualizer graphical interface.

If you are getting started with Tessent Shell, refer to “Tessent Shell Workflows” for information
about the Tessent Shell workflow for RTL and scan DFT insertion.

Tessent™ Shell User’s Manual, v2021.326

Tessent Shell Introduction
Tessent Shell Tcl Interface

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Tcl Interface
The Tessent Shell environment uses a Tcl-based interface that you can use from the command
line or by writing dofile scripts.

The Tcl interface supports Tcl constructs such as variables, command substitution, flow control,
and procedures. You can embed Tcl constructs in tool commands and embed tool commands
within Tcl constructs the same as with any Tcl command.

For guidelines about using Tcl in Tessent Shell, and information about converting existing
dofiles and using special characters, refer to “The Tessent Tcl Interface” appendix.

Command Conventions . 26

Command Completion . 27

Dofile Transcription . 28

Tcl Command Registration. 29

Command Conventions
Tessent Shell provides a unified Tcl-style command set and naming convention. Commands
that begin with a certain first word (for example, “get” in get_attribute_value_list) perform
operations on the current data model.

Table 1-1 provides a summary listing by command first word of the Tessent Shell commands.
Refer to the Tessent Shell Reference Manual for a complete list of commands and options. You
can also use the “help” command with a wildcard to see a complete list of commands that start
with the same word:

> help get_*

Table 1-1. Tessent Shell Command Conventions

Command First Word Types of Operations Performed

append_

compare_

copy_

filter_

foreach_

index_

remove_

sizeof_

sort_

Operates on collections. Refer to “Collections” for more
information.

Tessent Shell Introduction
Command Completion

Tessent™ Shell User’s Manual, v2021.3 27

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Command Completion
In the Tessent Shell interface, you can use the Tab key to complete command names, command
option names, and command option values. If the command you type is ambiguous, pressing the
Tab key lists all matching commands. Additionally, within a command, pressing the Tab key
can match variable names with $.

Many Tessent Shell commands are constructed as follows:

command_name command_options command_option_values

For example:

set_config_value -in_wrapper /TopBuilder(CHIP)

Using Tab key completion, you can complete each of the command parts (name, options, and
option values).

For information about Tcl shell handling in Tessent Shell, refer to the set_tcl_shell_options
command.

Command Name Tab Completion

As an example of command name completion, you can abbreviate the get_attribute_list
command in the Tessent Shell interface by typing the following:

SETUP> g_a_l <tab>

Pressing the Tab key after the string completes and expands the command so that it looks like
this:

SETUP> get_attribute_list

get_ Returns data strings or collections of lists, objects, or
object attributes from the design object model for
introspection.

read_ Reads files into memory, such as libraries and netlists.

report_ Displays information about a specific item, such as the
current context or licenses currently checked out.

set_ Specifies options, contexts, modes, attributes, and the
current design. Refer to “Contexts and System Modes”
and “Object Attributes” for more information.

write_ Writes design data to a file or set of files.

Table 1-1. Tessent Shell Command Conventions (cont.)

Command First Word Types of Operations Performed

Tessent™ Shell User’s Manual, v2021.328

Tessent Shell Introduction
Dofile Transcription

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Command Option Name Tab Completion

Tab completion for command option names is available for most commands. For example:

SETUP> get_config_value -m<tab>

-meta_id -meta_name -meta_object

SETUP> get_config_value -meta_

Command Option Value Tab Completion

Tab completion for command option values is available for the following value types:

• Configuration data path

• Enum (Enumerated) values

Configuration Data Path Example

In this example, pressing the Tab key on the partial configuration data path completes the path:

SETUP> set_config_value -in_wrapper /TopB<tab>

SETUP> set_config_value -in_wrapper /TopBuilder(CHIP)/

Enum Value Example

In this example, using the Tab key lists the supported time values -time_unit option to the
get_config_value command:

SETUP> get_config_value -time_unit <tab>

 as_is fs ms ns ps s us

SETUP> get_config_value -time_unit

Dofile Entries

You can use abbreviated commands (for example, g_a_l for get_attribute_list) in Tessent
Shell dofiles, but it is best to always use the full command name. There is no fixed minimum
typing for any command or option, and current minimum typing could change in future releases
because of the addition of new commands or options. Using the full command names also adds
readability to your dofiles.

Dofile Transcription
By default, the transcript style is Full, which means the tool writes out all commands read from
a dofile before any Tcl evaluation occurs. The command appears in the transcript as entered but
is commented out.

Tessent Shell Introduction
Tcl Command Registration

Tessent™ Shell User’s Manual, v2021.3 29

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During Tcl evaluation, the Tcl commands are written to the transcript as follows:

• The tool writes all commands from the dofile with a “// command:” prefix. This includes
Tessent Shell commands, Tcl commands, and complete loop and if/else constructs.

• The tool writes all commands embedded in Tcl constructs to the transcript as executed
with a “// sub_command:” prefix. Tessent Shell completes the variable and command
substitutions and writes the resolved values in the loop to the transcript.

Note
This does not apply to introspection commands. Introspection commands are not
written to the transcript as subcommands.

• The tool indents nested dofiles when they are written to the logfile.

• The tool can read a Tcl routine in much the same manner as a dofile. If you issue the
source command (>source my_report_env), then the Tcl commands in the routine are
not transcripted.

Control the Tessent Shell transcription behavior using the set_transcript_style command.

For information about modifying existing dofiles for use with the Tessent Shell Tcl interface,
refer to “Guidelines for Modifying Existing Dofiles for Use with Tcl.”

Tcl Command Registration
You can convert any Tcl procedure into a Tessent Shell application command. This enables you
to implement functionality in Tcl and register that functionality as a command so that Tessent
Shell handles it like any other built-in command. Like any built-in command, newly registered
Tcl commands support Tab completion, and you can control their availability relative to the
context and system mode. The help system also includes the new command.

The following commands enable you to register new commands and to define arguments and
options for those commands.

When you first execute the new command, the tool performs syntactic and semantic checks, and
provides the parsed results to your Tcl implementation of the command. The tool also provides
a mechanism to automatically define and register user-defined commands at tool invocation.

Table 1-2. Commands for Tcl Command Registration

Command Description

display_message Controls messages produced by Tcl commands.

lock_current_registration Locks all current Tcl commands.

register_tcl_command Registers a Tcl command.

unregister_tcl_command Unregisters a Tcl command.

Tessent™ Shell User’s Manual, v2021.330

Tessent Shell Introduction
Tcl Command Registration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information about creating your own application commands, refer to the examples
included with the register_tcl_command description in the Tessent Shell Reference Manual.

Tessent™ Shell User’s Manual, v2021.3 31

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
Tool Invocation, Contexts, Modes, and Data

Models

In the Tessent Shell environment, setting the context and system mode orients the tool as to
which task you want to perform. The tool uses design data models to store the relevant data
about your design.

Tool Invocation . 31

Contexts and System Modes . 33

Design Data Models . 38

Tool Invocation
When you invoke Tessent Shell, the tool starts up in setup mode.

You can invoke Tessent Shell from a Linux shell using the following syntax:

% tessent -shell

To use most Tessent Shell functionality, you must load a cell library after invocation using the
read_cell_library command.

Refer to the tessent shell command description in the Tessent Shell Reference Manual for
additional invocation options.

Tessent Startup File

During invocation, Tessent Shell reads the .tessent_startup startup file. You can use this startup
file for both general and tool-specific settings. The default location for the startup file is the
home directory: $HOME/.tessent_startup.

This startup file is common to the contexts listed in Table 2-2 on page 33.

Tessent Shell Environment Variables

Tessent Shell provides environment variables for Tessent Shell environment operation in
addition to application-specific environment variables. During invocation, the tool reads all
environment variables that you have set.

The following table lists the environment variables that you can set for Tessent Shell
environment operation.

Tessent™ Shell User’s Manual, v2021.332

Tool Invocation, Contexts, Modes, and Data Models
Tool Invocation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Topics

read_cell_library [Tessent Shell Reference Manual]

tessent [Tessent Shell Reference Manual]

Managing Mentor Tessent Software

set_context [Tessent Shell Reference Manual]

get_scratch_directory [Tessent Shell Reference Manual]

Table 2-1. Application-Specific Environment Variables

Variable Description

TESSENT_LICENSE_ORDER Specifies the order that Tessent tools check out licenses. The
list of licenses uses the same terminology accepted by the
command “ -license”.

TESSENT_STARTUP Specifies the pathname of a directory that contains a Tessent
tool startup file.

Default: No default

TESSENT_TMP_LOCATION Specifies the location at which the tool creates the
.tessent.tmp.hostname.process_id scratch directory. For more
information, see the command description in the Tessent
Shell Reference Manual.

TESSENT_UNDERSCORE_C
OMMANDS_ONLY

Directs the tool to only enable commands that use the
underscore style. When this environment variable is set to any
value, the legacy commands that used spaces are disabled. For
example, the tool would accept analyze_drc_violation but
would not accept “analyze drc violation”.

Tool Invocation, Contexts, Modes, and Data Models
Contexts and System Modes

Tessent™ Shell User’s Manual, v2021.3 33

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Contexts and System Modes
One of the first tasks you perform after invoking Tessent Shell is setting the context and system
mode for the current session.

The term “context” refers to a broad category of functionality that often corresponds to a
specific point tool, product, or license feature, such as Tessent FastScan. Each context includes
several system modes, which specifies the tool’s current state of operation. By setting the
context and then the system mode, you indicate the type of tasks you want Tessent Shell to
perform.

In addition, you must specify the design level at which you want Tessent Shell to execute tasks.

Contexts . 33

System Modes . 35

Context and System Mode Combinations . 35

Design Levels . 36

Contexts
The context specifies the functional category of tasks you want to perform with Tessent Shell.

Table 2-2 lists the contexts that are currently available.
Table 2-2. Tessent Shell Contexts

Context Description

dft Editing and introspection of the following types of designs: gate-
level Verilog, RTL Verilog, RTL System Verilog, and RTL
VHDL.

dft -edt EDT IP generation and optional insertion. This corresponds to
the IP creation phase of Tessent TestKompress®.

dft -logic_bist -edt Configuration, generation, and insertion of the EDT/LBIST
hybrid controller IP. This corresponds to Tessent LogicBIST.

dft -no_sub_context Specifies that a command is only available in the dft context
when no sub-context, such as -scan and -edt, was specified. See
the register_tcl_command in the Tessent Shell Reference Manual
for more information.

dft -scan Scan analysis and scan chain insertion. This corresponds to
Tessent Scan. Additionally in this context you can prepare a
BIST-ready design and include tasks such as X-bounding, MCP/
FP handling, and test point insertion. These features correspond
to Tessent ScanPro.

Tessent™ Shell User’s Manual, v2021.334

Tool Invocation, Contexts, Modes, and Data Models
Contexts

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Context Specification

Set the Tessent Shell context using the set_context command. For example:

SETUP> set_context dft -scan

You must set the context after you invoke Tessent Shell and before you can enter most
commands. The set_context command is available only in setup mode. You can use the
get_context command to see the current context.

Prior to setting the context, you can only run a small set of setup commands. These commands
are those that you would typically place inside the startup file.

Context and Licensing

When you set the context, the tool automatically acquires the appropriate license, if available.
Alternatively, you can directly specify the license Tessent Shell acquires by using the
set_context command with the optional -license switch.

dft -test_points Test point identification and insertion. The test point
identification algorithm focuses on either pattern count reduction
or improving random pattern testability of the design.

patterns -failure_mapping Reverse map top-level failures to the core so that you can
perform diagnosis with Tessent Diagnosis. Used after performing
scan pattern retargeting within the patterns -scan_retargeting
context.

patterns -ijtag PDL command retargeting for IJTAG (IEEE 1687-2014) plus
extraction of the ICL network from the design.

patterns -scan Test pattern generation and good and fault simulation. This
corresponds to Tessent FastScan and the test pattern generation
phase of Tessent TestKompress. The patterns -scan context
supports uncompressed scan ATPG/fault simulation, EDT
ATPG/fault simulation, and Logic BIST fault simulation.

patterns -scan_diagnosis Test failure diagnosis to determine a defect’s failure mechanism
and location. This corresponds to Tessent Diagnosis.

patterns -scan_retargeting Scan pattern retargeting for retargeting core-level test patterns at
the top level.

patterns -silicon_insight Control, simulate, debug, and characterize BIST-related
memories, logic, PLLs, and SerDes. This corresponds to Tessent
SiliconInsight.

Table 2-2. Tessent Shell Contexts (cont.)

Context Description

Tool Invocation, Contexts, Modes, and Data Models
System Modes

Tessent™ Shell User’s Manual, v2021.3 35

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can control the order in which Tessent Shell checks out licenses by setting the
TESSENT_LICENSE_ORDER environment variable. You provide, as the value of the
environment variable, a space-separated list of licenses using the terminology described for
“set_context -license.” For example:

setenv TESSENT_LICENSE_ORDER “Scan TestKompress IJTAG”

Any available licenses not explicitly listed in the value of the TESSENT_LICENSE_ORDER
environment variable are appended to the list in their original order. The tool issues a warning if
the environment variable contains a license that does not exist.

For more information about specifying a license feature, refer to the set_context command
description in the Tessent Shell Reference Manual. For a complete list of license feature names,
refer to Managing Tessent Software.

System Modes
A system mode in Tessent Shell defines the operational state of the tool. The default system
mode is setup. The available system mode depends on the current context of the tool.

Table 2-3 lists the available system modes.

Change the Tessent Shell system mode using the set_system_mode command. For example:

SETUP> set_system_mode insertion

Context and System Mode Combinations
Together, the context and system modes imply a Tessent Shell task flow from setup to analysis
to insertion when you are working with DFT designs, and from setup to analysis when you are
working with patterns. For example, if you are working on a DFT design while in setup mode,
you cannot perform scan analysis.

The following matrix lists the actions you can perform in the available contexts and system
modes. The tool filters out the functionality that does not apply to the context/mode you are
currently in and issues an error when you attempt to perform a task not within the scope of the
current context/system mode.

Table 2-3. Tessent Shell System Modes

System Mode Description

setup Used as the entry point into the tool. Used to define the current
context and specify the design information.

analysis Used to perform design analysis, test pattern generation, PDL
retargeting, and simulation.

insertion Used to perform design editing and introspection.

Tessent™ Shell User’s Manual, v2021.336

Tool Invocation, Contexts, Modes, and Data Models
Design Levels

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool provides a set of commands that enable you to interact with contexts and system
modes.

Design Levels
When working with DFT designs—that is, you are working in context dft—you must set the
design level at which you are performing tasks. There is no default setting for the design level.

The available design levels are chip, physical block, and sub-block. For flat designs, you always
work at the chip level. For hierarchical designs, it is crucial to differentiate whether you are
work at the top-level (chip) or at lower levels within physical blocks or sub-blocks. Refer to
“Hierarchical DFT Terminology” for definitions of these terms.

Context Setup Mode Analysis Mode Insertion Mode

dft • Read and configure design
• Prepare for design editing,

IP creation, scan insertion,
test point analysis and
insertion

• Scan analysis
• Test point analysis
• EDT IP creation
• Hybrid TK/LBIST IP

creation
• MemoryBIST IP creation
• Boundary scan IP

creation
• In-System Test IP

creation

• RTL or gate-
level design
editing with
design
introspection

patterns • Read and configure design
• Define test pattern

generation type to perform

• ATPG/fault simulation
• PDL retargeting
• Scan pattern retargeting
• Execute an IJTAG test

pattern
• Perform SimDUT

simulation

(not applicable)

Table 2-4. Tessent Shell Context and System Mode Commands

Command Description

get_context Returns the current context as specified by the set_context
command. Also returns inferred subcontexts, such as whether
patterns -scan is configured to perform LogicBIST or ATPG.

set_context Sets the current context and its options.

set_system_mode Sets the system mode.

Tool Invocation, Contexts, Modes, and Data Models
Design Levels

Tessent™ Shell User’s Manual, v2021.3 37

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For complete information, refer to the set_design_level command description in the Tessent
Shell Reference Manual.

Tessent™ Shell User’s Manual, v2021.338

Tool Invocation, Contexts, Modes, and Data Models
Design Data Models

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Data Models
Tessent Shell has the following data models: the hierarchical design data model, the flat design
data model, and the ICL data model. Each of these data models contains one or more design
objects, such as pins and modules, and each design object is associated with a set of attributes,
such as an ID or bit-width of a bus.

For a complete description of the various data models, object types, and attributes, refer to the
“Data Models” chapter in the Tessent Shell Reference Manual.

Flat Design Data Model . 38

Hierarchical Design Data Model . 38

ICL Data Model . 40

Object Attributes . 40

Flat Design Data Model
The flat design data model is an internal, flattened representation of a hierarchical design that
the tool creates when entering analysis mode. You can also explicitly create the flat model using
the create_flat_model command.

The flat design data model consists of gates that are connected together. A gate is an instance of
a primitive module, and a gate_pin object represents a pin on a gate instance. Gate_pin objects
have no unique instance name. Instead they have a unique ID that differentiates one from
another. The format of the ID is two integers separated by a period character. The first integer
represents the gate ID, and the second integer represents the pin index (where 0 is the output
pin, 1 is first input pin, and so on). However, this ID does not remain in place from one netlist
version to the next or from one Tessent Shell invocation to the next. For this reason, you should
avoid hard-coding this ID into a script.

Note
You can preserve hierarchical pins in the flat model by using the set_attribute_options
-preserve_boundary_in_flat_model option.

For more information about the flat design data model and the gate_pin object type, refer to
“Flat Design Data Model” in the Tessent Shell Reference Manual.

Hierarchical Design Data Model
Tessent Shell translates your design netlist into a hierarchical design data model in memory

when you load the design into the tool using a command such as read_verilog.

The design data remains in memory during the Tessent Shell session until you delete the model
or exit the tool.

Tool Invocation, Contexts, Modes, and Data Models
Hierarchical Design Data Model

Tessent™ Shell User’s Manual, v2021.3 39

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The hierarchical design data model contains the following object types:

• Module — A basic building block of your design. A module can be a Verilog module, a
Tessent library model, or a built-in primitive.

• Instance — A single instantiation of a module.

• Port — An input, output, or inout interface of a module.

• Pin — An input or output interface of an instance.

• Net — A wire that connects the pins of instances.

• Pseudo_port — Represents a user-added primary input or primary output.

These object types are described in detail in the “Data Models” chapter of the Tessent Shell
Reference Manual.

Use the set_current_design command to designate one module within your design as the current
design. Instances, pins, and nets are hierarchical objects defined relative to the current design.

Figure 2-1 shows a hierarchical design upon which many of the examples in this chapter are
based. The label above the elements is the instance name while the label below the elements is
the module name. For example, the module name of the AND gate in the upper-left corner is
and3, and its instance name is u1.

The dashed boxes are modules instantiated in the parent module. For example, module modc is
instantiated inside of module modb. Its complete instance path is u4/u5.

Figure 2-1. Hierarchical Design Example

Tessent™ Shell User’s Manual, v2021.340

Tool Invocation, Contexts, Modes, and Data Models
ICL Data Model

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ICL Data Model
The Instrument Connectivity Language (ICL) describes the elements that comprise the IJTAG
network as well as their logical (though not necessarily physical) connections to each other and
to the instruments at the endpoints of the network.

ICL bears a loose resemblance to a hierarchical netlist such as Verilog; it is organized by
modules that may contain instances of other modules, and it describes the connections between
the pins of the instances. ICL is not a complete netlist. The connections are port-to-port rather
than through nets, and ICL uses abstraction rather than include the detailed physical
construction of the circuitry. ICL represents only the behavioral operation of the network.

The ICL data model defines objects as one of various object types, such as icl_module,
icl_instance, icl_port, and icl_pin.

Each icl_module object has its list of objects including the following:

• icl_port

• icl_instance_in_module

• icl_pin_in_module

• icl_scan_register_in_module

• icl_scan_mux_in_module

• icl_one_hot_scan_group_in_module

• icl_alias_in_module

• icl_scan_interface_of_module

Once the current design is set using the set_current_design command, the ICL data model is
elaborated downward from the current design and icl_instance objects are created for each
instance of icl_module, and icl_pin objects are created for each port of the modules associated
to the icl_instances. The icl_instance and icl_pin objects are hierarchical objects and therefore
only exist after the current design is set. The same holds for objects of type icl_scan_register,
icl_scan_mux, icl_one_hot_scan_group, icl_alias, and icl_scan_interface.

For more information about the ICL data model and the icl_module, icl_instance, icl_port, and
icl_pin object types, refer to “ICL Data Model” in the Tessent Shell Reference Manual.

Object Attributes
Each design object in a design data model has a list of characteristics, called attributes, attached
to that object. For example, each pin has an attribute that specifies its hierarchical name and its
parent instance. There are both predefined and user-defined attributes.

Tool Invocation, Contexts, Modes, and Data Models
Object Attributes

Tessent™ Shell User’s Manual, v2021.3 41

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Predefined attributes provide access to information known to the tool such as the name of a
module or the direction of a pin. All design objects have some predefined attributes, and every
design object can have user-defined attributes as well. For a complete list of attributes for each
type of data model, refer to “Data Models” chapter in the Tessent Shell Reference Manual.

The process for creating a new user-defined attribute is called registration. The predefined
attributes, unlike the user-defined attributes, do not need to be registered.

You must register each new user-defined attribute and specify a default value before you can
use the attribute. If you want to later change the default value, you must unregister and then re-
register the attribute. For more information about the registration process, refer to the
description of the register_attribute command in the Tessent Shell Reference Manual.

You can query any attribute and change any user-defined attribute. Most predefined attributes
are read-only, although some are read-write, such as the is_hard_module attribute.

You can filter and sort objects based on the attributes and their values. The filter_collection and
sort_collection commands perform these operations. For more information about filtering
attributes, refer to “Attribute Filtering Equation Syntax” in the Tessent Shell Reference Manual.

Intuitively named “get_” commands return collections of objects from the data model and the
model’s attributes that you can use for design introspection of various design objects.

Tessent™ Shell User’s Manual, v2021.342

Tool Invocation, Contexts, Modes, and Data Models
Object Attributes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 43

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
Design Introspection and Editing

Tessent Shell provides a full range of commands for examining (introspecting) and editing
designs.

Along with the command-line interface, Tessent Shell provides a graphical user interface,
Tessent Visualizer, that enables you to edit and introspect designs, and adjust object attributes.
For details, refer to “Tessent Visualizer” on page 625.

Design Introspection . 44

Design Editing . 77

Simulation Contexts. 85

Automatic Design Mapping . 89

ICL Objects vs. Design Objects Introspection . 92

Tessent™ Shell User’s Manual, v2021.344

Design Introspection and Editing
Design Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Introspection
Tessent Shell introspection commands allow you to examine the design objects within a design
data model. They provide access to the tool’s internal data structures, giving you the flexibility
of Tcl scripting while keeping all compute-intensive processing in the tool’s backend. The
commands operate on object specifications that you include as arguments to the commands, and
they return collections.

Object Specification Format . 44

Collections. 44

Design Introspection Examples . 47

Design Introspection Command Summary . 51

Bundle Object Introspection. 53

Object Specification Format
An object specification lists the design objects (such as instances, pins, or nets) that the
specified command acts upon. The object specification can be the name of an object, a Tcl list
of names of objects, or a collection of objects. For design objects that have unique IDs, like
instances, you can use the IDs as the object names.

The following examples show the add_schematic_objects command with valid object
specifications listed within square brackets or curly brackets.

add_schematic_objects [get_instances u*] -display hierarchical_schematic

add_schematic_objects [list u1 u2 u3] -display hierarchical_schematic

add_schematic_objects {u1 u2 u3} -display hierarchical_schematic

These commands display the results in Tessent Visualizer.

All Tessent Shell commands operating on user-specified objects accept object specifications as
arguments.

Collections
Collections are an extension of Tcl that are specific to Tessent Shell applications. Native Tcl
commands such as “foreach” and “puts” do not recognize collections. A collection represents a
group of zero (an empty set) or more design objects.

Design introspection commands return collections of objects. The objects are stored in the
internal data structures, and the tool returns a string handle to this collection. The string handle
is a “@” character followed by a numeric ID (in this case, “@1”). The entire data volume
remains in the tool’s internal data structures, so the Tcl interface is not overloaded with large
amounts of data.

Design Introspection and Editing
Collections

Tessent™ Shell User’s Manual, v2021.3 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Introspection commands issued directly from the shell display the “name” attribute of the first
50 elements of the collection, because the name is more useful than displaying the collection’s
ID. However, names are not displayed in non-interactive mode such as when executing a dofile.

The following example demonstrates the use of the get_instances and get_name_list commands
to return collections of objects:

SETUP>set var1 [get_instances u* -hierarchical –of_modules MOD1]

{u1 u2 u3 u4 u5 u6 u7}

SETUP>puts $var1@1
SETUP>puts [get_name_list $var1]

u1 u2 u3 u4 u5 u6 u7

In this example, the first command returns a collection of names. The objects are stored in
internal data structures, and the tool returns a string handle to this collection which is “@”
followed by a number ID (“@1”).

In the following example, the collection created by the get_instances command is stored in the
variable instCollection (which means that the collection is referenced).

set instCollection [get_instances -of_type cell]

Tessent Shell deletes the collection when you unset the variable instCollection or set the
variable to a new value, or when the Tcl variable(s) referring to the collection go out of scope.

In the following example, the collection created by the command get_pins is passed to the
get_attribute_value_list command. This means that the collection is referenced.

get_attribute_value_list [get_pins u1/a*] -name direction

Tessent Shell deletes the collection when the command get_attribute_value_list returns a value.

Collections can refer to objects that no longer exist because they have been deleted using editing
commands, such as delete_pins. The built-in attribute “is_valid” is set to false when an object
has been deleted. All commands that accept collection pointers as input automatically ignore
objects with the “is_valid” attribute set to false.

Persistence of Collections

The tool references a collection when the collection is stored in a Tcl variable or when it is
passed to a command or procedure. The tool automatically deletes a collection when it is no
longer referenced.

You should not use Tcl built-in commands that expect a Tcl list, such as the foreach command,
with collections. When you pass a collection to this type of command, the command
dereferences the collection and, as a result, deletes the collection.

Tessent™ Shell User’s Manual, v2021.346

Design Introspection and Editing
Collections

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Transcript the Contents of Collections

Use the get_name_list command to return a list of the names of all the elements in the
collection. So, to transcript the names in the log file, you can use the “puts” command with
get_name_list (or any other Tessent get_* command):

Commands That Work With Collections or Tcl Lists

Tessent Shell provides commands that create, manipulate, and query collections. Table 3-1

presents some Tessent Shell commands based on how they interact with collections.1

1. The table does not list all the applicable commands. Refer to the Tessent Shell Reference Manual.

Table 3-1. Commands That Interact With Collections

Commands that... Command Name

Create collections or Tcl lists get_attribute_list

get_attribute_option

get_attribute_value_list

get_current_design

get_fanins

get_fanouts

get_gate_pins

get_instances

get_modules

get_name_list

get_nets

get_pins

get_ports

Operate on collections add_to_collection

append_to_collection

compare_collections

copy_collection

filter_collection

foreach_in_collection

index_collection

remove_from_collection

sort_collection

Design Introspection and Editing
Design Introspection Examples

Tessent™ Shell User’s Manual, v2021.3 47

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Introspection Examples
Design introspection enables you to create procedures to show design data of interest, create
and set attributes, create and manipulate collections, create custom reports, and other tasks.

Example of Creating a Procedure to Show Flip-Flop Fanouts

The following example is based on Figure 2-1 on page 39 and creates a procedure called
show_fanouts that returns the fanouts of a specified flip-flop.

proc show_fanouts {flop} {
set ff_fanout [get_fanouts $flop/Q]
puts "$flop/Q is connected to: [get_name_list $ff_fanout]"

}

The following two examples show how to use the show_fanouts procedure you just created.

> show_fanouts u2

u2/Q is connected to : u4/u4/A0 u4/u1/A1

> foreach_in_collection ff [get_instances * -of_module dff* -hierarchical] \
{show_fanouts [get_name_list $ff]}

u2/Q is connected to: u4/u1/A1 u4/u4/A0
u7/Q is connected to: O3 u6/A0 u5/u3/A1 u5/u4/S0
u4/u2/Q is connected to: u4/u3/D
u4/u3/Q is connected to: u6/A1 u5/u1/A1
u4/u5/u2/Q is connected to: u5/u4/A0
u5/u2/Q is connected to: u5/u1/A0 u5/u3/A0
u4/u5/u3/Q is connected to: u6/A2

Example of Displaying the Number of Input Ports

The following example displays the number of input ports on modules (objects with names that
begin with “mod” in Figure 2-1).

> set mods [get_modules mod* -of_type design]

> foreach_in_collection itr $mods \{puts "The number of input ports of \
[get_attribute_value_list $itr -name name] \
is [sizeof_collection [get_ports -of_module $itr -direction input]]"}

Read and write attributes of objects
found within collections or Tcl lists

get_attribute_list

get_attribute_value_list

report_attributes

set_attribute_value

Table 3-1. Commands That Interact With Collections (cont.)

Commands that... Command Name

Tessent™ Shell User’s Manual, v2021.348

Design Introspection and Editing
Design Introspection Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The number of input ports of modb is 6
The number of input ports of modc is 4
The number of input ports of modd is 4

The design in Figure 3-1 is identical to Figure 2-1, with the addition of colors to help you
understand the examples that follow.

Figure 3-1. Hierarchical Design Example With Colors

Example of Creating Attributes and Manipulating Collections

The following example is based on Figure 3-1 and shows the complete process of creating and
setting user-defined attributes, and then creating and manipulating collections.

register_attribute -name color -value_type string -default "blue" -enum "red green blue" \
-object_types instance

Set the “color” attribute of each instance to match Figure 3-1.

set_attribute_value {/u4/u4 /u4/u5/u3 /u5/u2} -name color -value "green"

{u4/u4 u4/u5/u3 u5/u2}

set_attribute_value {u1 u2 u6 /u4/u5/u1 /u4/u3 /u5/u4 /u5/u3} -name color -value "red"

{u1 u2 u6 u4/u5/u1 u4/u3 u5/u4 u5/u3}

set_attribute_value {u3 u7 /u4/u1 /u4/u2 /u4/u5/u2 /u5/u1} -name color -value "blue"

{u3 u7 u4/u1 u4/u2 u4/u5/u2 u5/u1}

Create collections of instances with the same color values.

set all_inst [get_instances -of_type cell]

Design Introspection and Editing
Design Introspection Examples

Tessent™ Shell User’s Manual, v2021.3 49

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

{u1 u2 u3 u6 u7 u4/u1 u4/u2 u4/u3 u4/u4 u4/u5/u1 u4/u5/u2 u4/u5/u3 u5/u1
u5/u2 u5/u3 u5/u4}

set red_inst [filter_collection $all_inst {color == "red"}]

{u1 u2 u6 u4/u3 u4/u5/u1 u5/u3 u5/u4}

set blue_inst [filter_collection $all_inst {color == "blue"}]

{u3 u7 u4/u1 u4/u2 u4/u5/u2 u5/u1}

set green_inst [filter_collection $all_inst {color == "green"}]

{u4/u4 u4/u5/u3 u5/u2}

Manipulate the collections and create additional collections.

puts "Number of red cells in the design: [sizeof_collection $red_inst]"

Number of red cells in the design: 7

puts [compare_collections $red_inst $blue_inst]

1

set red_green [add_to_collection $red_inst $green_inst]

{u1 u2 u6 u4/u3 u4/u5/u1 u5/u3 u5/u4 u4/u4 u4/u5/u3 u5/u2}

set sort_red [sort_collection $red_inst name -descending]

{u6 u5/u4 u5/u3 u4/u5/u1 u4/u3 u2 u1}

Example of Displaying Attribute Values of a Collection

After Tessent Shell has executed the previous commands, the following commands display the
colors assigned to gates in the collection named ANDs.

set ANDs ""
append_to_collection ANDs [get_instances -of_type cell -filter {module_name == "AND"}]

foreach_in_collection itr $ANDs {puts "The color value for \
 [get_attribute_value_list $itr -name name] is [get_attribute_value_list \$itr -name color] "}

The color value for u1 is red
The color value for u4/u4 is green
The color value for u4/u5/u1 is red

As an alternate way to register the attribute in the previous example, you can use the
register_attribute command as shown here:

register_attribute -name is_red -value_type bool -object_types “instance" \
–description "True if color is red."

Tessent™ Shell User’s Manual, v2021.350

Design Introspection and Editing
Design Introspection Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

So, instead of using the color attribute with enumerated values of red, green, and blue as shown
previously, you could instead register three Boolean type attributes of is_red, is_green, and
is_blue. This enables you to use Boolean values for filtering and tracing. For example:

> set red_inst [filter_collection $all_inst {is_red}]

Example of Changing an Attribute of a Collection

The following command example is based on Figure 3-1 and shows how to change the color
attribute of a collection of DFFs to green.

set DFFs [get_instances -of_modules dff]

display all of the instances that have a color attribute of blue

set all_blue [filter_collection $all_inst "color == blue"]

{u7 u4/u2 u4/u5/u2}

change all instances in the collection DFFs to have a “color” attribute value of green

set_attribute_value $DFFs -name color -value green

now check the results
set all_green [filter_collection [$all_inst {color == "green"}]]

{u2 u7 u5/u2 u4/u4 u4/u2 u4/u3 u4/u5/u2 u4/u5/u3}

Example of Removing Duplicate Objects from a Collection

The following example shows how to create a collection containing three duplicate objects and
then remove the duplicate objects from the collection.

set t [get_instances {u3 u3 u3}]

{u3 u3 u3}

sizeof_collection $t

3

set tt [add_to_collection "" $t -unique]

{u3}

 sizeof_collection $tt

1

Example of Creating a Custom Report

The following dofile example creates a collection of all instance objects with a leaf name
starting with “u” and then displays ten instance names per row.

Design Introspection and Editing
Design Introspection Command Summary

Tessent™ Shell User’s Manual, v2021.3 51

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set cnt 0
set line ""
foreach_in_collection element [get_instances u* -hierarchical] {
 if {$cnt < 10} {
 append line "[get_single_name $element] "
 incr cnt
 } else {
 puts $line
 set line ""
 append line "[get_single_name $element] "
 set cnt 1
 }
}
if {$cnt > 0} {puts $line}

Design Introspection Command Summary
The design introspection commands include the get_ commands as well as various commands
for manipulating attributes.

Design Introspection Command Summary

Table 3-2 lists the common design introspection commands. Refer to the Tessent Shell
Reference Manual for more information.

Table 3-2. Design Introspection Commands

Command Name Description

get_common_parent_instance Returns the common ancestor of all instances, pins, or
nets found in object_spec.

get_current_design Returns a collection of one element that specifies the top-
level design when previously set.

get_design_level Returns the design level previously defined with the
set_design_level command.

get_fanins Returns a collection of all objects found in the fanin of
the specified pin, net, or port objects.

get_fanouts Returns a collection of all requested objects found in the
fanout of the specified pin, net, or port object.

get_gate_pins Returns a collection of all gate_pin objects found below
the current design in the flat model.

get_instances Returns a collection of instances relative to the current
design.

get_modules Returns a collection of modules.

get_nets Returns a collection of nets relative to the current design.

get_pins Returns a collection of pins relative to the current design.

Tessent™ Shell User’s Manual, v2021.352

Design Introspection and Editing
Design Introspection Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Attribute Introspection Command Summary

Table 3-3 lists all of the commands that introspect attributes.

get_ports Returns a collection of ports on a given module.

Table 3-3. Attribute Introspection Commands

Command Name Description

get_attribute_list Lists registered attributes.

get_attribute_option Returns the current setting of an attribute's option.

get_attribute_value_list Returns the attribute's value.

get_name_list Returns the name attribute of the specified objects.

get_single_name Returns a string with the name of the element specified by the
object_spec argument.

register_attribute Registers a new attribute by adding it to the attribute manager.

report_attributes Prints a report for the registered attributes.

reset_attribute_value Resets the attribute to its default value.

set_attribute_options Configures attribute options.

set_attribute_value Defines the attribute's value.

unregister_attribute Makes an attribute unusable by removing it from the attribute
manager.

Table 3-2. Design Introspection Commands (cont.)

Command Name Description

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 53

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bundle Object Introspection
The Bundle Object Hierarchy is an extension of the module instance hierarchy, and the signals
(pins, ports, and nets) are considered as a tree of sub signals. The root bundle is the signal itself,
the leaf objects are the bit-blasted elements of the given signal, and the nodes are the middle
bundle objects.

To support this bundle object concept new object types are added to Tessent Shell Hierarchical
Design Data Model. The leaf objects are represented by net, pin, port object types; the sub and
root bundle objects are represented by net_bundle, pin_bundle, and port_bundle objects types.

The bundle object is set of bits that represents a sub signal of a given net or port. This concept is
applied to complex and simple signals for RTL and no RTL flow. The difference between
simple and complex signals is in the number of levels that can be explored through the
introspection commands.

Each complex signal has a select part. For example, for the following complex signal:

B[5].c[2].d

The portion in red ([5].c[2].d) is the select part, and the “B” is the root bundle. See “Bundle
Object” on page 53 for complete details. The select part of the signals helps to explore the
Bundle Object Hierarchy level-by-level.

Tessent Shell supports introspection of RTL complex signals through a bundle object, which is
a set of bits that represent a sub signal of a given RTL net or port. Using Tessent Shell
introspection commands enable exploration inside the bundle object and selection of different
bundle parts of the signals using the hierarchical bitselect.

Bundle Object. 53

Bundle Object Data Model . 58

Introspection. 61

Bundle Object Introspection Examples . 65

Fanin and Fanout Tracing of Complex Signals and Bundle Object Tracing. 68

Connectivity Through Complex Signals . 72

Bundle Object
A bundle object is a set of bits that represents a whole signal or its sub signals of a given RTL
port or net.

Tessent™ Shell User’s Manual, v2021.354

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The bundle is made up of Tessent Shell Hierarchical Design Data Model object types that you
introspect using Tessent Shell introspection commands relative to the current design. The
following illustrates this concept:

Root bundle (Signal itself)
 |--> Node (Sub Signal)
 | |--> Leaf (Bit-blasted elements)

Example:net_bundle (Bundle Object Type)
 |--> net_bundle (Bundle Object Type)
 | |--> net (Bit-blasted Object Type)

pin_bundle (Bundle Object Type)
 |--> pin_bundle (Bundle Object Type)
 | |--> pin (Bit-blasted Object Type)

port_bundle (Bundle Object Type)
 |--> port_bundle (Bundle Object Type)
 | |--> port (Bit-blasted Object Type)

The following object types contain several common attributes that are also associated with the
bit-blasted object types (net, pin, and port):

• net_bundle

• pin_bundle

• port_bundle

All attributes added to port, pin, and net are also added to port_bundle, pin_bundle, and
net_bundle.

For example, the naming is common between a bit-blasted object type and a bundle object type.

See “Bundle Object Data Model” on page 58 for complete information.

Naming Attributes

The following table shows the list of the principal name attributes associated with net, port, and
pin object types.

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 55

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bundle Naming Examples

Example 1

The post_synthesis_name attribute for complex signals is usually the base name with the flatten
position as the index. System Verilog interface signals are the exception. For example, in case
of the following input port “data_in” declared as array of structure in System Verilog:

typedef struct{
 logic a;
 logic [1:0] b;
} data_t;
input data_t [2:0][4:0] data_in;

Attribute Description RTL View Synthesized View

name The active name. The
name depends on the
selected view. This
includes the select part in
the case of signals (port,
pin, and net).

The -rtl mode has the
RTL view and the
synthesized view.

The -no_rtl mode only
has the netlist view.

The full RTL
name including
all the select
part.

The full synthesis name
including all the select
part (flatten position in
case of complex signals).

parent_bundle_name The bundle parent of the
port, pin, or net.

The parent
name of the
selected RTL
object.

The parent name of the
selected synthesized
object.

post_synthesis_name The synthesis name,
created by the quick
synthesis.

The computed
equivalent post
synthesis name.

Equal to “name”
attribute.

pre_synthesis_name RTL name, the original
name before synthesis.

Equal to
“name”
attribute.

Full RTL name, the
original name before
synthesis.

root_bundle_name The active name without
the select part.

The base RTL
name without
the select part.

The base synthesis name
without the select part.

Tessent™ Shell User’s Manual, v2021.356

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following figure illustrates the representation in the flatten dimension:

The following table shows the different naming of the signal “data_in[2][1].b[1]”

Example 2

In this example, the “net1”from Example 1 is declared inside nested generate blocks:

typedef struct{
 logic a;
 logic [1:0] b;
} data_t;

genvar i, j;
generate
 for (i=0; i < 2; i=i+1) begin
 for (j=0; j < 2; j=j+1) begin : MEM_j
 data_t [2:0][4:0] net1;
 …………
 end
 end
endgenerate

The following table shows the different naming of “genblk1[0].MEM_j[0].net1[2][1].b[1]”

Name Attribute (RTL View) post_synthesis_name Attribute

data_in[2][1].a data_in[35]

data_in[2][1].b data_in[34:33]

data_in[2][1].b[1] data_in[34]

Attribute RTL View Synthesis View

name data_in[2][1].b[1] data_in[34]

pre_synthesis_name data_in[2][1].b[1] data_in[2][1].b[1]

post_synthesis_name data_in[34] data_in[34]

root_bundle_name data_in data_in

Attribute RTL View Synthesis View

name genblk1[0].MEM_j[0].net1[2][1].b[1] \genblk1[0].MEM_j[0].net1 [34]

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 57

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3

This example illustrates an interface declared as a net to connect two sub instances.

interface intf;
 logic a;
 logic b;
 modport in (input a, output b);
 modport out (input b, output a);
endinterface

module top;
 intf i ();
 u_a m1 (.i1(i));
 u_b m2 (.i2(i));
endmodule

module u_a(intf.in i1);
endmodule
module u_b(intf.out i2);
endmodule

The following tables shows the different naming of the signals “i.a” and “m1/i1.a”.

For net: “i.a”

For pin: “m1/i1.a”

pre_synthesis_name genblk1[0].MEM_j[0].net1[2][1].b[1] genblk1[0].MEM_j[0].net1[2][1].b[1]

post_synthesis_name \genblk1[0].MEM_j[0].net1 [34] \genblk1[0].MEM_j[0].net1 [34]

root_bundle_name genblk1[0].MEM_j[0].net1 \genblk1[0].MEM_j[0].net1

Attribute RTL View Synthesized View

name i.a \i.a

object_type net net

pre_synthesis_name i.a i.a

post_synthesis_name \i.a \i.a

root_bundle_name i i

Attribute RTL View Synthesized View

name m1/i1.a m1/\i1.a

object_type pin pin

pre_synthesis_name m1/i1.a m1/i1.a

post_synthesis_name m1/\i1.a m1/\i1.a

Attribute RTL View Synthesis View

Tessent™ Shell User’s Manual, v2021.358

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 4

The values of the name attributes are language independent and have the same values for both
VHDL and Verilog RTL objects. The following example in VHDL uses the record datatype:

library ieee;
package record_pkg is

 -- Outputs from the FIFO.
 type t_FROM_FIFO is record
 wr_full : std_logic; -- FIFO Full Flag
 rd_empty : std_logic; -- FIFO Empty Flag
 rd_dv : std_logic;
 rd_data : std_logic_vector(7 downto 0);
 end record t_FROM_FIFO;
 ………
end package record_pkg;
use work.record_pkg.all; -- USING PACKAGE HERE!
entity top is
 port (
 i_clk : in std_logic;
 i_fifo : in t_FROM_FIFO;
 ………);
end top;

architecture behave of top is

begin
 ………
end behave;

The following table shows the different naming of the port “i_fifo.rd_data(5)” in VHDL. VHDL
uses “()” to represent the index, but Tessent Shell uses “[]” instead.

Bundle Object Data Model
Bundle objects utilize the Tessent Shell Hierarchical Design Data Model object types.

root_bundle_name m1/i1 m1/\i1.a

Attribute RTL View Synthesis View

name i_fifo.rd_data[5] i_fifo[5]

pre_synthesis_name i_fifo.rd_data[5] i_fifo.rd_data[5]

post_synthesis_nam
e

i_fifo[5] i_fifo[5]

root_bundle_name i_fifo i_fifo

Attribute RTL View Synthesized View

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 59

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For each object type, there are attributes associated with the design objects found on, in, and
below the current design (set with the set_current_design Tessent Shell command). A bundle
object has a select part and type information. Otherwise a bit-blasted object has a bit select and
also type information. An object type can be a complex type in case of bundle object, like struct,
enum, typedef, multi-dimensional array. In the case of a bit-blasted object it is always a 1 bit
datatype. It can be register, wire, logic, bit, tri, for example. Several attributes are associated
with the following Hierarchical Design Data Model object types:

• Net

• Net Bundle

• Pin

• Pin Bundle

• Port

• Port Bundle

Each of these object types is covered in detail in the Tessent Shell Reference Manual.

base_class and base_type Attributes

Each bundle object type contains a base_class and base_type attribute as follows:

• base_class — String character that represents the class category of the base type. It
helps to complete the base_type definition. Possible values are: = 4_state_signed |
4_state_unsigned | 2_state_signed | 2_state_unsigned | enum | struct_packed |
struct_unpacked | union_backed | union_unpacked | interface | interface_modport | other.

• base_type — String character that represents the base type of the selected object. The
base type is the type of the object without any dimensions. It represents the base type of
the sub bundle type if the selected object is a sub bundle object. It can be a base type of
the root type if the selected object is a root bundle. The base_type is a key or user name
that help to understand the base type of this bundle. Possible values are: logic | register |
wire | bit | supply0 | supply1 | tri | triand | trior | tri0 | tri1 |wand | wor | byte | shortint |
integer | longint | user_name | other

The following examples shows the values for base_class and base_type bundle object type
attributes in System Verilog:

Table 3-4. base_class and base_type System Verilog Examples

Examples base_type and base_class Values

Packed struct having typedef
name “data_t”

base_type= data_t, base_class= struct_packed

Unpacked struct having typedef
name “data_t”

base_type= data_t, base_class= struct_unpacked

Tessent™ Shell User’s Manual, v2021.360

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Bundle

The Net Bundle object type has net_bundle datatype and attributes. For complete details, refer
to net_bundle in the Tessent Shell Reference Manual.

Pin Bundle

The Pin Bundle object type has pin_bundle datatype and attributes. For complete details, refer
to pin_bundle in the Tessent Shell Reference Manual.

Port Bundle

The Port Bundle object type has port_bundle datatype and attributes. For complete details, refer
to port_bundle in the Tessent Shell Reference Manual.

ICL Data Model

The ICL data model is a separate data model that reflects the design logic. The ICL data model
defines objects as one of the following four data types: icl_module, icl_instance, icl_port, and
icl_pin.

shortint base_type = shortint, base_class = 2_state_signed

unsigned shortint base_type = shortint, base_class = 2_state_unsigned

integer base_type = integer, base_class = 4_state_signed

int base_type = integer, base_class = 2_state_signed

unsigned integer base_type = integer, base_class = 4_state_unsigned

unsigned int base_type = integer, base_class = 2_state_unsigned

reg base_type = register, base_class = 4_state_unsigned

logic base_type= logic, base_class= 4_state_unsigned

bit base_type= logic, base_class= 2_state_unsigned

supply0, supply1 base_type= supply0 or supply1, base_class =
2_state_unsigned

tri, wand, triand, wor, trior, tri0,
tri1

base_type = tri, wand, triand....

For all those datatypes, the base_class=4-state_unsigned

module top (INTF1 Bus) bundle “Bus” has as base_type=INTF1,
base_class=interface

module top (INTF1.secondary
Bus)

bundle “Bus” has as base_type=INTF1.secondary,
base_class=interface_modport

Table 3-4. base_class and base_type System Verilog Examples (cont.)

Examples base_type and base_class Values

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 61

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When using bundle objects, the naming style may be different between the ICL data model and
the design logic data model. For this reason, bundle object-specific attributes are required to
bind the ICL objects (icl_module and icl_port) to design logic (module and port).

icl_module

The following icl_module built-in attribute applies to design objects:

• tessent_design_module — The attribute reflects the name of the design module that
corresponds to the ICL module at the time of ICL extraction.

icl_port

The following icl_port built-in attribute applies to design objects:

• tessent_design_gate_ports — The attribute reflects the post_synthesis_name of the
design port corresponding to the ICL port at the time of ICL extraction.

• tessent_design_rtl_ports — An attribute that specifies the pre_synthesis_name of the
design port corresponding to the ICL port at the time of ICL extraction.

Introspection
Using bundle object types, Tessent Shell enables you to introspect and explore any kind of
signal within the design data model.

Both simple datatypes and complex datatypes can be explored using the introspection
commands listed in “Complex Signal Introspection Commands” on page 65.

Any signal objects (ports, pins, and nets) are considered as a tree of sub signals. The given tree
is referred to as a Bundle Object Hierarchy. The root bundle is the signal; the leaf objects are the
bit-blasted elements of the given signal; the root, leaf, and middle bundle are all nodes of the
tree. The middle bundles and the leaf objects are the sub bundle objects. To support this concept
there are object types in the Hierarchical Design Data Model. The leaf objects are represented
by net, pin, and port object types, the root and middle bundles are represented by net_bundle,
pin_bundle, and port_bundle objects types. See “Bundle Object Data Model” on page 58.

The concept of bundle object type is applied to complex and simple signals for RTL and no
RTL flow. The difference between simple and complex signals is in the number of levels that
can be explored through the introspection commands. The select part of the signals helps to
explore the Bundle Object Hierarchy level by level.

Tip
When performing introspection of complex signals, see also “Object Specification Format”
on page 44 and “Collections” on page 44.

Tessent™ Shell User’s Manual, v2021.362

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How Complex Signal Introspection Works

Consider the bundle hierarchy of the “data_in” port as follows:

typedef struct{
 logic a;
 logic [1:0] b;
} data_t;
input data_t [1:0][2:0] data_in;

The following shows the hierarchy of the “data_in” port in the Tessent Shell design data model.

Root bundle "data_in"
 |---> data_in[1]
 | |---> data_in[1][2]
 | | |---> data_in[1][2].a
 | | |---> data_in[1][2].b
 | | |---> data_in[1][2].b[1]
 | | |---> data_in[1][2].b[0]
 | |---> data_in[1][1]
 | | |---> data_in[1][1].a
 | | |---> data_in[1][1].b
 | | |---> data_in[1][1].b[1]
 | | |---> data_in[1][1].b[0]
 | |---> data_in[1][0]
 | |---> data_in[1][0].a
 | |---> data_in[1][0].b
 | |---> data_in[1][0].b[1]
 | |---> data_in[1][0].b[0]
 |---> data_in[0]
 |---> data_in[0][2]
 | |---> data_in[0][2].a
 | |---> data_in[0][2].b
 | |---> data_in[0][2].b[1]
 | |---> data_in[0][2].b[0]
 |---> data_in[0][1]
 | |---> data_in[0][1].a
 | |---> data_in[0][1].b
 | |---> data_in[0][1].b[1]
 | |---> data_in[0][1].b[0]
 |---> data_in[0][0]
 |---> data_in[0][0].a
 |---> data_in[0][0].b
 |---> data_in[0][0].b[1]
 |---> data_in[0][0].b[0]

Referring to the figure, using the name_patterns argument of the introspection commands, the
tool splits each pattern into the different levels so that a local sub-pattern is applied to each local
level.

For the bundle part, the characters “.” and “[<index>]” enable access to sub bundle hierarchy,
“:” to access field sub bundle objects of struct or SVinterface and “[<index>]” to access array
element sub bundle objects. For example, the pattern “data_in[0][1].b[*]” is really five sub-
patterns; “data_in”, “[0]”, “[1]”,“.b”, and “[*]”, representing five levels of bundle hierarchy.

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 63

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For simple wildcard patterns, the '*' is used the exact same way as it is used in instance path
matching. It does not cross hierarchy. When specified within a field name it does not cross the
“.” that precedes or follows the field. When applied within [], it only matches elements within
the []. In other words delimiters must be explicit.

For regular expression patterns, an individual regular expression only matches elements within
the sub-pattern in which they are found. Again, it does not cross the adjacent delimiters.

Without the -regexp switch in the introspection command, the tool treats the bundle hierarchy
delimiters (“[]” and “.”) as normal delimiters and serves to break the pattern into multiple sub-
patterns. When you include the -regexp switch in the introspection command, the tool treats the
bundle hierarchy delimiters as regular expression meta-characters (unless you have escaped
those delimiters). That is, in regexp mode the delimiters must be explicit and, unlike simple
wildcard patterns, you must escape them.

For example, to match “data_in[1]”, you need to use “data_in\[.*\]”. The sequence '.*' matches
any character zero or more times. For more details, see the Example With regexp.

See “Glob and Regular Expression Pattern Matching Syntax” in the Tessent Shell Reference
Manual for complete information on pattern matching.

Note
The examples use the “get_ports ... -bundle” command. For “get_nets ... -bundle” and
“get_pins ... -bundle”, the behavior is the same.

Examples

These examples use the “data_in” hierarchy described in the preceding.

SETUP> get_ports data_* -bundle

data_in

SETUP> get_ports data_in* -bundle

data_in

SETUP> get_ports data_in[*] –bundle

{data_in[1]} {data_in[0]}

SETUP> get_ports data_in[0][*] -bundle

{data_in[0][2]} {data_in[0][1]} {data_in[0][0]}

SETUP> get_ports data_in[0] -bundle

{data_in[0]}

SETUP> get_ports data_in[0][*].b -bundle

{data_in[0][2].b} {data_in[0][1].b} {data_in[0][0].b}

Tessent™ Shell User’s Manual, v2021.364

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> get_ports data_in[1][2].* -bundle

{data_in[1][2].a} {data_in[1][2].b}

SETUP> get_ports data_in[1][*] -bundle

{data_in[1][2]} {data_in[1][1]} {data_in[1][0]}

Note
Integer, enum, and others are bit-blasted in unbundled objects in introspection commands
when the -bundle switch is omitted.

Example With regexp

In the following example the second command call is equivalent to the first, but uses -regexp.
You should enclose the regexp in double braces ({{ }})to avoid having to use the “\\”
everywhere, that is, “{{data_in\[.*\]\.da.*\[.*\]\..*}}”.

With wildcard syntax:

SETUP> puts [join [get_name_list [get_ports data_in[*].da*[*].*]] "\n"]

data_in[1].data[1].data1[1][1]
data_in[1].data[1].data1[1][0]
data_in[1].data[1].data1[0][1]
data_in[1].data[1].data1[0][0]
data_in[1].data[1].data2[1][2]
...
data_in[0].data[0].data2[0][2]
data_in[0].data[0].data2[0][1]
data_in[0].data[0].data2[0][0]

With regular expression syntax:

SETUP> puts [join [get_name_list [get_ports {{data_in\[.*\]\.da.*\[.*\]\..*}} -regexp]] "\n"]

data_in[1].data[1].data1[1][1]
data_in[1].data[1].data1[1][0]
data_in[1].data[1].data1[0][1]
data_in[1].data[1].data1[0][0]
data_in[1].data[1].data2[1][2]
...
data_in[0].data[0].data2[0][2]
data_in[0].data[0].data2[0][1]
data_in[0].data[0].data2[0][0]

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 65

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Complex Signal Introspection Commands

The following commands support introspection of complex signals:

Bundle Object Introspection Examples
In the following System Verilog code, several kinds of datatypes are illustrated: struct, array of
interface, enumeration.

Table 3-5. Complex Signals Design Introspection Commands

Command Name Description/Usage

get_bundle_objects Returns a collection of bundle/leaf objects in the current design
specified by the name_patterns list in conjunction with the specified
options. Those bundle objects (leaf in case of descendants) are
ancestors or descendants of the objects which match the specified
name_patterns depending upon the specified options.

get_nets ... -bundle When the -bundle switch is specified, constrains the tool to return net
bundle/leaf objects. When the pattern matches a bundle, the command
returns the bundle. When it matches leaf objects, it returns those leaf
objects.

get_pins ... -bundle When the -bundle switch is specified, constrains the tool to return pin
bundle/leaf objects. When the pattern matches a bundle, the command
returns the bundle. When it matches leaf objects, it returns those leaf
objects.

get_ports ... -bundle When the -bundle switch is specified, constrains the tool to return port
bundle/leaf objects. When the pattern matches a bundle, the command
returns the bundle. When it matches leaf objects, it returns those leaf
objects.

Tessent™ Shell User’s Manual, v2021.366

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

typedef enum logic [1:0] {
 STATE_1, STATE_2, STATE_3, STATE_4, STATE_5, STATE_6
} State_t;

typedef struct packed {
 logic [2:0] eventbus;
} event_bus_packet_t;

typedef struct packed {
 State_t state_encoded;
 event_bus_packet_t dt_lcp_pulse;
 logic [3:0] eventbus_encoded;
} event_bus_split_packet_t;

interface MSBus;
 event_bus_split_packet_t Addr;
 logic [1:0] Data;
 logic RWn;
 logic Clk;
 modport Secondary (input Addr, RWn, Clk, output Data);
endinterface

module top(MSBus.Secondary Bus[2], input wire i_clk);
 RAM TheRAM (.MemBus(Bus));
endmodule

Example 1

The following command returns all bit-blasted ports of “top” module (default behavior):

SETUP> get_ports -of_modules top

{Bus[0].Addr.state_encoded[2]} {Bus[0].Addr.state_encoded[1]}
{Bus[0].Addr.state_encoded[0]} {Bus[0].Addr.dt_lcp_pulse.eventbus[2]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[1]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[0]} {Bus[0].Addr.eventbus_encoded[3]}
{Bus[0].Addr.eventbus_encoded[2]} {Bus[0].Addr.eventbus_encoded[1]}
{Bus[0].Addr.eventbus_encoded[0]} {Bus[0].RWn} {Bus[0].Clk}
{Bus[0].Data[1]} {Bus[0].Data[0]}
{Bus[1].Addr.state_encoded[2]} {Bus[1].Addr.state_encoded[1]}
{Bus[1].Addr.state_encoded[0]} {Bus[1].Addr.dt_lcp_pulse.eventbus[2]}
{Bus[1].Addr.dt_lcp_pulse.eventbus[1]}
{Bus[1].Addr.dt_lcp_pulse.eventbus[0]} {Bus[1].Addr.eventbus_encoded[3]}
{Bus[1].Addr.eventbus_encoded[2]} {Bus[1].Addr.eventbus_encoded[1]}
{Bus[1].Addr.eventbus_encoded[0]} {Bus[1].RWn} {Bus[1].Clk}
{Bus[1].Data[1]} {Bus[1].Data[0]}

Example 2

The following commands return all root bundle ports of “top” module or sub bundle objects
according to name patterns used:

SETUP> set b [get_ports -of_modules top -bundle]

Bus i_clk

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 67

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> get_ports Bus –bundle

Bus

SETUP> get_ports B* –bundle

Bus

SETUP> get_ports Bus* –bundle

Bus

SETUP> get_ports Bus[0].* –bundle

{Bus[0].Addr} {Bus[0].RWn} {Bus[0].Clk} {Bus[0].Data}

SETUP> get_ports Bus[0].Addr* –bundle

{Bus[0].Addr}

SETUP> get_ports Bus[0].Addr.* –bundle

{Bus[0].Addr.state_encoded} {Bus[0].Addr.dt_lcp_pulse.eventbus}
{Bus[0].Addr.eventbus_encoded}

SETUP> get_ports Bus[0].Addr.*

{Bus[0].Addr.state_encoded[2]} {Bus[0].Addr.state_encoded[1]}
{Bus[0].Addr.state_encoded[0]} {Bus[0].Addr.dt_lcp_pulse.eventbus[2]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[1]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[0]} {Bus[0].Addr.eventbus_encoded[3]}
{Bus[0].Addr.eventbus_encoded[2]} {Bus[0].Addr.eventbus_encoded[1]}
{Bus[0].Addr.eventbus_encoded[0]}

SETUP> get_ports Bus[*] –bundle

{Bus[0]} {Bus[1]}

SETUP> get_ports Bus[*].* –bundle

{Bus[0].Addr} {Bus[0].RWn} {Bus[0].Clk} {Bus[0].Data} {Bus[1].Addr}
{Bus[1].RWn} {Bus[1].Clk} {Bus[1].Data}

SETUP> get_ports Bus[0]

{Bus[0].Addr.state_encoded[2]} {Bus[0].Addr.state_encoded[1]}
{Bus[0].Addr.state_encoded[0]} {Bus[0].Addr.dt_lcp_pulse.eventbus[2]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[1]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[0]} {Bus[0].Addr.eventbus_encoded[3]}
{Bus[0].Addr.eventbus_encoded[2]} {Bus[0].Addr.eventbus_encoded[1]}
{Bus[0].Addr.eventbus_encoded[0]} {Bus[0].RWn} {Bus[0].Clk}
{Bus[0].Data[1]} {Bus[0].Data[0]}

SETUP> set b1 [get_bundle_objects $b -children]

{Bus[0]} {Bus[1]}

SETUP> set b2 [get_bundle_objects [index_collection $b1 0] -children]

{Bus[0].Addr} {Bus[0].RWn} {Bus[0].Clk} {Bus[0].Data}

Tessent™ Shell User’s Manual, v2021.368

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> get_bundle_objects –of_objects {Bus[0].Addr} –root

{Bus}

SETUP> get_bundle_objects –of_objects {Bus[0].Addr} –leaf

Bus[0].Addr.state_encoded[2]} {Bus[0].Addr.state_encoded[1]}
{Bus[0].Addr.state_encoded[0]} {Bus[0].Addr.dt_lcp_pulse.eventbus[2]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[1]}
{Bus[0].Addr.dt_lcp_pulse.eventbus[0]} {Bus[0].Addr.eventbus_encoded[3]}
{Bus[0].Addr.eventbus_encoded[2]} {Bus[0].Addr.eventbus_encoded[1]}
{Bus[0].Addr.eventbus_encoded[0]}

SETUP> set b3 [get_bundle_objects [index_collection $b2 0] -children]

{Bus[0].Addr.state_encoded} {Bus[0].Addr.dt_lcp_pulse}
{Bus[0].Addr.eventbus_encoded}

SETUP> get_attribute_value_list [$b3] –name base_class

enum struct_packed 4-state_unsigned

SETUP> get_attribute_value_list [$b3] –name select_part_value_list

{0 Addr state_encoded} {0 Addr dt_lcp_pulse} {0 Addr eventbus_encoded}

SETUP> get_ports {Bus[0].Clk} -bundle

{Bus[0].Clk}

SETUP> get_ports {Bus[0].Addr.state_encoded}

{Bus[0].Addr.state_encoded[2]} {Bus[0].Addr.state_encoded[1]}
{Bus[0].Addr.state_encoded[0]}

SETUP> get_bundle_objects -of_objects {Bus[0].Addr.state_encoded} -parent

{Bus[0].Addr}

SETUP> get_bundle_objects -of_objects {Bus[0].Addr} -parent

{Bus[0]}

SETUP> get_bundle_objects -of_objects {Bus[0]} -parent

{Bus}

SETUP> get_bundle_objects -of_objects {Bus} -parent

{}

Fanin and Fanout Tracing of Complex Signals and Bundle
Object Tracing

Using Tessent Shell, you can introspect and trace any kind of signals (simple and complex)
through their fanins and fanouts. It is possible also to trace through bundle objects. The
get_fanins/get_fanouts commands accept as input any kind of objects, bundle or not and with

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 69

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

simple types or complex types. The ending and intermediate nodes can also be an object or
complex type. For example, they can trace from and to, and through any kind of complex
signals in System Verilog and VHDL.

The following commands support this introspection:

• get_fanins

• get_fanouts

The following shows a top-level RTL module (top1.sv) with SV Interface objects. The tool
models SV Interfaces as a named bundle of wires. Within the tool, those are considered as
normal bundle ports, pins, and nets. You access the bundle object using the get_nets, get_pins,
and get_ports commands.

Tessent™ Shell User’s Manual, v2021.370

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

module top (clk, reset, ce, we, addr, datai, datao, cnto, datao2, en);

 localparam WID = 8;
 localparam AWID = 5;
 localparam LEN = 2**AWID;
 localparam GEN = 3;

 input en;
 input clk, reset, ce, we;
 input [AWID-1:0] addr;
 input [WID-1:0] datai;
 output [GEN*12-1:0] datao, datao2;
 output [GEN*WID-1:0] cnto;

 and enAnd2 (resetEn, reset, en);
 and enAnd3 (weEn, we, en);
 and enAnd4 (ceEn, ce, en);

 param_mem_if miff(
 .clk(clk),
 .reset(resetEn),
 .we(weEn),
 .ce(ceEn),
 .dati(datai),
 .addr(addr),
 .dato(datao)
);

 genvar i;

 generate
 for (i=0; i<GEN; i++) begin: gen_mem
 SYNC_1RW_16x8 mem1 (.CLK(clk), .D(datai), .Q(datao2[(WID*(i+1)
 -1):i*WID]), .WE(we), .OE(ce), .RE(ce), .A(addr[3:0]));
 end
 endgenerate

 generate
 for (i=0; i<GEN; i++) begin: gen_mem_wrapper

 param_mem mem_inst (.mif(miff));
 end
 endgenerate
 generate
 for (i=0; i<GEN; i++) begin: gen_cnt
 param_counter #(.WID(WID)) counter_inst (
 .clk(clk),
 .reset(reset),
 .enable(ce&we),
 .count(cnto[(WID*(i+1)-1):i*WID]));
 end
 endgenerate
endmodule

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 71

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following shows an example command sequence to introspect the fanins and fanouts in this
design:

SETUP> set_context dft -rtl
SETUP> read_cell_library my_cell_library.lib
SETUP> set_design_sources -format verilog -y {verilog_source_directory} -ext {v}
SETUP> set_design_sources -format tcd_memory -y {verilog_source_directory} \
 -ext {lvlib lib}
SETUP> read_verilog param_mem.sv -format sv2009
SETUP> read_verilog param_counter.sv -format sv2009
SETUP> read_verilog top1.sv -format sv2009
SETUP> set_current_design top
SETUP> set_design_level physical_block
SETUP> add_input_constraints en -C1
SETUP> puts [join [get_attribute_value_list \
 [get_fanins gen_mem_wrapper[0].mem_inst/mem1/CLK] -name name] "\n"]

clk

Here, from SV Interface sub bundle pins, the tool reaches the output pin of primitive.
(Continuing from the previous example.)

SETUP> puts [join [get_name_list \
 [get_fanouts gen_mem_wrapper[2].mem_inst/mif.ce]] "\n"]

enAnd4/OUT

SETUP> puts [join [get_name_list \
 [get_fanouts gen_mem_wrapper[2].mem_inst/mif.ce] -name name] "\n"]

gen_mem_wrapper[2].mem_inst/mem1/OE
gen_mem_wrapper[2].mem_inst/mem1/RE
gen_mem_wrapper[2].mem_inst/mem2/OE
gen_mem_wrapper[2].mem_inst/mem2/RE

Here, from SV Interface sub bundle pins, the tool reaches the SV interface sub bundle net
“miff.ce”. (Continuing with the previous example.)

SETUP> puts [join [get_name_list \
 [get_fanins gen_mem_wrapper[2].mem_inst/mif.ce -stop_on net] \
 -name name] "\n"]

miff.ce

SETUP> puts [join [get_name_list \
 [get_fanouts gen_mem_wrapper[2].mem_inst/mif.ce -stop_on net] -name name] "\n"]

gen_mem_wrapper[2].mem_inst/mif.ce

Tessent™ Shell User’s Manual, v2021.372

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additional Examples

The following command sequence shows introspection of bundle objects through both fanins
and fanouts as well as ports and pins:

SETUP> set bitblasted_port [get_ports jack]
SETUP> set bitblasted_conn [get_fanouts $bitblasted port]
SETUP> puts [join [get_name_list $bitblasted_conn] "\n"]

i1/jim[2]
i2/jim[1]
i1/jim[1]
i1/joe[2]
i1/jim[0]
i2/joe[2]

SETUP> set bundle_port [get_ports jack -bundle]
SETUP> set bundle_conn [get_fanouts $bundle_port]
SETUP> puts [join [get_name_list $bundle_conn] "\n"]

i1/jim

SETUP> set bitblasted_pin [get_pins i1/jim]
SETUP> set bitblasted_conn [get_fanins $bitblasted_pin]
SETUP> puts [join [get_name_list $bitblasted_conn] "\n"]

jack[2]
jack[1]
jack[0]

SETUP> set bundle_pin [get_pins i1/jim -bundle]
SETUP> set conn [get_fanins $bundle_pin]
SETUP> puts [join [get_name_list $bundle_conn] "\n"]

jack

Connectivity Through Complex Signals
Prior to the Tessent 2019.3 release, the connectivity described through complex RTL pins and
nets were not visible until the RTL module was synthesized using the Quick Synthesis engine.

During ICL extraction or pre-DFT DRC, the fan-in and fanout of objects to be checked were
pre-traced internally and if any complex objects were found along the way, such as traversing a
net or a pin that is not a simple scalar or one dimensional bus, the module was synthesized to
expose the connectivity to the DRC engine. As soon as a module with a System Verilog
interface was synthesized, all modules connected to this interface also needed to be synthesized
which often resulted in having to synthesize the majority of the design.

With the Tessent 2019.3 release and later, the connectivity through complex signals is visible to
the get_fanins/get_fanouts commands on the hierarchical design view and to the
trace_flat_model command on the flat model. Only if the path pre-tracing found RTL logic that
represents logic gates does the tool synthesize the module. Also, the tool is now able to maintain
the RTL view, and the connectivity to and from the surrounding modules even if a module

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 73

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

having an SV interface needs to be synthesized. This greatly limits the amount of RTL modules
needed to be synthesized to pre-DFT DRC memoryBIST and performing ICL extraction.

When Tessent Shell flattens the design, only the leaf objects of complex signals are translated to
gate pins using the post synthesis names (see the post_synthesis_name attribute on the Port,
port_bundle, Pin, pin_bundle, Net, and net_bundle object types for more information).

For objects found inside unsynthesized modules, the hierarchical design objects uses the pre-
synthesis names (see the pre_synthesis_name attribute on the Port, port_bundle, Pin,
pin_bundle, Net, and net_bundle object types for more information).

The gate pins objects, however, are always named using the post synthesis name of the leaf
complex signal objects weather or not the module is synthesized or not.

To simplify the introspection between the hierarchical design objects and the flat model
gate_pin objects, the tool provides several switches on the introspection commands. With
complex signal, it is no longer possible to assume the two objects have the same name.

• get_gate_pins -of_pins pin_objects | -of_ports port_objects |-of_nets net_objects

• get_nets [name_patterns] -of_gate_pins gate_pin_objects

• get_pins [name_patterns] -of_gate_pins gate_pin_objects

• get_ports [name_patterns] -of_gate_pins gate_pin_objects

The following example demonstrates loading an RTL design and performing tracing on the
hierarchical data module using the get_fanins command. It also shows creating and tracing the
flat model using the trace_flat_model command:

SETUP> set_context dft -rtl
SETUP> read_cell_library my_cell_library.lib
SETUP> open_tsdb InternalCore_tsdb
SETUP> read_design InternalCore -design_id rtl
SETUP> read_verilog RTL_Directory/Interfaces.sv -format sv2009
SETUP> read_verilog RTL_Directory/Core.sv -format sv2009
SETUP> set_current_design core
SETUP> set_design_level physical_block
SETUP> puts [get_name_list [get_fanins genloop[2].icw0/ic/OutBus[1]]]

{InBus[1]}

SETUP> create_flat_model
// Flattening process completed, gates=79, PIs=12, POs=13, CPU time=0.00 sec.
// ---
// Begin circuit learning analyses.
// --------------------------------
// Learning completed, CPU time=0.00 sec.

SETUP> puts [get_name_list [trace_flat_model -from [get_gate_pins -of_pins \
 [get_pins genloop[2].icw0/ic/OutBus[1]]] -direction backward \
 -controllability connected]]

Tessent™ Shell User’s Manual, v2021.374

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

{InBus[1]}

This example shows the use of the “get_gate_pins -of_pin” and “get_pins -of_gate_pins” to
illustrate that the matching objects do not have the same name:

SETUP> get_gate_pins -of_pins [get_pins genloop[2].icw0/ic/OutBus[1]]

{{\genloop[2].icw0 /ic/OutBus[1]}}

SETUP> get_gate_pins -of_pins genloop[2].icw0/ic/OutBus[1]

{{\genloop[2].icw0 /ic/OutBus[1]}}

SETUP> get_pins -of_gate_pins {{\genloop[2].icw0 /ic/OutBus[1]}}

{genloop[2].icw0/ic/OutBus[1]}

SETUP> get_pins -of_gate_pins [get_gate_pins {{\genloop[2].icw0 /ic/OutBus[1]}}]

{genloop[2].icw0/ic/OutBus[1]}

Tessent Visualizer Tracing and Visualization

Tessent Visualizer provides a platform to trace and visualize bundle objects in the flat model.
The Tessent Visualizer GUI shows the post_synthesis_name of the ports and pins even when
the RTL view of the module is active. When you switch to the synthesized view of a module, its
footprint remains unchanged in Tessent Visualizer. The RTL logic that is not shown in the RTL
view becomes logic cell instances in the synthesized view.

Figure 3-2. Complex Signals with Tessent Visualizer

Design Introspection and Editing
Bundle Object Introspection

Tessent™ Shell User’s Manual, v2021.3 75

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Visualizer facilitates cross-probing pins in the schematic to their associated RTL netlist.

Tessent™ Shell User’s Manual, v2021.376

Design Introspection and Editing
Bundle Object Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For complete information on using Tessent Visualizer, see “Tessent Visualizer” on page 625.

Design Introspection and Editing
Design Editing

Tessent™ Shell User’s Manual, v2021.3 77

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Editing
Tessent Shell design editing commands enable you to modify your design after reading in the
RTL or gate-level netlist. Tessent Shell supports gate-level netlist editing or RTL design editing
with full language support, including multiple logical libraries, VHDL, Verilog, and System
Verilog. Parameterized modules are also fully supported.

The Design editing commands allow you to manipulate a design’s modules, instances, nets,
ports, and pins, either interactively or through Tcl scripting.

Note
There are language restrictions. See “HDL Limitations in the Tessent Shell Flow” in the
Tessent Shell Reference Manual for details.

Design editing commands work with collections and introspection commands, as well as native
Tcl commands, to automate many tasks. Table 3-6 presents the common design editing
commands based on the function they perform— that is, whether they create, modify, or remove
elements and so on. For more information on collections and introspection commands, see
“Design Introspection.”

Caution
Take special care when dealing with non-unique design scopes, such as multiple instances
of the same module or the inner part of a generate loop. See “Example of Handling Non-

Unique Design Scopes” on page 83 for details.

Note
The design editing commands are not available when using some product licenses, such as
Tessent FastScan and Tessent Scan.

Table 3-6. Design Editing Commands

Commands that... Command Name

Read netlists and specify logical
libraries

read_verilog

read_vhdl

set_logical_design_libraries

Create design elements create_connections

create_instance

create_module

create_net

create_pin

create_port

Tessent™ Shell User’s Manual, v2021.378

Design Introspection and Editing
Design Editing Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Editing Examples. 78

Design Editing Command Summary . 83

Design Editing Examples
There are many ways to create, modify, and remove elements from your design in a Tcl
scripting environment.

Figure 3-3 is an example design, which is followed by related examples that show some of the
ways you can edit designs within Tessent Shell.

Remove design elements delete_connections

delete_instances

delete_nets

delete_pins

delete_ports

Modify the design copy_module

intercept_connection

replace_instances

uniquify_instances

Set or get editing options get_insertion_option

set_insertion_options

Table 3-6. Design Editing Commands (cont.)

Commands that... Command Name

Design Introspection and Editing
Design Editing Examples

Tessent™ Shell User’s Manual, v2021.3 79

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-3. Hierarchical Design Example

Example of Creating a Module From Scratch

The following example shows how to create module C (modc) in Figure 3-3 as a standalone
module.

set_context dft –no_rtl
set_system_mode insertion
create_module modc
set_current_design modc

create_port I1 -on_module modc -direction input
create_port I2 -on_module modc -direction input
create_port I3 -on_module modc -direction input
create_port I4 -on_module modc -direction input
create_port O1 -on_module modc -direction output
create_port O2 -on_module modc -direction output

create_instance u1 -of_module and2
create_instance u2 -of_module dff
create_instance u3 -of_module dffr

create_connection I1 u1/A0
create_connection I2 u1/A1
create_connection I2 u3/R
create_connection I3 u3/D
create_connection I4 u3/CLK
create_connection I4 u2/CLK
create_connection u1/Y u2/D
create_connection u2/Q O1
create_connection u3/Q O2

write_design -output_file MODC.v -replace

Tessent™ Shell User’s Manual, v2021.380

Design Introspection and Editing
Design Editing Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example of Replacing a Module With Another Module

The following example replaces the module definition for instance u5 (modd) to modc. The
original module and the new module have the same pinout, and the connecting nets remain the
same after issuing the replace_instances command. After replacing instance u5 with modc, that
instance u5/u1 changes from an or2 gate to an and02 gate.

INSERTION> get_attribute_value_list u5 -name module_name

modd

INSERTION> get_fanin u5/I1 -stop_on net

{u4_O1}

INSERTION> replace_instances u5 -with_module modc

{u5}

INSERTION> get_fanin u5/I1 -stop_on net

{u4_O1}

INSERTION> set_system_mode setup

SETUP> set_design_level sub_block

SETUP> set_sys_mode analysis

// Flattening process completed, cell instances=15, gates=45, PIs=8
// POs=3, CPU time=0.00 sec.
// ---
// Begin circuit learning analyses.
// --------------------------------
// Learning completed, CPU time=0.00 sec.

ANALYSIS> report_gates u5/u1

// /u5/u1 and02
// A0 I /u4/u3/Q
// A1 I /u4/u5/u2/Q
// Y O /u5/u2/D

Example of Intercepting a Connection

Figure 3-4 shows an example of inserting an inverter by intercepting the existing connection
between the u7/D pin and the u6/Y pin. After the interception, the inverter A pin is connected to
the u6/Y pin and the inverter Y pin is connected to the u7/D pin.

Design Introspection and Editing
Design Editing Examples

Tessent™ Shell User’s Manual, v2021.3 81

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-4. Inverter Inception

INSERTION> intercept_connection u7/D -cell_function_name inverter

{insertion_inverter}

Example of Adding Input and Output Pads to a Design

The following dofile example adds input and output pads to a design by creating a collection of
port names from the design, creating a collection of pad names that match the ports, then
connecting the ports and pads together in the design. The example also adds the TAP's I/O
ports, including the respective pads.

Tessent™ Shell User’s Manual, v2021.382

Design Introspection and Editing
Design Editing Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Setting the context to netlist editing
set_context dft -no_rtl

Reading the library and all necessary Verilog files
read_cell_library ../libs/libs/adk.atpg
read_verilog ./counter_block2_edt_top_gate.v
read_verilog ../libs/pads/*.v

Telling the tool, which module 'top' is
set top_module "counter_block2"
set_current_design $top_module

Now for the editing
set_system_mode insertion

First, insert the pad cells for all inputs of the netlist
set inputPortList [get_ports -of_module $top_module -direction input]
foreach_in_collection inputPort $inputPortList {

 # Creating the name of the pad cell:
 # The following lines take care of '[' and ']' in the portname,
 # substituting these by '_'. This makes the Tcl-life easier
 set portName [lindex [get_name_list $inputPort] 0]

 set padName [string map { \[_ \] _ } ${portName}_PAD]

 # Adding the pad cell
 create_instance $padName -of_module INPAD

Connecting it up in the netlist
The first line moves the existing net from the input port to the output
of the pad cell. The second line creates a new net and connects the
input port to the input of the pad cell
Note: We are not connecting anything else here.
We leave this to boundary scan insertion
 move_connection -from $inputPort -to $padName/FP
 create_connection $inputPort $padName/IO
}

Second, insert the pad cells for all outputs of the netlist
set outputPortList [get_ports -of_module $top_module -direction output]
foreach_in_collection outputPort $outputPortList {

 # Creating the name of the pad cell:
 # The following lines take care of '[' and ']' in the portname,
 # substituting these by '_'.

 set portName [lindex [get_name_list $outputPort] 0]
 set padName [string map { \[_ \] _ } ${portName}_PAD]

 # Adding the pad cell
 create_instance $padName -of_module OUTPAD_2S

Connecting it up in the netlist
The first line moves the existing net from the IO port to the input
of the pad cell. The second line creates a new net and connects the
IO port to the output of the pad cell.
Note: We are not connecting anything else here.
We leave this to boundary scan insertion

 move_connection -from $outputPort -to $padName/TP

Design Introspection and Editing
Design Editing Command Summary

Tessent™ Shell User’s Manual, v2021.3 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 create_connection $outputPort $padName/IO
}

Next, add the JTAG IO pins and their respective PAD cell. Connecting #
them up.

set inputPortList { TDI TMS TRST TCK }
set outputPortList { TDO }

foreach portName $inputPortList {

 # Adding the pad cell
 set padName ${portName}_PAD
 create_instance $padName -of_module INPAD

 # Creating an Input IO pin and connecting the pad
 create_port $portName -direction input
 create_connection $portName $padName/IO
}

foreach portName $outputPortList {

 # Adding the pad cell
 set padName ${portName}_PAD
 create_instance $padName -of_module OUTPAD_EN1

 # Creating an output pin and connecting the pad
 create_port $portName -direction output
 create_connection $portName $padName/IO
}

Write the new netlist
write_design -output_file "${top_module}.v" -replace
exit

Example of Handling Non-Unique Design Scopes

When you want to make edits to non-unique design scopes, such as multiple instances of the
same module or the inner part of a generate loop, you must exercise caution.

When using the delete_connections or move_connections commands inside a non-uniquified
design, only perform the move or disconnection once per module or once per generate loop
count.

For an example, see how the parent_instance and the leaf_name_hash attributes are used in
Example 5 of the get_dft_cell command description. (For more information on the
leaf_name_hash attribute, see “Instance” in the Tessent Shell Reference Manual.)

Design Editing Command Summary
The design editing commands allow you to work with modules, connections, instances, nets,
pins, and ports.

Tessent™ Shell User’s Manual, v2021.384

Design Introspection and Editing
Design Editing Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The commands listed in the following table are commonly used design editing commands.
Refer to the Tessent Shell Reference Manual for more information.

Table 3-7. Design Editing Command Summary

Command Name Description

copy_module Creates an exact copy of a design module and gives it a new name,
which the tool can use as part of create_instance and
replace_instances operations.

create_connections Creates a connection between pin, net, or port objects.

create_instance Instantiates a module (design or cell type) inside of a design module
that is part of the current design.

create_module Creates a new design module.

create_net Creates a net inside an instance of a design module.

create_pin Creates a pin on an instance of a design module.

create_port Creates a port on a design module.

delete_connections Disconnects the specified pin objects.

delete_instances Removes an instance of a module.

delete_nets Removes net objects inside an instance of a design module.

delete_pins Removes pin objects on an instance of a design module.

delete_ports Removes port objects on a design module.

get_insertion_option Introspects the default values of options affecting many design
editing commands.

intercept_connection Using the get_dft_cell command, obtains a cell with the specified
function name and uses it to intercept a connection to a pin, port, or
net.

move_connections Moves a net connected on one pin or port to another pin or port. The
first pin is left open after the move.

rename_instance Renames the leaf name of an instance object.

replace_instances Replaces the module object used in an instantiation.

set_insertion_options Specifies default values of options affecting many design editing
commands.

uniquify_instances If the module of the specified instance has other instantiations in the
design, the tool copies the module and the specified instance
becomes an instance of the copied module.

Design Introspection and Editing
Simulation Contexts

Tessent™ Shell User’s Manual, v2021.3 85

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Simulation Contexts
Tessent Shell provides simulation contexts to aid your design analysis and introspection efforts.
You can use these contexts to create “simulation scratch pads” for rapid investigation of good-
machine behavior of specific portions of your design.

Simulation Context Overview. 85

Introspection and Analysis Using Simulation Contexts . 86

Simulation Context Overview
Tessent Shell provides commands for creating and managing simulation contexts. From a
particular user-defined simulation context, you can use these commands to apply stimulus
forces to specified gate_pins, run simulation for a specific number of cycles, and then introspect
gate_pins for simulation values.

Commands for Managing Simulation Contexts

Use the following commands to create and manage user-defined simulation contexts, as well as
use predefined simulation contexts:

• add_simulation_context — Creates a new user-defined simulation context.

• copy_simulation_context — Copies the simulation values and forces from one
simulation context to another.

• delete_simulation_contexts — Deletes one or more user-defined simulation contexts.

• get_current_simulation_context — Returns the name of the current simulation context.

• get_simulation_context_list — Returns the available simulation contexts in a Tcl list.

• report_simulation_contexts — Lists the available simulation contexts and indicates the
current simulation context.

• set_current_simulation_context — Sets the current simulation context.

Commands for Managing Stimulus and Simulating within Simulation
Contexts

The following commands are for managing stimulus (simulation forces and clock pulses) and
running limited simulations within a simulation context:

• add_simulation_forces — Forces one or more gate_pin objects to the specified value.

• delete_simulation_forces — Removes forces from one or more gate_pin objects.

• report_simulation_forces — Lists the active forces on the specified gate_pin objects.

Tessent™ Shell User’s Manual, v2021.386

Design Introspection and Editing
Introspection and Analysis Using Simulation Contexts

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• simulate_clock_pulses — Pulses one or more clocks within the current simulation
context.

• simulate_forces — Simulates the queued forces in the current simulation context.

Commands for Introspection and Analysis within Simulation Contexts

The following commands are for introspection and analysis within simulation contexts, which
includes examining simulation results:

• get_current_simulation_context — Returns the name of the current simulation context.

• get_simulation_context_list — Returns the available simulation contexts in a Tcl list.

• get_simulation_value_list — Returns the simulation values on the specified gate_pin
objects.

• report_simulation_contexts — Lists the available simulation contexts and indicates the
current simulation context.

• report_simulation_forces — Lists the active forces on the specified gate_pin objects.

• set_gate_report — Specifies the information displayed by the report_gates command.
This command enables reporting of simulated values in the current simulation context.

• trace_flat_model — Traces the flat model within the current simulation context. This
command always operates within the current simulation context.

Attributes for gate_pin Objects

For a complete list of attributes, refer to the “Data Models” chapter in the Tessent Shell
Reference Manual.

Introspection and Analysis Using Simulation
Contexts

Simulation contexts allow you to perform various types of design analysis and introspection.
The four predefined simulation contexts are: stable_after_setup, stable_load_unload,
stable_shift, and stable_capture. After setting a simulation context, you can introspect gate_pins
for simulation values based on that specific simulation context. For example, the
trace_flat_model command can do design tracing based on values specified for the current
simulation context.

To use any of the following techniques in this chapter, you must be doing the following:

• Operating in the analysis system mode of Tessent Shell.

Design Introspection and Editing
Introspection and Analysis Using Simulation Contexts

Tessent™ Shell User’s Manual, v2021.3 87

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Operating on a flattened design, and have read in the test procedure file (if available). At
this point, the values specified in the setup, shift, capture, and load_unload procedures
are in place in the design when you set the corresponding simulation context as current.

Example

For example, if you want to trace the design based on the values specified in the shift procedure,
use the “set_current_simulation_context stable_shift” command. When you use this command
with a small design containing two 2-cell scan chains, the values on the gate_pins display in the
Tessent Visualizer Flat Schematic as shown in Figure 3-5.

Figure 3-5. Tessent Visualizer Flat Schematic (gate level)

In this case, no values are forced except for sen (scan enable), which is set to 1. The four
possible simulation values are 0, 1, X, and Z.

In addition to viewing values in the Flat Schematic, you can get the current simulation values of
gate_pins using any of the following techniques:

• Use the get_simulation_value_list command and specify the gate_pin object(s):

ANALYSIS> set_current_simulation_context stable_shift
ANALYSIS> get_simulation_value_list sc2_f1/D

X

Tessent™ Shell User’s Manual, v2021.388

Design Introspection and Editing
Introspection and Analysis Using Simulation Contexts

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Check the value of the simulation_value attribute for the gate_pins:

ANALYSIS> get_attribute_value_list [get_gate_pin sc2_f1/D]
-name simulation_value

X

• Issue the command “set_gate_report simulation_context,” after which you can use the
report_gates command and the Flat Schematic to display the simulated values from the
current simulation context:

ANALYSIS> set_gate_report simulation_context
ANALYSIS> report_gates sc2_f1

// /sc2_f1 sff
// D I (X) /d3
// SI I (X) /si2
// SE I (1) /sen
// CLK I (X) /clk
// Q O (X) /an_2/A2 /sc2_f2/SI
// QB O (X)

You can use simulation context functionality for different types of analysis. For example, by
default the trace_flat_model command uses the stable_after_setup values as a simulation
background. You can now change it to stable_capture, for example, if you want to trace based
on sensitized paths during capture. Another example is to copy an existing simulation context to
a new one, force some simulation value changes, then evaluate the results in the circuit after
simulating the forces or clock pulses.

Design Introspection and Editing
Automatic Design Mapping

Tessent™ Shell User’s Manual, v2021.3 89

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Automatic Design Mapping
Logic synthesis may cause name and footprint changes in the design for both complex and
regular ports.

ICL and TCD Post-Synthesis Update . 89

Updating ICL Attributes From the Design . 90

Matching Rules for Port Names in Post-Synthesis Update . 91

Controlling the Name Mapping . 91

ICL and TCD Post-Synthesis Update
Logic synthesis flattens (bit-blasts) ports. This changes the design footprint. Additionally, post-
synthesis names differ from those in the initial RTL.

Tessent in -no_rtl mode uses the post-synthesis netlist when you run set_current_design. The
ICL and TCD of the current design updates automatically to match the new design objects that
are loaded from the post-synthesis netlist. The following ICL model attributes are updated to
enable binding of the ICL objects and design objects later in the flow:

• tessent_design_instance (for the instance path)

• tessent_design_gate_ports (for ports)

• tessent_design_rtl_ports (for ports)

The tessent_design_instance attribute of the ICL instance object is automatically updated when
you use any of the following commands:

• set_current_design

• write_design

• update_icl_attributes_from_design

The tessent_design_gate_ports attribute of the ICL port object is automatically updated when
you use any of the following commands:

• set_current_design

• get_ports -of_icl_ports

• get_pins -of_icl_pins

• get_pins -of_icl_ports

• update_icl_attributes_from_design

• write_design

Tessent™ Shell User’s Manual, v2021.390

Design Introspection and Editing
Updating ICL Attributes From the Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For ICL ports and instances, if the current ICL model does not include the complete ICL of
child instances under the physical blocks, the ICL matching performed by set_current_design is
insufficient. The ICL matching is completed later in the flow using the following commands in
these cases:

• get_ports -of_icl_ports

• get_pins -of_icl_pins

• get_pins -of_icl_ports

• update_icl_attributes_from_design

• write_design

Updating ICL Attributes From the Design
The update_icl_attributes_from_design command updates ICL port, instance, and module
attributes for a design’s gate views. The following attributes are updated:

• tessent_design_gate_ports — This attribute refers to the design port corresponding to
the ICL port. The attribute value is the name of the design port as it appears in the netlist.

• tessent_design_instance — This attribute refers to the design instance corresponding to
the ICL instance. The value is the hierarchical name relative to the parent ICL instance.

• tessent_design_rtl_gate_port_mapping — This module attribute maps the RTL name
to the netlist name for those ports that appear in the following attribute name lists:

o forced_high_input_port_list

o forced_low_input_port_list

o forced_high_output_port_list

o forced_low_output_port_list

o forced_high_internal_input_port_list

o forced_low_internal_input_port_list

o tessent_ground_port_list

o tessent_power_port_list

o tessent_clock_domain_labels

The attribute value is a list of names. The names at the even index positions in the list
are the RTL names of the ports in the attribute name lists, and the names at the odd index
positions are the netlist names of those ports.

Design Introspection and Editing
Matching Rules for Port Names in Post-Synthesis Update

Tessent™ Shell User’s Manual, v2021.3 91

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The update_icl_attributes_from_design command has one Boolean option: -verbose.
This option enables warnings when a port name cannot be found or matched in the
netlist. The command is invoked automatically by the “write_design -tsdb” command. It
also runs automatically as part of the insert_test_logic command just after insertion.

Matching Rules for Port Names in Post-Synthesis
Update

The following matching rules are supported when looking up a port name in a netlist:

1. Apply the transformation performed by dc_shell with “change_names -rules verilog” to
remove the escaping and replace special characters with an underscore (“_”). A single
underscore matches multiple underscores.

2. Apply the transformation performed by Cadence© Genus™ Synthesis Solution to get
the gate name from the RTL name. All strings and numerical indices in the RTL name
are preserved. Only the delimiters are changed.

3. Apply the Genus transformation described in rule #2 but with escaping removed and
special characters replaced with an underscore ("_") as in rule #1.

4. Apply bit-blasted escaped names generated by a layout tool. The bit select is
incorporated into the escaped name.

5. Apply end-user-specified matching rules.

Controlling the Name Mapping
Use the add_rtl_to_gates_mapping and delete_rtl_to_gates_mapping commands to control the
name mapping. Use the report_rtl_to_gates_mapping command to obtain information about the
current mapping rules.

See the Tessent Shell Reference Manual for information on these commands.

Default Matching Rules for the get_pins and get_ports Commands

• Component Names — All strings between non-escaped delimiters (component names)
in the name to be looked up (lookup name) must match exactly to corresponding strings
in a netlist name unless they contain special characters (see below). The recognized
delimiters are ‘.’, ‘/’, ‘[]’, ‘_’.

An example lookup name:

abc.def

The ‘abc’ string in the name to be looked up must exactly match the string before the
first delimiter in a netlist name. The ‘def’ string in the name to be looked up must
exactly match the string after the last delimiter in the same netlist name.

Tessent™ Shell User’s Manual, v2021.392

Design Introspection and Editing
ICL Objects vs. Design Objects Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Escaping — Escape characters are not matched. They are only used to direct the
matching procedure.

• Delimiters — Delimiters in the lookup name are used only to extract the component
names.

All component names after the first are assumed to have a leading delimiter and
optionally a trailing delimiter in a netlist name. There are two cases to consider when
matching the delimiters for a component name in the netlist:

a. Port name in netlist is escaped.

Possible matches for component name delimiters are as follows:

• Leading and trailing delimiters of [].

• Leading delimiter of ‘_’ and trailing delimiter of ‘_’ or null.

• Leading delimiter of ‘.’ or ‘/’ and trailing delimiter of null.

b. Port name in netlist is not escaped.

Possible matches for component name delimiters are as follows:

• Leading delimiter of ‘_’ and trailing delimiter of ‘_’ or null.

• Special Characters in the Lookup Name — When matching to a non-escaped name in
the netlist, any special characters (not allowed by the language without escaping) in the
lookup name are replaced with the ‘_’ character. Matching allows truncation in the
netlist name down to two trailing ‘_’ characters.

Note
This truncation rule applies only to ‘_’ characters derived from special characters,
not delimiters.

• Bit Select Lookup Name — A bit select lookup name (last component name is an
index) can match a one-dimensional vector with the final bit select applied to the match
or match directly to a bit select.

Related Topics

add_rtl_to_gates_mapping

delete_rtl_to_gates_mapping

report_rtl_to_gates_mapping

ICL Objects vs. Design Objects Introspection
Several Tessent Shell commands enable you to introspect ICL objects and design objects in an
ICL context.

Design Introspection and Editing
ICL Objects vs. Design Objects Introspection

Tessent™ Shell User’s Manual, v2021.3 93

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example, you can retrieve design modules and instances from ICL modules and instances:

• get_module -of_icl_module icl_module_spec

• get_instance -of_icl_instance icl_instance_spec

You can retrieve ICL modules and instances from design modules and instances:

• get_icl_module -of_module module_spec

• get_icl_instance -of_instance instance_spec

Certain additional command-line switches for these commands are necessary when your design
includes complex ports, or simple ports with escaped names requiring name changes during
logic synthesis.

And you can also retrieve design pins and ports from ICL pins and ports:

• get_pins -of_icl_pins icl_pin_objects

• get_ports -of_icl_ports icl_port_objects

You can also retrieve icl pins and ports from design pins and ports:

• get_icl_pins -of_pins icl_pin_objects

• get_icl_ports -of_ports icl_port_objects

Related Topics

get_modules

get_instances

get_icl_modules

get_icl_instances

get_pins

get_ports

get_icl_pins

get_icl_ports

Tessent™ Shell User’s Manual, v2021.394

Design Introspection and Editing
ICL Objects vs. Design Objects Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 95

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
DFT Architecture Guidelines for Hierarchical

Designs

Most chips follow hierarchical place-and-route because of the increase in design sizes. For
DFT, you can also use hierarchical design methodologies to perform test insertion, test
generation, and diagnosis. This use of the hierarchical design methodologies is called
hierarchical DFT or hierarchical test.

If the design is implemented as one chip with flat place-and-route, then perform DFT
implementation once for the entire chip. Hierarchical DFT implementation is only applicable
for block-based designs in which the tool run time consumption is not practical for
implementing DFT only from the chip level.

Hierarchical DFT has several advantages:

• Divide and conquer technique that helps with parallelization of tasks.

• Reduced memory footprint and CPU requirements to perform the given task.

• Faster pattern generation and simulation run times.

• DFT performed earlier at block level and out of design critical path.

For information about the Tessent Shell two-pass DFT insertion flow for hierarchical designs,
refer to “Tessent Shell Flow for Hierarchical Designs” on page 141.

Hierarchical DFT Overview . 96

Top-Down Planning Before Bottom-Up Implementation . 102

DFT Implementation Strategy . 107

Tessent™ Shell User’s Manual, v2021.396

DFT Architecture Guidelines for Hierarchical Designs
Hierarchical DFT Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hierarchical DFT Overview
Hierarchical DFT is the process of using hierarchical design methodologies to perform test
insertion, test generation, and diagnosis. Within the Tessent Shell environment, multiple
components, such as physical layout regions and wrapped cores, are used to implement DFT in
hierarchical designs.

Physical Layout Regions in Hierarchical Test . 96

Pattern Retargeting . 97

Wrapped Cores and Wrapper Cells. 97

Internal Mode and External Mode. 98

On-Chip Clock Controller . 99

Graybox Model . 100

Physical Layout Regions in Hierarchical Test
Hierarchical designs typically have several physical layout regions, and these layout regions are
instantiated into other physical layout regions. Usually, the instantiations occur at the chip level,
so you have two levels of hierarchy (or sometimes more for some designs). From the DFT
perspective, each layout region is where you perform test insertion, with the test insertion
process performed independently for each region. You can implement DFT within the layout
regions in parallel, thus improving throughput.

In some designs there may be more than two levels of physical hierarchy. From the DFT
perspective, each layout region is where you perform test insertion, with the test insertion
process performed independently for each region.

You must insert DFT into the lower-level designs before inserting it at the next higher level (at
the chip level).

The following terms describe the layout regions of a hierarchical design:

• Physical block, block, core, child core — These terms are interchangeable and refer to
layout regions below the chip level that you can instantiate within a chip, or across
multiple chips. Blocks are logical entities that remain intact through tapeout. You
perform synthesis on these blocks independent of the rest of the chip design.

The term “wrapped core” is a specialized type of block. Refer to “Wrapped Cores and
Wrapper Cells” on page 97 for details.

• Chip — The chip is the top-level physical block — that is, the entire design — in which
you typically find the pad I/O macros and clock controllers.

The chip and upper-level blocks in designs with more than two hierarchical levels are often
referred to as the parent blocks and the tasks related to them as occurring at the parent level.

DFT Architecture Guidelines for Hierarchical Designs
Pattern Retargeting

Tessent™ Shell User’s Manual, v2021.3 97

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Retargeting
Pattern retargeting is the process by which Tessent Shell preserves the ATPG patterns
associated with cores for purposes of reuse when testing the logic at the chip (or parent) level.
You do not have to regenerate the patterns when you process the chip. Instead, you retarget the
core patterns to the chip level. Every instantiation of a core includes its associated ATPG
patterns.

The pattern retargeting process consists of generating patterns for all cores, retargeting the
core-level test patterns to the chip level, and generating patterns for the top-level chip logic
only. This is also referred to as ATPG pattern retargeting or scan pattern retargeting. For details,
refer to “Scan Pattern Retargeting” in the Tessent Scan and ATPG User’s Manual.

Wrapped Cores and Wrapper Cells
In hierarchical DFT, you must wrap physical blocks to make them reusable through pattern
retargeting. The term wrapped cores applies to these physical blocks. The purpose of wrapping
a core is to isolate its internal logic.

In the following figure, the physical layout regions from a DFT perspective are physical blocks.
Tessent performs test insertion on the Red, Pink, Brown, and Green physical blocks first. Clk1
and Clk2 are asynchronous clocks.

Figure 4-1. Wrapped Cores

The wrapping mechanism that you use for these blocks makes use of the functional flops that
are already present at the boundary of these blocks. These flops are called shared wrapper cells
(or sometimes wrapper cells) because they share the responsibility of their original functional
use as I/O flops with isolating the core.

Tessent™ Shell User’s Manual, v2021.398

DFT Architecture Guidelines for Hierarchical Designs
Internal Mode and External Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Optionally, you can add dedicated wrapper cells. These wrapper cells are added on primary
inputs or primary outputs of a physical block that fan out from or fan into large logic cones. By
adding the dedicated wrapper cell, you can test the logic cone during internal testing of the core.

Shared and dedicated wrapper cells form the wrapper chains. Logic located within the wrapper
chains is tested during internal testing of the core, called intest. Logic located outside the
wrapper chains is tested during the external testing of the core, called extest.

Internal Mode and External Mode
For purposes of pattern retargeting, Tessent Shell differentiates between a wrapped core’s
internal circuitry and its external circuitry.

Internal mode is the view into the wrapped core from the wrapper cells. That is, the logic
completely internal to the core. Tessent Shell retargets internal mode ATPG patterns during
ATPG pattern generation for the chip-level design.

External mode indicates the view out of the wrapped core from the wrapper cells. That is, the
logic that connects the wrapped core to external logic. Tessent Shell uses the external mode to
build graybox models, which are used by the internal modes of their parent physical blocks.

As shown in the following figure, based on chip pin availability, you can test the Red, Pink,
Brown, and Green cores in internal mode at the same time when the on-chip clock controllers
(OCCs) and EDT logic blocks inside the wrapped cores are active.

Figure 4-2. Internal Mode

DFT Architecture Guidelines for Hierarchical Designs
On-Chip Clock Controller

Tessent™ Shell User’s Manual, v2021.3 99

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can test one or more wrapped cores in internal mode based on several factors, such as
availability of chip-level pins, tester channels, tester memory, and power dissipation. The OCCs
and EDT compression logic at the chip level are inactive during internal mode.

In external mode, the wrapped cores at the given physical hierarchy participate. The OCCs and
EDT logic blocks inside the cores are inactive, and the OCCs and EDT logic blocks outside the
wrapped cores are active. In a typical external mode configuration, one EDT logic block is used
to test the logic outside the wrapper chains, as shown in the following figure.

Figure 4-3. External Mode

External mode also includes the wrapper chains within the wrapped cores. Tessent tests the
logic outside of the wrapper chains during external mode.

On-Chip Clock Controller
During hierarchical test, the existence of wrapped cores, whose patterns you want to retarget to
the chip level, requires a mechanism to enable local, self-contained clock control. This
mechanism is the on-chip clock controller (OCC), which you insert into each wrapped core.
OCCs inside the wrapped cores make the ATPG patterns self-contained, which enables them to
be retargeted.

The OCC is initialized for a clock waveform, and then the applicable patterns are retargeted to
the parent- or chip-level design, as applicable. Block-level patterns with block-level OCCs can
be retargeted and merged with other block patterns at the parent- or chip-level design
independent of the clock waveforms.

Each wrapped core can contain one or more EDT logic blocks that contain the compression
logic. Similarly there may be several options for testing the external mode of the cores. In the

Tessent™ Shell User’s Manual, v2021.3100

DFT Architecture Guidelines for Hierarchical Designs
Graybox Model

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

following figure, OCC insertion occurs for each clock domain entering the cores. At the chip
level, OCCs are also required for the clock domains at this level. Insert one EDT logic block for
each internal mode of the core and one EDT logic block for the core’s external mode.

Figure 4-4. On-Chip Clock Controller

To help facilitate test setup and automation, use a 1149.1 TAP controller along with an IJTAG
network. You may also need to insert a Test Access Mechanism (TAM) to guide how these
wrapped cores may be tested.

Standard OCCs include built-in clock selection, clock-chopping, and clock-gating functionality.
For more information about standard OCCs, as well as parent and child OCCs, refer “Tessent
On-Chip Clock Controller” in the Tessent Scan and ATPG User’s Manual.

Graybox Model
Graybox models are wrapped core models that preserve the core’s external mode logic, which
includes the wrapper chains, along with the portion of the IJTAG network that needs to be
tested along with the logic at the next physical level. The purpose of graybox models during
hierarchical test is to retain the minimum logic required to generate ATPG patterns for the
internal modes of the parent physical blocks. When testing the next physical level, using
graybox models enables Tessent Shell to load the design faster than loading the full-chip design.

For details, refer to “Graybox Overview” in the Tessent Scan and ATPG User’s Manual.

The following figure shows a graybox model in which the internal logic of the wrapped core is
removed. This graybox model implementation has separate input and output wrapper chains
with separate scan enable signals for each wrapper chain type.

DFT Architecture Guidelines for Hierarchical Designs
Graybox Model

Tessent™ Shell User’s Manual, v2021.3 101

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-5. Graybox Model

The input and output wrapper chains do not have to be separate, and the scan enable signals also
do not need to be separate. You can use one scan enable signal with other mechanisms to enable
how the wrapper chains operate.

Tessent™ Shell User’s Manual, v2021.3102

DFT Architecture Guidelines for Hierarchical Designs
Top-Down Planning Before Bottom-Up Implementation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Down Planning Before Bottom-Up
Implementation

To optimize your DFT implementation for hierarchical designs, top-down planning is
necessary. Top-down planning enables you to properly budget and allocate the resources
required for hierarchical test.

As described in “Tessent Shell Flow for Hierarchical Designs” on page 141, the process for
inserting DFT into hierarchical designs is performed in a bottom-up process starting from the
lowest level block. However, prior to insertion, it is best to plan the implementation in a top-
down manner, starting at the chip level.

To address the design's challenges, consider the following factors:

• Optimizing pattern count to reduce test time

• Optimizing scan volume to fit within allocated tester memory

• Reducing chip pin requirements to fit within tester pin allocation

The planning process requires you to think about priorities such as test time, test quality, flow
compatibility, and design schedule. During the planning stage consider the priorities and also
the necessary tradeoffs to meet those priorities. In addition, be aware that how you implement
DFT at the chip level impacts DFT implementation at the core level.

Clocking Architecture . 102

Resource Availability. 103

Test Scheduling . 103

Specific Tasks That May Require Planning . 106

Sample DFT Planning Steps . 107

Clocking Architecture
In functional mode, the clock architecture can include clocks that are divided or multiplied. The
original, divided, and multiplied clocks can be synchronous with each other within a core, and
sometimes they can be synchronous across hierarchical cores. Divided clocks can also be
asynchronous across hierarchical cores.

When generating ATPG patterns at the core level that you want to retarget, the core must
include an OCC to control clocking as described in “On-Chip Clock Controller” on page 99.
How you implement OCCs in the cores depends on various factors:

• How the clocks are balanced — The most common methods for clock balancing are
clock tree synthesis and clock mesh synthesis. The method you use can influence what
type of OCCs you insert (standard, parent, child).

DFT Architecture Guidelines for Hierarchical Designs
Resource Availability

Tessent™ Shell User’s Manual, v2021.3 103

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• OCC behavior during intest and extest — How the OCCs need to behave during
intest and extest of the cores also dictates how you should implement the OCCs.

Some OCCs are only required to perform clock chopping or clock-gating functionality.
Sometimes OCCs may be necessary to mux clocks in for test purposes. You can use chip-level
clocking to determine the architecture and OCC types (standard, parent, child) that you should
use within the wrapped cores.

Refer to “Clocking Architecture Examples” on page 785 for examples of clocking architectures
with OCC.

Resource Availability
Resource availability plays a significant role in how you implement DFT. For example, at the
chip level, the number of pins available for test limits the number of EDT channel pins that you
can use. The EDT channel pins may not be associated with only one EDT controller; they could
be connected to multiple EDT controllers.

Likewise, the tester may have limited channel pins available for connecting to EDT channel
pins on the chip, which means that you may need to consider the tester’s memory allocation for
storing the test patterns. Available memory on the tester dictates whether you need to split the
pattern set or test multiple cores in parallel.

You want to test the wrapped cores dictates how you create the test-access mechanism (TAM).
TAMs carry scan data in and out of the chip for each group of wrapped cores you intend to run
in parallel. You need a TAM if you have limited chip pins, and you are reusing those chip pins
to connect to multiple EDT controllers inside the wrapped cores.

The TAM logic is dependent on how and when the cores get tested. The TAM schedules the
tests for the wrapped cores at the top level, and it enables access to the chip level so that you can
run these tests. The TAM also needs input from floor planning and placement of these cores to
avoid routing congestion; you need to account for the proximity of the cores that you want to
test in parallel and for the location of the chip pins that connect to them.

Test Scheduling
Deciding which wrapped cores need to be tested at the same time—that is, in parallel—depends
on a number of factors.

• Number of patterns to be executed

• Availability of chip pins

• Tester pin storage limitations

• Number of identical cores that need to be tested

Tessent™ Shell User’s Manual, v2021.3104

DFT Architecture Guidelines for Hierarchical Designs
Test Scheduling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Cores with similar pattern count that can be grouped together for execution

• Power dissipation budget and allocation

• Optimal compression at core level

• Channel sharing of cores within modular EDT or sub-chip architectures; cores need to
be tested where channels are shared

To achieve the optimal test schedule for a chip with a given number of hierarchical cores,
generate an optimized compression for the internal mode of the cores. Within each core,
compression could be based on asymmetric channel configurations. For designs with no X
sources, fewer output channels are required.

A utility called Compression Advisor can help you obtain the optimal compression. You can
access this utility from a Siemens Digital Industries Software application engineer. In addition,
you can use the analyze_compression command to optimize compression. These tools require
gate-level scan stitched netlists. BIST logic used for memories needs to be scan stitched and
included for the best compression estimation.

The following example shows a schedule based on compression analysis. Suppose 64 pins are
available at the chip level for use as channel pins. There are 12 instances of blk_a, eight
instances of blk_b, 4 instances of blk_c ,and 1 instance each of blk_d, blk_e, and blk_f. The
highlighted instances provide the best utilization of resources.

DFT Architecture Guidelines for Hierarchical Designs
Test Scheduling

Tessent™ Shell User’s Manual, v2021.3 105

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-6. Compression Analysis Example

Tessent™ Shell User’s Manual, v2021.3106

DFT Architecture Guidelines for Hierarchical Designs
Specific Tasks That May Require Planning

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Suppose you plan to group identical cores instances for testing in parallel. For the blk_a
instances, the 40 input channel pins can be broadcast. That is, you can provide the same input
data to all the cores. Two output channels from each instance are required for a total of 24
additional pins. When testing the 12 blk_a instances together, you use the 64 available chip
pins.

Next, test the eight instances of blk_b together. The retargeted patterns are applied at the chip
level. The 32 input channel pins broadcast to the eight blk_b instances. In addition, each
instance uses four output channels for a total of 64 pins. The tool proceeds to test the four blk_c
instances with eight input channels broadcast and 14 output channels pins per instance of blk_c.
The blk_f and blk_e instances are tested together because they have similar complexity and
channel requirements. The blk_d instances, which require the most channels, are tested by
themselves.

Use the following guidelines when developing your test schedule:

1. Group identical core instances and execute them at the same time.

2. Test cores of similar complexity and channel requirements.

3. Test the cores that require the most channels by themselves.

Specific Tasks That May Require Planning
Every design has its unique set of tasks that you need to perform during testing. Some tasks may
involve planning while others may only require turning on or off features at the command line.

The following list provides examples of tasks that you may need to plan for ahead of time. This
list is not exhaustive.

• Dual-mode configuration for Tessent TestKompress

• Low-power mode and threshold setup

Table 4-1. Test Schedule Example

Scan
Config

% Total
Faults/
Group

Input
Channels

Output
Channels

Pins
Used/
Config

Shift
Length

No. of
Patterns

No. of
Tester
Cycles

12(blk_a) 68.59 40 24 64 156 2409 375804

8(blk_b) 8.54 32 32 64 154 1411 217294

4(blk_c) 9.53 8 56 64 270 3895 1051650

blk_f,
blk_e

7.33 52 12 64 259 2033 526547

blk_d 6.01 38 18 56 259 1579 408961

. Total tester cycles 2646118

DFT Architecture Guidelines for Hierarchical Designs
Sample DFT Planning Steps

Tessent™ Shell User’s Manual, v2021.3 107

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Multi-load ATPG patterns via the memories

• Test point provisioning for extra scan chains

• Support for multiple power islands and voltage islands

• Functional timing exceptions to be read in with SDC

• Low pin count test (LPCT) controllers

• Test setup sequence to enter test mode

Sample DFT Planning Steps
There are some considerations when planning your DFT implementation.

Note
This example may not be applicable to all designs.

1. Tally how many chip pins are available for scan channels and for ATE channels that are
required for test. Use the smaller value when planning for the number of chip pins
available for test.

2. Use a dedicated test clock apart from existing functional clocks. This clock can use the
TCK signal as the clock source.

3. Assess the functional clock architecture for the chip and plan your OCC configuration.
Consider how many OCCs you need, their OCC types (child, parent, standard), and
where they need to be inserted for wrapped cores and the chip.

4. Based on the design size and pattern count, determine the number of channels required
for each core.

5. Determine test scheduling for cores that you can run in parallel as described in “Test
Scheduling” on page 103.

6. Determine the external mode configuration as described in “DFT Implementation
Strategy” on page 107.

7. Confirm the top-level TAM that is required.

DFT Implementation Strategy
For most designs, a few decisions can make a big difference to the overall DFT implementation
architecture.

Tessent™ Shell User’s Manual, v2021.3108

DFT Architecture Guidelines for Hierarchical Designs
DFT Implementation Strategy

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Cores Testing in Internal and External Modes

You can test multiple cores in both internal and external modes. You must consider several
factors when testing in these modes.

Internal Mode

When you have multiple wrapped cores, fix the scan chain length at a constant value so that at
the next hierarchical level when you combine cores to be tested in parallel, the shift length is
identical.

If the OCC bits are roughly 25% of the longest chain, stitch OCC bits into a few dedicated
compressed chains rather than distributing them across all of the chains. If the OCC bits add up
to greater than 75% of the longest chain, then stitch the OCC bits as an uncompressed chain. If
there are any remaining OCC bits, connect them into a compressed chain.

If there are embedded boundary scan cells present, ensure they are stitched with the rest of the
boundary scan cells at the chip level.

External Mode

The number of external mode chains from across multiple wrapped cores dictates how the
chains should be handled, for example:

• Connect the external mode chains to one EDT controller.

• Connect the external mode chains to multiple EDT controllers.

• Connect the external mode chains directly to primary pins without any EDT
compression logic. However, this can cause routing congestion.

• Connect the external mode chains when there is EDT compression logic. There may be
EDT compression logic built inside the wrapped cores for the purpose of external mode,
which leads to having at least two pins (one input and one output) for the compression
logic to be used for external mode. This configuration eliminates routing congestion, but
each EDT logic block is required to have two pins in the external mode of each core that
is connected to the chip level.

If external mode chains from various cores are to be connected to one or more EDT controllers
at chip level, then you must ensure that you balance the external mode chains so they are the
same length. You can do this by using the chain length across multiple cores.

If there are multiple levels of hierarchy and the OCC needs to be active, you may need to
include the OCC bits in the external mode. That is, if you want the OCC to be used in both
internal and external modes, then you need to plan for the OCC bits to be included in the
external chain also. Typically, OCCs are only included in internal mode.

During ATPG, you can include the boundary scan chain at chip level when running the external
mode of the wrapped cores.

DFT Architecture Guidelines for Hierarchical Designs
DFT Implementation Strategy

Tessent™ Shell User’s Manual, v2021.3 109

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dedicated Test Clock

For hierarchical test, configure the test clock so that it does not share the functional clock port.
The test clock needs an extra pulse to initialize the EDT hardware, which disturbs the scan cells
and can result in D1 violations that cannot be fixed.

From the test clock, you can use DFT signals to generate the shift capture clock required for
OCCs and the EDT clock required for EDT hardware.

Optionally, you can use TCK as your test clock. In this case, the TAP needs to run at the TCK
rate, and the shift for ATPG is limited to the TCK frequency. Thus, you need to ensure that you
are using an optimal TCK rate.

Using a dedicated test clock aids with timing closure and is beneficial for both internal test and
external test because during shift when the scan enable signal is 1, the same clock path is chosen
irrespective of whether the core is placed in internal or external mode of operation. For more
information, refer to “Shift-Only Mode” under Clock Control Operation Modes in the Tessent
Scan and ATPG User’s Manual.

Automated Features Within the Tessent Shell Flow

Tessent Shell provides automated features to help you implement your DFT strategy.

• TSDB — The Tessent Shell Data Base is a common database used by all the Tessent
products, which means that test information generated by one tool is recognized and
usable by downstream tools. For details, refer to “TSDB Data Flow for the Tessent Shell
Flow.”

• IJTAG automation — As described in “What Is Tessent Shell?” on page 23, IJTAG
provides many benefits, including DFT setup reuse from blocks and sub-blocks to
higher levels in the hierarchy. This is essential for using the bottom-up DFT insertion
flow as described in “Tessent Shell Flow for Hierarchical Designs” on page 141.

• Retargetable ATPG patterns — Using OCCs inside hierarchical cores makes the
ATPG patterns self-contained, which enables them to be retargeted as described in “On-
Chip Clock Controller” on page 99.

Note
Using the following Tessent automated features depends on your design implementation
and how you are performing the two-pass RTL and scan DFT insertion flow for hierarchical

designs as described in “Tessent Shell Flow for Hierarchical Designs” on page 141.

• Reset control — Tessent automatically fixes asynchronous resets with pre-DFT DRCs
that are enabled when you set the -logic_test option of
set_dft_specification_requirements to “on”. Tessent deactivates the reset during shift

Tessent™ Shell User’s Manual, v2021.3110

DFT Architecture Guidelines for Hierarchical Designs
DFT Implementation Strategy

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

and tests the reset during capture. Optionally, provision is provided to override the reset
during capture by deactivating it. This auto-fix is beneficial when the functional reset is
generated internally.

• Boundary scan chain included for ATPG — At the chip level, you can segment the
boundary scan chain into smaller chains to be connected as compressed scan chains and
controlled during ATPG. Optionally, you can configure these boundary scan chains to
participate during capture or use them during shift.

• Use memory to target shadow logic faults during logic test — During logic test
insertion, inserted memories get bypassed. The bypass can be built within the memories
themselves or built within the MemoryBIST infrastructure. You can use IJTAG-
controlled internal Test Data Registers (TDRs) to enable bypass or to use the memories
during logic test. By using the memories during logic test, the shadow logic around the
memories can be tested. This requires an ATPG model for the memories. For details,
refer to the Comprehensive RAM Primitive information in the Tessent Cell Library
Manual.

• Unused scan chains — During scan insertion and stitching if there are any over-
specified scan chains, Tessent Scan automatically adds the unused scan chains with
pipeline registers. This is beneficial when not all the scan chains of the inserted EDT
compression logic are utilized.

Tessent™ Shell User’s Manual, v2021.3 111

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
Tessent Shell Workflows

Tessent Shell workflows are grouped into two main subflows: prelayout and postlayout. The
prelayout DFT insertion workflow describes the process for using Tessent Shell for flat and
hierarchical designs. The post-insertion validation workflow describes the flow for netlists that
have completed placement and routing.

Tessent Shell Flow for Flat Designs . 112

Tessent Shell Flow for Hierarchical Designs . 141

Tessent Shell Post-Layout Validation Flow. 215

Test Bench Generation and Simulation in RTL Mode. 224

Hybrid TK/LBIST Flow for Flat Designs . 232

Running Multi-Load ATPG on Wrapped Core Memories with Built-In Self Repair . 254

Built-in Self Repair in Hierarchical Tessent MemoryBIST Flow 261

Tessent™ Shell User’s Manual, v2021.3112

Tessent Shell Workflows
Tessent Shell Flow for Flat Designs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Flow for Flat Designs
In the RTL and scan DFT insertion flow for flat designs, you perform DFT insertion for the
entire chip-level design.

The flat DFT implementation aligns with the physical implementation of the design. The flow
consists of the following steps:

1. Performing DFT hardware insertion

2. Synthesis

3. Scan insertion (optional)

4. Gate-level ATPG

Understanding the RTL and scan DFT prelayout insertion flow for flat designs helps you
manipulate hierarchical designs or implement a variation of the basic flow.

Refer to the following test case for a detailed usage example of the flow described in this
section:

tessent_example_flat_flow_<software_version>.tgz

You can access this test case by navigating to the following directory:

<software_release_tree>/share/UsageExamples/

Overview of the RTL and Scan DFT Insertion Flow . 113

First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan 116

Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC 120
Loading the Design. 121
Specifying and Verifying the DFT Requirements . 123
Creating the DFT Specification . 126
Generating the EDT, Hybrid TK/LBIST, and OCC Hardware . 130
Extracting the ICL Module Description . 130
Generating ICL Patterns and Running Simulation . 131

Performing Synthesis. 132

Performing Scan Chain Insertion (Flat Design) . 133

Performing ATPG Pattern Generation . 135

Simulating LBIST Faults . 137

Considerations for Using Gate-Level Verilog Netlists . 139

Tessent Shell Workflows
Overview of the RTL and Scan DFT Insertion Flow

Tessent™ Shell User’s Manual, v2021.3 113

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Overview of the RTL and Scan DFT Insertion Flow
Whether you are using a flat design or a hierarchical design, the RTL and scan DFT insertion
flow requires you to use a two-pass insertion process to insert the DFT hardware.

As shown in the following figure, insert MemoryBIST and boundary scan prior to embedded
deterministic test (EDT) or hybrid TK/LBIST (LBIST), and the on-chip clock controller (OCC).
In this section, EDT refers to embedded deterministic test IP only; and LBIST refers to hybrid
TK/LBIST IP, which also includes EDT.

Note
EDT is a subset of LBIST. You can choose EDT and no LBIST, but you cannot choose
LBIST without it also including EDT.

The DFT logic you insert during the first DFT insertion pass gets tested by EDT or LBIST.
When inserting DFT into an RTL design, you only need to run synthesis once after you have
performed the two DFT insertion passes.

Tessent™ Shell User’s Manual, v2021.3114

Tessent Shell Workflows
Overview of the RTL and Scan DFT Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-1. Two-Pass Insertion Flow for RTL, Flat Designs

During the first pass, Tessent inserts the IJTAG network and any IJTAG instruments that have
ICL descriptions. Refer to the command for details about this process.

During the second pass, the tool checks MemoryBIST’s logic for rule compliance with the rest
of the functional logic to prevent implications for the DFT signals and IJTAG network
connections that could result in coverage loss and pattern count increase.

Optionally, you can perform scan insertion at the same time as synthesis. This does not affect
how you perform DFT insertion, but you do lose some of the automation that Tessent Shell
provides during ATPG pattern generation.

The following figures show an example of the progression of DFT hardware inserted into a
DFT-ready design.

Tessent Shell Workflows
Overview of the RTL and Scan DFT Insertion Flow

Tessent™ Shell User’s Manual, v2021.3 115

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-2. DFT-Ready Design

In the first DFT insertion pass, Tessent inserts the MemoryBIST and boundary scan hardware.

Figure 5-3. After the First DFT Insertion Pass

In the second DFT insertion pass, Tessent inserts the EDT or LBIST, and OCC hardware. You
clock the MemoryBIST logic (shown in yellow in Figure 5-4) using the same functional clock
that feeds the memories. The IJTAG network (blue) is scan tested using the IJTAG clock, which
is the TCK clock. The TAP network (red) is not scan tested or is made non-scan during ATPG.

Tessent™ Shell User’s Manual, v2021.3116

Tessent Shell Workflows
First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-4. After the Second DFT Insertion Pass

First DFT Insertion Pass: Performing MemoryBIST
and Boundary Scan

Insert MemoryBIST and boundary scan prior to EDT and OCC so that you can accurately
estimate the number of scannable sequential elements (often referred to as “flops”) to be tested.
The number of flops determines the size of the EDT controller that Tessent generates in the
second DFT insertion pass.

The flow for inserting MemoryBIST and boundary scan together is the same as inserting them
separately. For details about this insertion pass flow, refer to:

• “Getting Started” in the Tessent MemoryBIST User’s Manual

• “Getting Started With Tessent BoundaryScan” in the Tessent BoundaryScan User’s
Manual

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-1
on page 118.

Prerequisites

• To insert boundary scan, you must have an RTL design with instantiated I/O pads if you
are using a chip-level design.

Tessent Shell Workflows
First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan

Tessent™ Shell User’s Manual, v2021.3 117

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• For RTL netlists, you must have a Tessent cell library or the pad library for the I/O pads.
For more information, refer to the Tessent Cell Library Manual.

Procedure

1. Load the RTL design data (see lines 1-7).

2. For the first insertion pass, set the set_context -design_id switch. By convention, the
identifier used for this is typically “rtl1”.

The -design_id switch stores all the data associated with a particular DFT insertion pass
in the TSDB. For the first pass, rtl1 contains the data for the MemoryBIST and boundary
scan hardware, and for the IJTAG network.

Note
rtl1 is the recommended naming convention for the design ID for the first insertion
pass, but you can specify any name. Refer to “Loading the Design” for more

information about setting the design ID.

3. Set the set_dft_specification_requirements command to “on” for both -memory_test and
-boundary_scan. (See line 11.)

This tells Tessent Shell that you are generating the MemoryBIST and boundary scan
hardware at the same time.

4. Set the design level (set_design_level chip, see line 12).

Refer to “Design Levels” for more information.

5. Identify test pins and apply options to special pins. (See lines 14-26.)

6. Apply the check_design_rules command to instruct the tool to leave setup mode and
enter analysis mode.

If there are issues with the design, the tool remains in setup mode. (See line 31.)

7. Create the DFT specification. (See lines 33-43.)

a. To configure the functional pins so that they are shared as EDT channel input and
output pins, add the required logic using the AuxiliaryInput ports and
AuxiliaryOutput ports wrappers, respectively.

Functional pins can be shared as EDT channel pins. You must insert auxiliary input
and output logic at the same time as you insert boundary scan to avoid cascading two
multiplexers along the functional output paths. For additional information, refer to
the AuxiliaryInputOutputPorts wrapper in the Tessent Shell Reference Manual.

Note
You can also share test_clock, scan_en, and edt_update pins with functional
pins. The functional coverage is maintained when you use boundary scan during

scan test.

Tessent™ Shell User’s Manual, v2021.3118

Tessent Shell Workflows
First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. Create the DFT hardware, IJTAG network connectivity, and input test patterns. (See
lines 46-53.)

9. Run simulations to verify the design. (See lines 55-62.)

Results

For MemoryBIST, Tessent inserts the MemoryBIST controllers, interfaces, BIST Access Port
(BAP), and segment insertion bits (SIBs). This hardware is later scan-tested using EDT, which
you insert during the second insertion pass. In addition, Tessent automatically connects pre-
existing scan testable instruments and scan resource instruments to the Scan Tested Instrument
(STI) and Scan Resource Instrument (SRI) sides of the IJTAG network, respectively.

For boundary scan, you can segment the boundary scan chain into smaller chains that are used
during logic testing with Tessent TestKompress. To segment the boundary scan chain into
smaller chains to be connected to the EDT, specify max_segment_length_for_logictest within
the BoundaryScan wrapper or alternatively specify the following command prior to running
create_dft_specification:

set_defaults_value DftSpecification/BoundaryScan/max_segment_length_for_logictest

Examples

The following dofile example shows a typical command flow.

The highlighted command lines illustrate additional considerations for inserting the Tessent
Shell MemoryBIST and Tessent Shell Boundary Scan instruments in the first insertion pass of a
two-pass DFT insertion process. The functional pins are equipped with logic so that they can be
shared as EDT channel input and output pins.

Example 5-1. Dofile Example for MemoryBIST and BoundaryScan

1 # Load the design
2 set_context dft –rtl –design_id rtl1
3 set_tsdb_output_directory ../tsdb_rtl
4 read_verilog ../RTL/cpu_top.v
5 read_cell_library ../library/tessent/adk.tcelllib
6 set_design_sources -format tcd_memory -Y ../library/memory \
7 -extension memlib
8 set_current_design cpu_top
9
10 # Specify and verify the DFT requirements
11 set_dft_specification_requirements –memory_test on -boundary_scan on
12 set_design_level chip
13
14 # Identify TAP pins
15 set_attribute_value tck_p -name function -value tck
16 set_attribute_value tdi_p -name function -value tdi
17 set_attribute_value tms_p -name function -value tms
18 set_attribute_value trst_p -name function -value trst
19 set_attribute_value tdo_p -name function -value tdo
20 set_boundary_scan_port_options ramclk_p -cell_options clock
21 set_boundary_scan_port_options reset_p -cell_options sample
22

Tessent Shell Workflows
First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan

Tessent™ Shell User’s Manual, v2021.3 119

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

23 # Some pins cannot add any boundary scan cells
24 set_boundary_scan_port_options test_clock_p -cell_options dont_touch
25 set_boundary_scan_port_options edt_update -cell_options dont_touch
26 set_boundary_scan_port_options scan_en_p -cell_options dont_touch
27
28 # Specify the clocks feeding the memories
29 add_clocks 0 ramclk_p -Period 5ns
30
31 check_design_rules
32
33 # Create DFT specification
34 set spec [create_dft_specification]
35 report_config_data $spec
36 set_config_value $spec/BoundaryScan/max_segment_length_for_logictest 150
37 read_config_data -in ${spec}/BoundaryScan -from_string {
38 AuxiliaryInputOutputPorts {
39 auxiliary_input_ports : portain_p[0], portain_p[1], portain_p[2] ;
40 auxiliary_output_ports : portbout_p[0], portbout_p[1],
41 portbout_p[2];
42 }
43 }
44 report_config_data $spec
45
46 # Create the hardware for the DFT inserted with the DFT specification
47 process_dft_specification
48
49 # Extract the IJTAG network connectivity and create ICL for the design
50 extract_icl
51
52 # Create patterns specification for validating the inserted hardware
53 create_patterns_specification
54
55 # Process the patterns specification and create simulation test benches
56 process_patterns_specification
57
58 # Run and check test bench simulations
59 set_simulation_library_sources -v ../library/verilog/adk.v \
60 -v ../library/pad_cells.v -v ../library/memory/ram.v
61 run_testbench_simulations
62 check_testbench_simulations -report_status

Tessent™ Shell User’s Manual, v2021.3120

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Second DFT Insertion Pass: EDT, Hybrid TK/LBIST,
and OCC

In the second DFT insertion pass, insert either the EDT or hybrid TK/LBIST logic test
hardware, and OCC. This insertion pass includes requirements and considerations that differ
from the first DFT insertion pass, including inserting the DFT signals.

For information about OCC, refer to “Tessent On-Chip Clock Controller” in the Tessent Scan
and ATPG User’s Manual.

Before running this flow for chip-level designs, source nodes must be present in the RTL design
so that you can define dynamic DFT signals as described in “Specifying and Verifying the DFT
Requirements.” Dynamic DFT signals are signals such as scan enable, edt_clock, and
edt_update that need to change during specific tests.

Figure 5-5. Flow for the Second DFT Insertion Pass

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 121

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
For the second DFT insertion pass, use the process described in “First DFT Insertion Pass:
Performing MemoryBIST and Boundary Scan” on page 116 to generate ATPG patterns and

perform simulation.

Loading the Design . 121

Specifying and Verifying the DFT Requirements. 123

Creating the DFT Specification . 126

Generating the EDT, Hybrid TK/LBIST, and OCC Hardware 130

Extracting the ICL Module Description . 130

Generating ICL Patterns and Running Simulation . 131

Loading the Design
When loading the design for the second DFT insertion pass, you must ensure that you specify a
new design ID name and, optimally, use the same TSDB directory that you used in the first
insertion pass. In addition, you must read in the design from the first insertion pass and
elaborate the design.

The design loading process for the second pass is similar to the process you used in the first
insertion pass, with a few exceptions.

Figure 5-6. Flow for Loading the Design

Prerequisites

• For chip-level designs, source nodes must be present in the RTL design so that you can
define dynamic DFT signals as described in “Specifying and Verifying the DFT
Requirements.” Dynamic DFT signals are signals such as scan enable, edt_clock,
edt_update, and so on, that need to change during specific tests.

Tessent™ Shell User’s Manual, v2021.3122

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Apply the set_context command with the ID “rtl2” for the second pass. For example:

set_context dft -rtl design_id rtl2

In the first DFT insertion pass, you set the design ID to “rtl1” with the command.

Note
This manual uses recommended naming conventions for the design IDs for flat
designs, which are “rtl1” for the first DFT insertion pass, “rtl2” for the second DFT

insertion pass, and “gate” for the scan chain insertion pass. Refer to “Considerations for
Using Gate-Level Verilog Netlists” for the naming conventions when using gate-level
Verilog netlists.

For a specified design, the design ID stores all the data associated with a DFT insertion
pass into the TSDB. For the first pass, “rtl1” contains the data for the MemoryBIST and
boundary scan hardware. Setting the design_id to rtl2 at the beginning of the second
DFT insertion pass identifies that “rtl2” stores the EDT or LBIST, and OCC hardware
data generated during the second pass.

The rtl2 design data is cumulative. That is, it contains the necessary rtl1 data in addition
to the new data generated for EDT or LBIST, and OCC. The “rtl2” designation indicates
that the second insertion pass is performed on the resulting edits of the first pass RTL
data. In subsequent insertion passes, you can use either design ID to load the design and
its supporting files.

Tessent generates IJTAG nodes during both insertion passes and their module names are
differentiated using the design ID you specified in each pass.

2. Specify the set_tsdb_output_directory command with the same directory location for
both the first and second DFT insertion passes.

set_tsdb_output_directory ../tsdb_rtl

If you forget to specify the command for the second DFT insertion pass, Tessent creates
a default tsdb_outdir directory in the current working directory. If you use a different
output TSDB directory for the two insertion passes, ensure that you open the TSDB used
by the first insertion pass by specifying the open_tsdb command.

For more information about the TSDB, refer to “Tessent Shell Data Base (TSDB)” in
the Tessent Shell Reference Manual. For information about the TSDB data flow, refer to
“TSDB Data Flow for the Tessent Shell Flow.”

3. Specify the read_cell_library command to read in the library file for the standard cells
and the pad I/O macros.

The following command reads the Tessent cell library file for the standard cells and pad
I/O macros:

read_cell_library ../library/adk_complete.tcelllib

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 123

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If the pad I/O library and standard cell library are separate, use the following commands
to read in the atpg.lib files and the library for the pad I/O description:

read_cell_library ../library/atpg.lib
read_cell_library ../library/pad.library

4. Specify the read_design command to load the design:

read_design cpu_top –design_id rtl1

The design was created in the first DFT insertion pass when you used the read_verilog
or read_vhdl commands. The read_design command also loads supporting files such as
the TCD, ICL, and PDL, if present in the TSDB.

The design is read in using the design ID from the first DFT insertion. In this case, the
design ID is “rtl1”

To load the design correctly for the second insertion pass, the read_design command
refers to the design source dictionary that was created during the first DFT insertion pass
and stored in the dft_inserted_designs directory.

5. Specify the set_current_design command to elaborate the design.

set_current_design cpu_top

If any module descriptions are missing, design elaboration identifies them. You can fix
elaboration errors by adding the missing modules or by specifying the
“add_black_boxes -module” command.

Specifying and Verifying the DFT Requirements
After loading your design data, define the DFT requirements for the EDT or LBIST, and OCC
hardware you want to insert. The requirements definition includes adding DFT signals followed
by performing design rule checking.

Figure 5-7. Flow for Specifying and Verifying the DFT Requirements

Tessent™ Shell User’s Manual, v2021.3124

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Specify the set_dft_specification_requirements command to run pre-DFT design rule
checking as follows:

set_dft_specification_requirements -logic_test on

Because you already specified that you were working at the chip level in the first DFT
insertion pass, you do not need to specify this information for the second insertion pass.

2. Specify the add_dft_signals command to define the DFT signals. For example:

add_dft_signals ltest_en
…

See “DFT Signals” on page 124 for a more complete example.

DFT signals are used to determine the various modes of operation, control values, and
signal behaviors that are necessary for each test mode. The DFT signals capability in
Tessent Shell automates the following tasks:

• Adding DFT signals

• Configuring DFT signals for various modes of operation

• Transferring information about DFT signals from one step to the next

Based on the specified mode of operation, Tessent creates the necessary setup
procedures to control DFT signals through an IJTAG network.

3. Specify the check_design_rules command to run pre-DFT design rule checking.

Tessent Shell generates DFT_C violations when error conditions are detected. For
details, refer to “Pre-DFT Clock Rules (DFT_C Rules)” in the Tessent Shell Reference
Manual.

Results

When DRC passes, Tessent Shell shifts from setup mode to analysis mode. Pre-DFT DRC
verifies that clocks are defined for all of the scannable sequential elements to be scan-tested and
identifies the async sets and resets so that they can be turned off during shift operations. In
addition, if you have specified the add_dft_clock_enable command, Tessent checks clock-
gating logic and module-type clocks.

Examples

DFT Signals

You can add static DFT signals and dynamic DFT signals. Static DFT signals include global
DFT control, logic test control, and scan mode signals. As described in the add_dft_signals
command description, these DFT signals are typically controlled by a Test Data Register that is
part of the IJTAG network.

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 125

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Most dynamic DFT signals originate from primary input ports. For chip-level designs, these
primary input ports must already be present in the RTL and be pre-connected to a pad buffer
cell. The three dynamic DFT signals that originate from primary inputs are test_clock, scan_en,
and edt_update. To share their input ports with the functional mode, ensure that you added
auxiliary input logic for them during boundary scan insertion. Tessent cannot create the nodes
as ports.

The following example shows the required DFT signals for the second insertion pass when you
are inserting EDT or LBIST, and OCC.

// Create the static DFT signals
add_dft_signals ltest_en

// Generate dynamic DFT signals from source nodes
add_dft_signals scan_en edt_update test_clock \

–source_node { porta_in1 portb_in1 porta_in2 }

// Create shift_capture_clock and edt_clock as gated versions of
// test_clock
add_dft_signals shift_capture_clock edt_clock -create_from_other_signals

// Used by top-level EDT
add_dft_signals edt_mode

// Required for boundary scan to be used with logic test without
// contacting inputs
add_dft_signals int_ltest_en output_pad_disable

// Required for scan-tested instruments (STI network) such as MemoryBIST
// and boundary scan
add_dft_signals tck_occ_en

// To bypass memories or to run multi-load ATPG for memories
add_dft_signals memory_bypass_en

Note
Tessent Shell automatically recognizes scan-tested instruments and stitches them into scan
chains.

Refer to the Tessent Shell Reference Manual for information about the following commands:

• add_dft_signals — Insert DFT signals.

• register_static_dft_signal_names — Register your DFT signal, if, for example, you
need to augment the default DFT signals for specific usage requirements.

• report_dft_signals — View a list of the DFT signals added with the add_dft_signals
command.

• delete_dft_signals — Delete any previously specified DFT signals.

Tessent™ Shell User’s Manual, v2021.3126

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• add_dft_modal_connections — Though not normally required for flat designs, if you
have multiple EDT configurations that you want to multiplex into a common set of top-
level I/Os, use this command to implement the multiplexing. In addition, if the EDT
channel pins are shared with functional pins, they need to include auxiliary input/output
muxing logic.

Related Topics

add_dft_signals

register_static_dft_signal_names

report_dft_signal_names

report_dft_signals

delete_dft_signals

add_dft_modal_connections

Creating the DFT Specification
After defining the DFT requirements for the DFT signals in setup mode, you are ready to create
the DFT specification for EDT or LBIST, and OCC in analysis mode. The DFT specification
defines how the tool inserts hardware into the design.

Figure 5-8. Flow for Creating the DFT Specification

Prerequisites

• For EDT or LBIST, and OCC, you must first generate a skeleton DFT specification that
contains three empty SRI SIBs that specify the EDT, LBIST, and OCC sections of the
IJTAG network. Creating the DFT specification for EDT or LBIST, and OCC differs
from the process you use for MemoryBIST and boundary scan in the first DFT insertion
pass.

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 127

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Specify the create_dft_specification command as follows:

create_dft_specification -sri_sib_list {occ edt lbist}

2. Apply commands to customize the DFT specification using one of the following
interfaces:

To customize the DFT specification on the command line, type the EDT or LBIST, and
OCC data as an argument to the read_config_data -from_string command. Modify the
DFT specification with introspected data using the add_config_element and
set_config_value commands. Tessent automatically saves modifications to the dofile/
scripts directory for use in future sessions. See “DFT Customization Example” on
page 127 for an example.

Note
To input the EDT or LBIST, and OCC wrapper details for the DFT specification,
you can either use the Tessent GUI, known as Tessent Visualizer (see “Customizing

the DFT Specification for EDT”), or the Tessent Shell command line.

Note
Tessent automatically connects the divided boundary scan segment (if present from
the first DFT insertion pass) to the EDT hardware that Tessent inserts in the second

insertion pass. Refer to connect_bscan_segments_to_lsb_chains for details.

3. Specify the following command to ensure that no errors exist in the DFT specification:

process_dft_specification -validate_only

Complete this step before generating the EDT, LBIST, and OCC hardware.

Examples

DFT Customization Example

The following example modifies a DFT specification to add LBIST (including EDT) and OCC
and saves the changes.

Note
If you are using Tessent OCC, Tessent Scan automatically identifies and stitches the sub-
chains in the OCC into scan chains.

Tessent™ Shell User’s Manual, v2021.3128

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_config_data -in $spec -from_string {
 OCC {
 ijtag_host_interface : Sib(occ);
 }
}
The following illustrates a generic way to populate the OCC. The clock
list is design specific and needs to be updated for the design to the
OCC, scan_enable and shift_capture_clock are connected automatically
Modify the following for your specific design requirements
set id_clk_list [list \
 clk1 clk1_p \
 clk2 clk2_p \
 clk3 clk3_p \
 clk4 clk4_p \
 ramclk_p ramclk_p \
]

foreach {id clk} $id_clk_list {
 set occ [add_config_element OCC/Controller($id) -in $spec]
 set_config_value clock_intercept_node -in $occ $clk
}
report_config_data $spec

To the EDT controller, the edt_clock and edt_update are connected
automatically. The EDT controller is built-in with bypass
Modify the following for your specific design requirements
read_config_data -in $spec -from_string {
 EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1) {
 longest_chain_range : 65, 100;
 scan_chain_count : 85;
 input_channel_count : 3;
 output_channel_count : 3;
 Connections +{
 EdtChannelsIn(1) {
 }
 EdtChannelsIn(2) {
 }
 EdtChannelsIn(3) {
 }
 EdtChannelsOut(1) {
 }
 EdtChannelsOut(2) {
 }
 EdtChannelsOut(3) {
 }
 }
 }
 }
}

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 129

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Connecting the EDT channel in to the primary input and connecting
EDT channel out to the primary output
You had inserted the auxiliary logic for these ports during the first
DFT insertion pass
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsIn(1) \
[get_single_name [get_auxiliary_pins portain_p[0] -direction input]]
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsIn(2) \
[get_single_name [get_auxiliary_pins portain_p[1] -direction input]]
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsIn(3) \
[get_single_name [get_auxiliary_pins portain_p[2] -direction input]]
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsOut(1) \
[get_single_name [get_auxiliary_pins portbout_p[0] -direction output]]
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsOut(2) \
[get_single_name [get_auxiliary_pins portbout_p[1] -direction output]]
set_config_value port_pin_name \

-in $spec/EDT/Controller(c1)/Connections/EdtChannelsOut(3) \
[get_single_name [get_auxiliary_pins portbout_p[2] -direction output]]
report_config_data $spec

 LogicBist {
 ijtag_host_interface : Sib(lbist) ;
 Controller(C0) {
 ShiftCycles {
 max : 100 ;
 }
 CaptureCycles {
 max : 10 ;
 }
 PatternCount {
 max : 16384;
 }
 Connections {
 shift_clock_src : clk1;
 }
 }
 NcpIndexDecoder {
 Ncp(no_pulse) {
 }
 Ncp(pulse_clk1) {
 cycle(0) : $occ;
 }
 Ncp(pulse_clk2) {
 cycle(0) : $occ;
 cycle(1) : $occ;
 }
 }
 }

Tessent™ Shell User’s Manual, v2021.3130

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating the EDT, Hybrid TK/LBIST, and OCC Hardware
After creating the DFT specification, generate the EDT or hybrid TK/LBIST, and OCC
hardware. The process_dft_specification command generates and inserts the DFT hardware, as
defined by the DFT specification, into your design.

Figure 5-9. Flow for Inserting the Second-Pass Hardware

Procedure

1. Specify the process_dft_specification command to insert EDT or LBIST, and OCC in
the second pass.

process_dft_specification

2. (Optional) If you want to generate the hardware, but not insert it into the design, specify
the following command:

process_dft_specification -no_insertion

You can then insert the hardware into the design manually.

Extracting the ICL Module Description
After inserting the EDT or LBIST, and OCC hardware, verify the connectivity of the ICL
modules that were inserted with the process_dft_specification command. This is a preparatory
step for ICL pattern generation.

Tessent Shell Workflows
Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC

Tessent™ Shell User’s Manual, v2021.3 131

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-10. Flow for Extracting ICL

Procedure

1. Specify the extract_icl command to find all modules (both Tessent instruments and non-
Tessent instruments) and their associated ICL descriptions, and to run DRC to verify
their connectivity.

The top-level ICL description corresponds to the design name you specified with the
set_current_design command during the first insertion pass (which is also the same
design name you specified when you elaborated the design at the beginning of the
second insertion pass).

2. Specify the analyze_drc_violation command to debug the DRC violations.

Tessent generates I-rule errors when it detects ICL extraction errors and opens Tessent
Visualizer to a schematic view of the error. For more information about the DRC I-rule
errors, refer to “ICL Extraction Rules (I Rules)” in the Tessent Shell Reference Manual.
For details about using Tessent Visualizer, refer to “Tessent Visualizer” on page 625.

The extract_icl command also creates a Synopsys Design Compiler file that you can use
for synthesis. Refer to “Timing Constraints (SDC)” for more information.

Generating ICL Patterns and Running Simulation
Generate and process the ICL verification patterns for EDT or LBIST, and OCC, then verify the
test bench simulations.

The following figure shows the tasks required to complete the second insertion pass and move
on to synthesis.

Tessent™ Shell User’s Manual, v2021.3132

Tessent Shell Workflows
Performing Synthesis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-11. Flow for Generating and Simulating ICL Patterns

Procedure

1. Generate the test patterns for the design:

create_patterns_specification

2. Validate and process the content of the test patterns:

process_patterns_specification

3. Run and check test bench simulations. For example:

Run and check testbench simulations
set_simulation_library_sources -v ../library/verilog/adk.v \

-v ../library/pad_cells.v -v ../library/memory/ram.v

run_testbench_simulations
check_testbench_simulations -report_status

Performing Synthesis
Synthesize the original RTL and the DFT-inserted RTL for MemoryBIST, boundary scan, EDT
or LBIST, and OCC. For RTL designs, perform synthesis once after performing the first and
second DFT insertion passes.

Prerequisites

• For information regarding synthesis with third-party tools and Tessent DFT
methodologies, refer to “Synthesis Guidelines for RTL Designs with Tessent Inserted
DFT” on page 779.

• Tessent Shell supports synthesis using Synopsys Design Compiler. Refer to “Timing
Constraints (SDC)” for more information.

Tessent Shell Workflows
Performing Scan Chain Insertion (Flat Design)

Tessent™ Shell User’s Manual, v2021.3 133

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

Specify the write_design_import_script command to create a dc_shell design load script that
you can use to load the RTL design as it exists after the two DFT insertion passes. For example:

write_design_import_script for_synthesis.tcl -replace

Note
If you are not using Synopsys Design Compiler as your third-party synthesis tool,
you can still use the command to create a dc_shell script and adjust it to match your

synthesis tool’s command set.

You can generate the synthesis script only without running
synthesis using the following command
run_synthesis -startup_file ./.synopsys_dc.setup
To generate a script for third-party synthesis
run_synthesis -generate_script_only

Performing Scan Chain Insertion (Flat Design)
During scan chain insertion, Tessent inserts and stitches scan chains on the gate-level netlist that
was synthesized after DFT insertion. After you run scan chain insertion, proceed to ATPG
pattern generation.

During scan insertion using Tessent Scan, the non-scan instances such as EDT are automatically
understood. In addition, the built-in OCC sub-chains are understood and stitched into scan
chains. Tessent uses DFT signals such as the scan enable that you specified in the previous
insertion passes, therefore you do not need to specify the DFT signals again.

For information about scan chain insertion using Tessent Shell, refer to the “Internal Scan and
Test Circuitry Insertion” in the Tessent Scan and ATPG User’s Manual.

Procedure

1. Specify the following command to set the DFT context:

set_context dft –scan -design_id gate

When setting the context, ensure that you specify the design ID with a unique name. The
recommended name is gate for a flat design. For a gate-level netlist the recommended
name is gate3.

2. Load the synthesized netlist. For example:

 ../Synthesis/cpu_top_synthesized.vg

This netlist contains the gates for the original RTL design and the DFT-inserted
hardware.

Tessent™ Shell User’s Manual, v2021.3134

Tessent Shell Workflows
Performing Scan Chain Insertion (Flat Design)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Specify the same output directory you used in the first and second DFT passes:

 ../tsdb_rtl

4. Load the rtl2 design data for the DFT hardware that you inserted. For example:

 cpu_top -design_id rtl2 -no_hdl

The -no_hdl switch specifies to read in all of the DFT data files—such as ICL, PDL, and
TCD—except for the design files. (You are using the synthesized design from this point
forward.)

After design elaboration and design rule checking, Tessent Shell transitions from Setup
mode to Analysis mode.

5. Specify the add_scan_mode edt_mode command to connect the scan chains to the EDT
signals and EDT hardware that you inserted during the second insertion pass.

The use of preregistered DFT signal edt_mode as the scan mode using the
add_scan_mode command infers the -enable_dft_signal also as the edt_mode DFT
signal.

Results

The scan stitched and inserted netlist is located in the TSDB under the design ID “gate” for RTL
designs or “gate3” for gate-level netlists. Refer to “Considerations for Using Gate-Level
Verilog Netlists” for details.

Examples

The following dofile shows a command flow for scan insertion and stitching:

set_context dft –scan -design_id gate
read_cell_library ../library/tessent/adk.tcelllib
read_verilog ../Synthesis/cpu_top_synthesized.vg
set_tsdb_output_directory ../tsdb_rtl
read_design cpu_top -design_id rtl2 -no_hdl
set_current_design cpu_top

check_design_rules

set edt_instance [get_name_list [get_instance -of_module \
 [get_name [get_icl_module -filter \
 tessent_instrument_type==mentor::edt]]]]
add_scan_mode edt_mode -edt_instance $edt_instance
analyze_scan_chains
report_scan_chains
insert_test_logic
exit

Related Topics

read_verilog

set_tsdb_output_directory

Tessent Shell Workflows
Performing ATPG Pattern Generation

Tessent™ Shell User’s Manual, v2021.3 135

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_design

Performing ATPG Pattern Generation
After inserting scan chains, proceed to ATPG pattern generation. You can create patterns for
various fault model types, including stuck-at, transition, path delay, and IDDQ.

Procedure

1. Do one of the following:

• If you used Tessent Scan to insert the scan chains, run the “import_scan_mode
edt_mode” command for ATPG pattern generation.

• If you did not use Tessent Scan for scan insertion, use the TCD IP mapping flow as
described in “Running ATPG Patterns without Tessent Scan” in the Tessent Scan
and ATPG User’s Manual.

When you run the import_scan_mode command, Tessent Shell passes through the scan-
insert design data for the EDT or LBIST, and OCC logic. This data includes the scan
structures (scan chains and scan channels) that are stored in the TSDB under the “gate”
design ID. The gate design ID was created during scan insertion when you specified the
insert_test_logic command.

In addition, Tessent automatically creates and simulates the test_setup procedure cycles
that are required to initialize the EDT or LBIST, and OCC static signals. You only need
to specify non-default parameter values, if, for example, you run EDT with bypass on or
set int_ltest_en to 1 to use the boundary scan as the source of the core values and isolate
the ATPG test from the top-level IOs.

You can create ATPG patterns for any mode that you need, such as stuck-at and
transition. These patterns are stored in the TSDB database under the logic_test_cores
directory. The import_scan_mode command uses the same scan configuration—that is,
the DFT signals—that were used for the add_scan_mode command during scan
insertion.

2. Specify the set_current_mode command to indicate the type of pattern you are
generating (see “Stuck-at ATPG patterns” on page 136 and “Transition at-speed ATPG
patterns” on page 136).

In addition, the name you give to the generated ATPG pattern sets must differ from the
mode name you specify for import_scan_mode (that is, “edt_mode”).

3. Specify the write_patterns command to write out the Verilog test benches and STIL
patterns.

4. Specify the write_tsdb_data command to save the flat model, fault list, PatDB, and TCD
files into the TSDB.

Tessent™ Shell User’s Manual, v2021.3136

Tessent Shell Workflows
Performing ATPG Pattern Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For details about ATPG pattern generation, refer to “Running ATPG Patterns” in the
Tessent Scan and ATPG User’s Manual.

Examples

Stuck-at ATPG patterns

The following example generates stuck-at ATPG patterns as indicated by the set_current_mode
edt_stuck command. It shows that you have a choice between using the boundary scan chains
for capture during ATPG or using the primary pins of the chips (using the pads).

set_context patterns -scan
read_cell_library ../library/tessent/adk.tcelllib
read_cell_library ../library/memory/memory.lib
open_tsdb ../tsdb_rtl
read_design cpu_top -design_id gate
set_current_design cpu_top
set_current_mode edt_stuck
import_scan_mode edt_mode

To apply the patterns through the boundary scan chains and not through
the pads use:
set_static_dft_signal_values int_ltest_en 1
set_static_dft_signal_value output_pad_disable 1
To allow the shift_capture_clock during capture phase on Scan Tested
Instruments:
set_system_mode analysis
create_patterns
write_tsdb_data –replace
write_patterns patterns/cpu_top_stuck_parallel.v -verilog -parallel \

-replace -scan -parameter_list {SIM_KEEP_PATH 1}
write_patterns patterns/cpu_top_stuck_serial.v -verilog -serial -replace \

-parameter_list {SIM_KEEP_PATH 1}
exit

Transition at-speed ATPG patterns

The following example generates transition at-speed patterns. The import_scan_mode
command uses the –fast_capture_mode switch to indicate that the OCC supplies the fast clock
during capture. The set_current_mode command indicates edt_transition, and the set_fault_type
command indicates transition faults.

Tessent Shell Workflows
Simulating LBIST Faults

Tessent™ Shell User’s Manual, v2021.3 137

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context patterns -scan
read_cell_library ../library/tessent/adk.tcelllib
read_cell_library ../library/memory/memory.lib
open_tsdb ../tsdb_rtl
read_design cpu_top -design_id gate
set_current_design cpu_top
set_current_mode edt_transition
import_scan_mode edt_mode -fast_capture_mode on -verbose

set_static_dft_signal_values int_ltest_en 1
set_static_dft_signal_value output_pad_disable 1
set_system_mode analysis
set_fault_type transition
set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]
create_patterns
write_tsdb_data –replace
write_patterns patterns/cpu_top_transition_parallel.v -verilog \
 -parallel -replace -scan -parameter_list {SIM_KEEP_PATH 1}
write_patterns patterns/cpu_top_transition_serial.v -verilog -serial \

-replace -parameter_list {SIM_KEEP_PATH 1}
exit

Simulating LBIST Faults
If your design contains logic BIST, you must run LBIST fault simulation after scan insertion.

Prerequisites

• Scan insertion has been completed.

Procedure

1. Set the context:

set_context pattern -scan -design_id rtl2

2. Load the cell and memory libraries:

set_tsdb_output_directory tsdb_outdir
read_cell_library ../prereq/techlib_adk.tnt/tessent/adk.tcelllib
read_cell_library design/mem/mems.atpglib

3. Load the scan-inserted gate-level design:

read_design top -design_id rtl2

4. Elaborate the design:

set_current_design top

Tessent™ Shell User’s Manual, v2021.3138

Tessent Shell Workflows
Simulating LBIST Faults

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Import the scan insertion data:

import_scan_mode int_mode

6. Define the LBIST core instance:

add_core_instances -module top_dft2_tessent_lbist

7. Define DFT signals that differ from their default values:

set_static_dft_signal_values tck_occ_en 1
set_static_dft_signal_values int_ltest_en 1
set_static_dft_signal_values ltest_en 1
set_static_dft_signal_values control_test_point_en 1
set_static_dft_signal_values observe_test_point_en 1

set_core_instance_parameters -instrument_type occ -parameter_values
{static_clock_control external}

8. Point to the dofile containing the proc definitions:

dofile tsdb_outdir/instruments/
top_dft2_lbist_ncp_index_decoder.instrument/
top_dft2_tessent_lbist_ncp_index_decoder.dofile

set_static_dft_signal_values x_bounding_en 1

9. Add required pin constraints and output masks:

add_input_constraints [get_ports {[ABC].*} -regexp] -CX
add_output_masks [get_ports Y*]

report_static_dft_signal_settings

10. Run rule checks:

set_system_mode analysis
report_scan_cells> scan_cells_fsim.rpt
report_clocks
report_pin_constraints

Tessent Shell Workflows
Considerations for Using Gate-Level Verilog Netlists

Tessent™ Shell User’s Manual, v2021.3 139

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

11. Read the test proc file containing NCP definitions:

read_procfile tsdb_outdir/instruments/
top_dft2_lbist_ncp_index_decoder.instrument/
top_dft2_tessent_lbist_ncp_index_decoder.testproc

12. Run pattern fault simulation:

add_faults -all
set_random_patterns 4096
simulate_patterns -source bist -store all

13. Report the test coverage and other test data:

report_statistics

14. Write the patterns using the write_patterns or write_tsdb_data command:

#write_patterns elt1_lbist_patt_parallel_ncp.v -verilog -parallel -
replace -mode_internal -begin 0 -end 260
write_tsdb_data -rep

report_lbist_configuration -hardware_default_compatibility

exit

Considerations for Using Gate-Level Verilog
Netlists

In some cases, you may only have a gate-level Verilog netlist, not the RTL. You can use
Tessent Shell to perform the DFT insertion flow when you have a gate-level netlist. The flow is
similar to the RTL and scan DFT insertion flow. The main difference is that you must perform
synthesis after each DFT insertion pass.

Figure 5-12 shows the gate-level DFT insertion sequence in which you insert MemoryBIST and
boundary scan in the first insertion pass and then immediately run synthesis on these
instruments before inserting the logic test instruments for the second DFT insertion pass (EDT,
LBIST, OCC, and so on). After inserting the logic test instruments, run synthesis a second time
before proceeding to scan chain insertion.

Tessent™ Shell User’s Manual, v2021.3140

Tessent Shell Workflows
Considerations for Using Gate-Level Verilog Netlists

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-12. Two-Pass Insertion Flow for RTL, Gate-Level Designs

The following differences apply when using a gate-level Verilog netlist rather than RTL. Other
than these differences, plus performing synthesis after each DFT insertion pass, you can follow
the flow as described starting with “First DFT Insertion Pass: Performing MemoryBIST and
Boundary Scan.”

• Prerequisites — You must have the Tessent cell library or the ATPG library for the
standard cells, in addition to the Tessent cell library for the I/O pad cells.

• Design Loading — During the first and second DFT insertion passes, ensure the
following:

o Specify the set_context command with the -no_rtl option rather than the -rtl option.

o When setting the context, use the recommended naming conventions for the design
IDs, which are “gate1” for the boundary scan/MemoryBIST insertion pass and
“gate2” for the EDT/OCC insertion pass. If you are following this convention, you
would then use design ID “gate3” for scan insertion.

o Use the read_cell_library command to read in the library files for both the standard
cells and pad I/O macros that are instantiated in the design.

Tessent Shell Workflows
Tessent Shell Flow for Hierarchical Designs

Tessent™ Shell User’s Manual, v2021.3 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Flow for Hierarchical Designs
Tessent Shell uses the same “divide and conquer” methodology for hierarchical DFT by
enabling you to perform RTL and scan DFT insertion at the sub-physical block level rather than
only at the chip level. Implementing DFT hierarchically in a bottom-up process, starting with
the lowest level blocks, helps divide the task and make it manageable.

Hierarchical design methodologies provide efficiencies for large designs. Rather than design at
the chip level, chip designers break designs down into RTL blocks that enable design teams to
work on different functional blocks in parallel. This method streamlines the process and enables
RTL modifications, engineering change orders (ECOs), and other changes to be localized to
particular blocks.

Tip
Before performing DFT on a hierarchical design, familiarize yourself with “DFT
Architecture Guidelines for Hierarchical Designs” on page 95.

This section builds on what you learned in “Tessent Shell Flow for Flat Designs” to describe the
pre-layout RTL and scan DFT insertion process for hierarchical designs.

Refer to the following test case for a detailed usage example of the flow described in this
section:

tessent_example_hierarchical_flow_<software_version>.tgz

You can access this test case by navigating to the following directory:

<software_release_tree>/share/UsageExamples/

Hierarchical DFT Terminology . 142

How the DFT Insertion Flow Applies to Hierarchical Designs . 144

RTL and Scan DFT Insertion Flow for Physical Blocks . 146

RTL and Scan DFT Insertion Flow for the Top Chip . 165

RTL and Scan DFT Insertion Flow for Sub-Blocks . 180

RTL and Scan DFT Insertion Flow for Instrument Blocks. 184

RTL and DFT Insertion Flow With Third-Party Scan . 189

Tessent™ Shell User’s Manual, v2021.3142

Tessent Shell Workflows
Hierarchical DFT Terminology

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hierarchical DFT Terminology
Tessent Shell uses a particular set of terms related to working with blocks in a hierarchical
design. You must understand these terms to perform the RTL and scan DFT insertion process
on hierarchical designs.

Refer to “set_design_level” in the Tessent Shell Reference Manual for more information.

• Physical Block — Physical blocks are logical entities that remain intact through
tapeout. They are synthesis and layout regions. Below the top level of a chip, these are
blocks that you can reuse, or instantiate, within a chip or across multiple chips. You
perform synthesis on these blocks independent of the rest of the chip design.

When performing DFT insertion on physical blocks, Tessent preserves the ports at the
root of the physical block. Instances of the physical block that exist below the current
physical block may not be preserved in the final layout when ungrouping is used.

In Tessent Shell, the hierarchical DFT insertion flow distinguishes between three types
of physical blocks: wrapped cores, unwrapped cores, and chip.

o Wrapped core. Wrapped cores contain wrapper cells that are used to isolate the
internal logic of the core. Wrapper cells are inserted when you perform scan chain
insertion. Wrapped cores are required to make the cores reusable through ATPG
pattern retargeting. Wrapped cores can contain sub-blocks. (See the following
description.)

o Unwrapped core. Unwrapped cores do not contain wrapper cells but can contain
sub-blocks.

For additional information, refer to “Unwrapped Cores Versus Wrapped Cores” in
the Tessent Scan and ATPG User’s Manual.

o Chip. The chip is the top-level physical block—that is, the entire design—in which
you typically find the pad I/O macros and clock controllers. A chip may include
another physical block or sub-block. Physical blocks can be wrapped cores or
unwrapped cores. Unlike the other types of physical blocks, chips are layout regions.

• Sub-Block — Sub-blocks are designs that exist within parent blocks and are
synthesized with their parent blocks, which could be wrapped cores, unwrapped cores,
or the top level of the chip. Sub-blocks merge into their parent physical blocks during
synthesis of the parent block. Refer to set_design_level for details.

Sub-blocks are not layout physical regions. After layout is performed on the post-layout
netlist, the sub-block module boundary may or may not be preserved. Sometimes the
same sub-block is instantiated at both the physical block level and the chip level, as
shown in the following figure.

Tessent Shell Workflows
Hierarchical DFT Terminology

Tessent™ Shell User’s Manual, v2021.3 143

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-13. Hierarchical Design Levels

You can insert DFT hardware such as MemoryBIST, EDT, and OCC into sub-blocks,
but you perform synthesis and scan insertion at the sub-block’s parent physical block
level (where the sub-block is instantiated). To learn about how to use sub-blocks within
the Tessent Shell flow, refer to “RTL and Scan DFT Insertion Flow for Sub-Blocks.”

• Instrument Block — The design is a special empty module into which the DFT
elements are inserted. The special module is then manually instantiated into its parent
block and its pins are manually connected inside the parent block.

The synthesis, scan chain insertion, and pattern generation steps are done the usual way,
as described in “Instrument Block DFT Insertion Flow for the Next Parent Level” on
page 187.

• ATPG (or scan) pattern retargeting — The process by which Tessent Shell preserves
the ATPG patterns associated with wrapped cores for purposes of reuse when testing the
logic at the parent instantiation level. This means you do not have to regenerate the
patterns when you process the top level of the chip. Instead, you retarget the wrapped
core ATPG patterns to the top level. Every instantiation of a wrapped core includes its
associated ATPG patterns.

For details, refer to “Scan Pattern Retargeting” in the Tessent Scan and ATPG User’s
Manual.

For purposes of ATPG pattern retargeting and graybox modeling (see the following
description), Tessent Shell differentiates between a wrapped core’s internal circuitry and
its external circuitry.

o Internal mode. Internal mode is the view into the wrapped core from the wrapper
cells. That is, the logic completely internal to the core. Tessent Shell retargets

Tessent™ Shell User’s Manual, v2021.3144

Tessent Shell Workflows
How the DFT Insertion Flow Applies to Hierarchical Designs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

internal mode ATPG patterns during ATPG pattern generation for the chip-level
design.

o External mode. External mode indicates the view out of the wrapped core from the
wrapper cells. That is, the logic that connects the wrapped core to external logic.
Tessent Shell uses the external mode to build graybox models, which are used by the
internal modes of their parent physical blocks.

• Graybox — Graybox models are wrapped core models that preserve only the core’s
external mode logic along with the portion of the IJTAG network needed for test setup
of the logic test modes. The purpose of graybox models in the bottom-up hierarchical
DFT process is to retain the minimum logic required to generate ATPG patterns for the
internal modes of the parent physical blocks. For details, refer to “Graybox Overview”
in the Tessent Scan and ATPG User’s Manual and “Graybox Model” on page 100.

How the DFT Insertion Flow Applies to Hierarchical
Designs

Performing RTL and scan DFT insertion on hierarchical designs assumes basic knowledge of
the RTL and scan insertion flow for flat designs. The process for hierarchical designs builds on
the process you would use for a flat design.

You perform a two-pass pre-scan insertion process for flat designs. For hierarchical designs, the
same flow applies except that you perform the insertion process in a bottom-up manner for each
core and sub-block in the design. After you have inserted DFT into all the lower-level physical
blocks, you perform the same insertion into the parent blocks until you have reached the top
level of the chip.

The following considerations apply when performing DFT insertion on a hierarchical design as
opposed to a flat design:

• When performing hierarchical DFT, you must specify the hierarchical design level at
which you are performing the DFT insertion process. For flat designs, the
set_design_level command is always set to chip. For hierarchical designs, you can also
specify physical_block or sub_block.

• Inserting boundary scan during the first DFT insertion pass typically applies to the chip
design level. For hierarchical designs, this means that for cores and sub-blocks you
insert only MemoryBIST during the first DFT insertion pass unless you have cores with
embedded pad I/O macros. If you have cores with embedded pad I/O macros, then you
need to insert boundary scan into the pad IOs using the embedded boundary scan flow as
described in the Tessent Boundary Scan User’s Manual.

• Within the hierarchical flow, each physical block and sub-block has a unique design
name and should have its own TSDB.

Tessent Shell Workflows
How the DFT Insertion Flow Applies to Hierarchical Designs

Tessent™ Shell User’s Manual, v2021.3 145

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tip
To facilitate data management, save each design (whether core, sub-block, or chip)
in its own TSDB directory. This is the recommended practice when using Tessent

Shell for DFT insertion. Using different directories ensures that you can run all sibling
physical and sub-blocks in parallel without causing read-write errors into the TSDB
directories between the parallel runs. Only when all the child physical and sub-blocks of
a given block are completed can you then implement the DFT into the given block.
Refer to “TSDB Data Flow for the Tessent Shell Flow” for more information.

• You can perform ATPG pattern retargeting of core-level patterns when you process the
parent physical block of the wrapper cores, as shown in section “Top-Level ATPG
Pattern Generation Example.”

Tessent™ Shell User’s Manual, v2021.3146

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL and Scan DFT Insertion Flow for Physical
Blocks

For each wrapped core, perform a two-pass pre-scan DFT insertion process as you would for a
flat design except that in the first DFT insertion pass, do not insert boundary scan unless you
have embedded pad IO macros present inside the core. The flow details for working with
wrapped cores differ from those when working with flat designs.

Refer to “Tessent Shell Flow for Flat Designs” for overall flow details.

Note
This discussion assumes that your design consists of wrapped cores as your lower level
physical blocks, and that the wrapped cores do not contain embedded pad IOs, so boundary

scan is not required.

Figure 5-14. Two-Pass Insertion Flow, Physical Blocks

First DFT Insertion Pass: Performing Block-Level MemoryBIST. 147

Second DFT Insertion Pass: Inserting Block-Level EDT and OCC 149

Specifying and Verifying the DFT Requirements: DFT Signals for Wrapped Cores. . 152

Performing Scan Chain Insertion: Wrapped Core . 154

Verifying the ICL Model . 157

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 147

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing ATPG Pattern Generation: Wrapped Core . 158

Running Recommended Validation Step for Pre-Layout Design Sign Off 163

First DFT Insertion Pass: Performing Block-Level
MemoryBIST

Because you are not inserting boundary scan at the same time as MemoryBIST (as in the flat
flow), you can follow the DFT insertion process for Tessent MemoryBIST.

Refer to “Getting Started” in the Tessent MemoryBIST User’s Manual.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-2
on page 148.

Procedure

1. Load the RTL design data. (See lines 1-22.) The following steps are important for the
first DFT insertion pass for wrapped cores:

a. Set the set_context -design_id switch to “rtl1.”

All the data associated with MemoryBIST insertion for the wrapped core is stored
under the ID “rtl1” in the wrapped core’s TSDB.

Note
“rtl1” is the recommended naming convention for the design ID for the first
insertion pass, but you can specify any name. Refer to “Loading the Design” for

more information about setting the design ID.

b. Specify the read_verilog command with a list of the RTL filenames and locations for
Tessent to read and compile for the design. For example:

../rtl/omsp_timerA_defines.v

../rtl/omsp_timerA_undefines.v

../rtl/omsp_timerA.v

../rtl/omsp_wakeup_cell.v

../rtl/omsp_watchdog.v

../rtl/openMSP430_defines.v

../rtl/openMSP430_undefines.v

../rtl/openMSP430.v

../rtl/processor_core.v

c. Set the design level to “physical_block” so that the layout of this core is maintained
as an independent logical entity through tapeout.

2. Create the DFT specification. (See lines 24-30.)

3. Generate the MemoryBIST hardware and extract the ICL. (See lines 32-36.)

Tessent™ Shell User’s Manual, v2021.3148

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4. Create the input test patterns and simulation test benches. (See lines 38-41.)

5. Run simulations to verify the design. (See lines 43-47.)

Examples

The following dofile example shows a typical command flow as detailed in the procedure listed
in the preceding.

Example 5-2. Dofile Example for MemoryBIST in Physical Blocks

1 # Set context to dft and indicate DFT insertion into an rtl-level design
2
3 set_context dft -rtl -design_id rtl1
4
5 # Set the TSDB directory location to be used
6
7 set_tsdb_output_directory ../tsdb_core
8
9 # Read in the memory library model
10 set_design_sources -format tcd_memory -y ../../../library/memory \
11 -extension tcd_memory
12
13 # Read in memory Verilog model
14 set_design_sources -format verilog -v {../../../library/memory/*.v }
15
16 # Read in the design
17 read_verilog -f rtl_file_list
18
19 set_current_design processor_core
20
21 # Set the design level as a physical_block
22 set_design_level physical_block
23
24 # Specify to insert memory test
25 set_dft_specification_requirements -memory_test on
26 add_clocks 0 dco_clk -period 3
27 check_design_rules
28 report_memory_instances
29 set spec [create_dft_specification]
30 report_config_data $spec
31
32 # Generate the memoryBIST hardware
33 process_dft_specification
34
35 # Create ICL for this design
36 extract_icl
37
38 # Generate testbenches
39 create_patterns_specification
40 process_patterns_specification
41 set_simulation_library_sources -v ../../../library/verilog/adk.v
42
43 # Run simulations
44 run_testbench_simulations
45
46 # If simulation fails use the following command

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 149

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

47 //check_testbench_simulations
48 exit

Second DFT Insertion Pass: Inserting Block-Level EDT
and OCC

In the second DFT insertion pass for wrapped cores, insert the EDT and OCC hardware. Unlike
flat designs, which use standard OCCs, for wrapped cores you have a choice between inserting
OCCs of type child or type standard.

Refer to “On-Chip Clock Controller Design Description” in the Tessent Scan and ATPG User’s
Manual for details.

If your physical design implementation does not support using a clock MUX in the clock path,
then you can use an OCC of type child. With the child type OCC, only clock chopping and
clock gating functions occur inside the wrapped core, and these functions are sufficient for
ATPG pattern retargeting (later in the flow) as long as at the chip-level you have included a
parent OCC or other hardware that can perform clock selection.

Clock selection is used to select between shift and capture clocks when generating ATPG
patterns for the internal mode of the core. Typically, scan chain shifting occurs at a significantly
slower speed than the capture clock, hence the need for the clock.

Most of the steps for the second DFT insertion pass for wrapped cores are the same as those you
would perform for a flat design. Refer to the applicable sections.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-3.

Procedure

1. Load the design (lines 1-10). See “Loading the Design” on page 121.

2. Specify and verify the DFT requirements (lines 12-32). See “Specifying and Verifying
the DFT Requirements” on page 123

Note
Wrapped cores have their own DFT requirements for the clock signals.

3. Create the DFT specification (lines 34-38). See “Creating the DFT Specification” on
page 126.

4. Generate the EDT and OCC hardware (lines 40-78). See “Generating the EDT, Hybrid
TK/LBIST, and OCC Hardware” on page 130.

5. Extract the ICL module description (lines 80-84). See “Extracting the ICL Module
Description” on page 130.

Tessent™ Shell User’s Manual, v2021.3150

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Generate ICL patterns and run the simulation (lines 86-95). See “Generating ICL
Patterns and Running Simulation” on page 131.

Examples

The following dofile example shows that you set the design ID to “rtl2” for the second DFT
insertion pass, set the internal mode and external mode for the wrapped core, and have chosen to
specify an OCC of type child.

Example 5-3. Dofile for Second DFT Pass

1 # Set context to dft and specify design_id as rtl2
2 set_context dft -rtl -design_id rtl2
3
4 # Specify where the tsdb_outdir is to be located, default is at the
5 # current working directory
6 set_tsdb_output_directory ../tsdb_core
7
8 # Use read_design with the design ID from the first DFT insertion pass
9 read_design processor_core -design_id rtl1
10 set_current_design processor_core
11
12 # No need to reset the design level, which remains "physical_block" from
13 # the first pass
14 # Add DFT signals for the wrapped core
15
16 # The following commands required for logic test
17 add_dft_signals ltest_en -create_with_tdr
18 add_dft_signals scan_en edt_update test_clock -source_node \
19 { scan_enable edt_update test_clock_u }
20 add_dft_signals edt_clock shift_capture_clock -create_from_other_signals
21
22 # Required for memories to be tested with multi-load ATPG patterns
23 add_dft_signals memory_bypass_en -create_with_tdr
24
25 # Required for STI network to be tested during logic test
26 add_dft_signals tck_occ_en -create_with_tdr
27
28 # Required for hierarchical DFT and used during scan insertion
29 # Specifying both the internal mode and the external mode
30 add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode
31
32 report_dft_signals
33
34 # Run pre-DFT DRC
35 set_dft_specification_requirements -logic_test on
36
37 check_design_rules
38 set spec [create_dft_specification -sri_sib_list {edt occ}]
39
40 # Use report_config_syntax DftSpecification/edt|occ to see full syntax
41 report_config_data $spec
42 read_config_data -in $spec -from_string {
43 OCC {

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 151

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

44 ijtag_host_interface : Sib(occ);
45 }
46 }
47 # The following is a generic way to populate the OCC
48 # The clock list is design specific and needs to be updated for the design
49 # To the OCC - scan_enable and shift_capture_clock gets connected
50 # automatically
51 # Modify the following to your design requirements
52 set id_clk_list [list \
53 dco_clk dco_clk\
54]
55
56 foreach {id clk} $id_clk_list {
57 set occ [add_config_element OCC/Controller($id) -in $spec]
58 set_config_value clock_intercept_node -in $occ $clk
59 }
60 report_config_data $spec
61
62 ## To EDT controller, the edt_clock and edt_update get auto connected
63 ## The EDT controller is built-in with bypass

Modify the following to your design requirements

1 read_config_data -in $spec -from_string {
2 EDT {
3 ijtag_host_interface : Sib(edt);
4 Controller (c1) {
5 longest_chain_range : 200, 300;
6 scan_chain_count : 60;
7 input_channel_count : 3;
8 output_channel_count : 2;
9 }
10 }
11 }
12 report_config_data $spec
13 //display_spec
14 # Generate the hardware
15 process_dft_specification
16
17 # Extract the IJTAG network and create ICL file for core level

Comment:

18 extract_icl
19
20 # Write updated RTL into this new file to elaborate and synthesize later
21 write_design_import_script for_dc_synthesis.tcl -replace
22
23 # Generate testbench
24 create_patterns_specification
25 process_patterns_specification
26
27 set_simulation_library_sources -v ../../../library/verilog/adk.v
28
29 # Run Verilog simulation
30 run_testbench_simulations
31 # If simulation fails, use the command below to see which pattern failed
32 //check_testbench_simulations

Tessent™ Shell User’s Manual, v2021.3152

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

33
34 exit

Specifying and Verifying the DFT Requirements: DFT
Signals for Wrapped Cores

After loading the design data from the TSDB, define the DFT requirements for the EDT and
OCC hardware. This includes adding DFT signals and performing DRC.

Figure 5-15. Flow for Specifying and Verifying the DFT Requirements for
Wrapped Cores

Procedure

1. Specify the following command to set DFT requirements:

set_dft_specification_requirements -logic_test on

Note
The design level as specified by set_design_level remains “physical_block” from the
first DFT insertion pass, so you do not need to specify this command again.

2. Use the following procedure to define the DFT signals for wrapped cores in the second
DFT insertion pass:

a. Specify a global DFT signal to enter logic test mode. For example:

add_dft_signals ltest_en -create_with_tdr

b. Define the DFT signals. For example:

add_dft_signals scan_en edt_update test_clock -source_node \
{ scan_enable edt_update test_clock_u }

add_dft_signals edt_clock shift_capture_clock \
-create_from_other_signals

If these ports do not exist, the tool creates new ports.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 153

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

c. Specify the following command to test with multi-load ATPG patterns in
MemoryBIST:

add_dft_signals memory_bypass_en -create_with_tdr

d. Specify the following command to test an STI network during logic test.

add_dft_signals tck_occ_en -create_with_tdr

e. Specify both the internal mode and the external mode for hierarchical DFT. This is
required for scan insertion.

add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode

This command specifies that wrapped cores have both internal modes and external
modes, and that you must specify both. Differentiating between internal mode and
external mode enables Tessent to stitch the scan chains into internal chains and
external chains as described in “Performing Scan Chain Insertion: Wrapped Core.”

The internal and external modes are also required for proper ATPG pattern
retargeting and graybox modeling later in the insertion flow. Refer to “Hierarchical
DFT Terminology” for more information.

3. After defining the DFT signals, run DRC as in the flat design flow.

If the design includes clock gating that is implemented in RTL and not with an
integrated clock gating cell, you must specify their func_en and test_en ports using the
add_dft_clock_enables command. Tessent checks for proper clock and asynchronous set
and reset controllability.

Results

Tessent Shell generates DFT_C errors for DRCs that are run. For details, refer to “Pre-DFT
Clock Rules (DFT_C Rules)” in the Tessent Shell Reference Manual.

Tessent™ Shell User’s Manual, v2021.3154

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

To define the DFT signals, the following example shows the required DFT signals for wrapped
cores in the second DFT insertion pass:

Required global DFT signal to enter logic test mode
add_dft_signals ltest_en -create_with_tdr

If these ports do not exist, the tool creates new ports
add_dft_signals scan_en edt_update test_clock -source_node \
{ scan_enable edt_update test_clock_u }
add_dft_signals edt_clock shift_capture_clock -create_from_other_signals

Required for MemoryBIST to be tested with multi-load ATPG patterns
add_dft_signals memory_bypass_en -create_with_tdr

Required for STI network to be tested during logic test
add_dft_signals tck_occ_en -create_with_tdr

Required for hierarchical DFT and used during scan insertion
Specifying both the internal mode and the external mode
add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode

Performing Scan Chain Insertion: Wrapped Core
Scan chain insertion for wrapped cores includes a task for performing wrapper analysis, which
prepares the functional scannable sequential elements (or “flops”) for reuse as wrapper cells.
Specifically, these cells are called shared wrapper cells. Using shared wrapper cells reduces the
number of flops required for isolating the internal test modes from the primary input ports of the
wrapper core. It also reduces the number of flops required for isolating the external test modes
from the internal logic. Tessent automatically generates shared wrapper cells.

The analyze_wrapper_cells command performs wrapper analysis. In addition to preparing the
shared wrapper cells, the command infers dedicated wrapper cells for ports having a large
fanout or fanin. You can configure the size of the fanin and fanout using the
set_wrapper_analysis_options -input_fanout_flop_threshold and -output_fanin_flop_threshold
options. By default, Tessent infers dedicated wrapper cells on input ports fanning out to 32 or
more scannable flip-flops, and on output ports in the fanout of 32 or more scannable flip-flops.

Both shared wrapper cells and dedicated wrapper cells can coexist in the same wrapper chains,
which helps Tessent maintain wrapper chains of similar length. Scan insertion uses the DFT
signals int_ltest_en and ext_ltest_en along with the scan enable signal to control the wrapper
cell.

For information about scan chain insertion using Tessent Shell, refer to the “Internal Scan and
Test Circuitry Insertion” in the Tessent Scan and ATPG User’s Manual.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 155

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-4
on page 156.

Prerequisites

• Prior to scan chain insertion, perform synthesis as described in section “Performing
Synthesis.”

Procedure

1. Specify the following command to set the DFT context:

set_context dft -scan -design_id gate

2. Load the synthesized netlist. For example:

read_verilog ../3.synthesis/processor_core_synthesized.vg

3. Specify the same output directory you used in the first and second DFT passes:

set_tsdb_output_directory ../tsdb_core

4. Load the rtl2 design data for the DFT hardware you previously inserted. For example:

read_design processor_core -design_id rtl2 -no_hdl

5. Run design rule checking (DRC) using the following command:

check_design_rules

6. Set up the wrapper cells as follows (see lines 25-35):

a. Specify the options for analyzing the wrapper cells.

b. Add dedicated wrappers, as necessary.

c. Analyze the wrapper cells with the analyze_wrapper_cells command.

d. Ensure that you exclude the EDT channel IO ports from wrapper analysis.

For details, refer to “Scan Insertion for Wrapped Core” in the Tessent Scan and ATPG
User’s Manual.

7. Specify the add_scan_mode command to connect the scan chains to the EDT signals and
EDT hardware that you inserted during the second insertion pass.

Scan insertion for wrapper cells requires using multi-mode scan insertion as described in
the Tessent Scan and ATPG User’s Manual. Do the following (see lines 41-46):

a. Create one scan mode for the entire population of scan cells.

Tessent™ Shell User’s Manual, v2021.3156

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The entire population of scan cells are stitched into the first scan mode using the
int_mode command to generate a scan mode consisting of all the scan cells stitched
together.

b. Create a second scan mode only for the shared and dedicated wrapper cells.

In the second DFT insertion pass, you had generated a DFT signal named
“int_mode” with the add_dft_signal command. This signal enables this scan mode.
You do not need to specify the add_scan_mode -enable_dft_signal switch when the
mode name matches the name of a DFT signal of type scan mode.

The add_scan_mode ext_mode command stitches the shared and dedicated wrapper
cells together, similar to the DFT signal you generated named ext_mode. ext_mode
enables the scan mode for shared and dedicated wrapper cells.

Examples

The following dofile shows a command flow for scan insertion. The highlighted statements
illustrate additional considerations for performing scan insertion for wrapper cores. For a
general overview, refer to “Performing Scan Chain Insertion (Flat Design)” for a flat design.

Example 5-4. Scan Chain Insertion in Hierarchical Flow

1 set_context dft -scan -design_id gate
2
3 # You must respecify the TSDB
4 set_tsdb_output_directory ../tsdb_core
5
6 # Read Tessent library
7 read_cell_library ../../../library/tessent/adk.tcelllib
8
9 # Read synthesized netlist
10 read_verilog ../3.synthesis/processor_core_synthesized.vg
11
12 # Use read_design to read in the DFT signals and other data from
13 # the second DFT insertion pass
14 read_design processor_core -design_id rtl2 -no_hdl
15 set_current_design processor_core
16
17 # If there are no ATPG models available for memories, use blackboxes
18 add_black_boxes -modules { \
19 SYNC_1RW_8Kx16 \
20 }
21
22 check_design_rules
23
24 report_clocks
25 # Exclude the EDT channel in and out ports from wrapper chain analysis
26 # The ijtag_* edt_update ports are automatically excluded
27 set_wrapper_analysis_options \
28 -exclude_ports [get_ports {*_edt_channels_*}]
29
30 # To force insertion of dedicated wrapper cell use the following command
31 # set_dedicated_wrapper_cell_options on -ports {.... }

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 157

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

32
33 # Perform wrapper cell analysis
34 analyze_wrapper_cells
35 report_wrapper_cells -Verbose
36
37 # Find edt_instance
38 set edt_instance [get_instances -of_icl_instances \
39 [get_icl_instances -filter tessent_instrument_type==mentor::edt]]
40
41 # Specify different modes (internal and external) of the chains that need
42 # to be stitched
43 # The type internal/external and enable_dft_signal are inferred from the
44 # registered DFT signals(int_mode and ext_mode)
45 add_scan_mode int_mode -edt_instances $edt_instance
46 add_scan_mode ext_mode -chain_count 2
47
48 # Before scan insertion you can analyze the different scan modes and scan

chains
49 analyze_scan_chains
50 report_scan_chains
51 //delete_scan_modes -all
52 # Insert scan chains and write the scan inserted design into the TSDB
53 insert_test_logic
54 report_scan_chains
55 report_scan_cells > scan_cells.list
56
57 exit

Verifying the ICL Model
The ICL-based verification step verifies the ICL network before the pattern generation step.

During this verification, the tool checks the ICL network against semantic rules to verify the
connectivity of the network. The tool verifies that it can access each IJTAG test data register
through iWrite and iRead. The checks includes MemoryBIST logic if it is present in the design.

During scan chain stitching with Tessent Scan, the tool automatically updates the ICL model
when complex ports generate loops, which causes ports and instances names to change through
synthesis. When using a third-party scan insertion tool, additional ICL module matching rules
may be required to complete the ICL-based verification step.

The following procedure and example dofile show how to verify the ICL model for SSN.

Procedure

1. Set the context to patterns to create ICL-based patterns.

2. Set the location of the tsdb_outdir directory and load the cell libraries.

3. Read the third-party scan-inserted netlist.

4. Load the collateral from the last DFT insertion step before scan insertion without
reading the netlist.

Tessent™ Shell User’s Manual, v2021.3158

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Create and write the ICL-based pattern sets. This includes ICLNetwork verify patterns
and MemoryBIST patterns, if memories are present.

6. Define the path to the Verilog simulation libraries, simulate the patterns, and check the
simulation results.

Examples

This example dofile shows how to verify the ICL model for SSN.

Set context to patterns
set_context patterns

Open the previous TSDB directories if not in the current
working directory
set_tsdb_output_directory ../tsdb_outdir

Read Tessent Library
read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v -interface_only

Read the design files from the scan insertion pass
read_design processor_core -design_identifier gate -verbose
set_current_design processor_core

Generate patterns to verify the inserted DFT logic
set spec [create_patterns_specification]
report_config_data $spec
process_patterns_specification

Point to the libraries and run the simulation
set_simulation_library_sources -v ../../../library/standard_cells/ \

verilog/adk.v -v ../../../library/memories/*.v
run_testbench_simulations
check_testbench_simulations -report_status
exit

Performing ATPG Pattern Generation: Wrapped Core
Generating ATPG patterns for a wrapped core includes a step for generating a graybox model.
In addition, you must perform ATPG twice, once for the core’s external mode and once for the
core’s internal mode.

Refer to “Performing ATPG Pattern Generation” for flat designs for a general description.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-16. ATPG Pattern Generation Flow for Wrapped Cores

As described in “Hierarchical DFT Terminology,” the graybox model excludes the internal
mode logic of the wrapped core, preserving only the external mode logic that needs to be tested
at the parent level. The IJTAG infrastructure is preserved in the graybox model also.
Specifically, Tessent preserves the external logic that is present between the primary input and
the input wrapper cells, plus any logic between the output wrapper cells and primary output.
The parent could be another wrapper core or the top level of the chip.

You can use external mode patterns, if generated, for calculating fault coverage for the entire
core (both internal and external mode). Use the internal mode ATPG patterns for ATPG pattern
retargeting when performing the RTL and scan DFT insertion process on the top level of the
chip.

Procedure

1. Generate graybox models (see Example 5-5 on page 161 for a command flow example):

a. Load in the design using the same design ID as you used for scan insertion to write
the graybox to the TSDB.

(Recommended) Use “gate” as the design ID if you inserted the MemoryBIST and
EDT logic at the RTL level and “gate3” if the logic was also inserted into the gate
level.

b. Specify the analyze_graybox command to generate graybox models.

When working at the parent level, using the same design ID for the graybox model
as you used for scan insertion enables Tessent to access the full design view or the
graybox model with the same design ID.

2. Run ATPG on the external mode of the wrapped core. This ATPG pattern is only used
to calculate the entire core's fault coverage and cannot be reused from the chip-level. To
generate ATPG patterns for external mode, do the following:

a. Read in the graybox model of the design with the read_design command.

Tessent™ Shell User’s Manual, v2021.3160

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Use the set_current_mode command to specify a unique ATPG mode name that
represents the purpose of the pattern. The mode type is external.

b. Use the import_scan_mode command to retrieve the core’s external mode data.
Tessent uses the graybox model of the core. Using the import_scan_mode command
assumes that you used Tessent Scan to perform scan chain stitching.

c. Run design rule checking (DRC) using the following command:

check_design_rules

d. Generate the ATPG patters using the following command:

create_patterns

e. Use the write_tsdb_data command to store the TCD, flat model, fault list and PatDB
files in the TSDB.

f. Use the write_patterns command to write out the test bench required to simulate the
generated ATPG patterns.

See Example 5-6 on page 161.

3. Run ATPG on the internal mode of the wrapped core. This results in the ATPG pattern
that you retarget at the top level of the chip. To generate ATPG patterns for internal
mode, do the following:

a. Load in the graybox views for the wrapper cores that contain child wrapper cores.

b. If you used Tessent Scan for scan insertion, specify import_scan_mode to import the
internal mode.

c. Specify a unique ATPG mode name with the set_current_mode command.

The current mode type is internal. Typical mode names are scan_mode_name_sa or
scan_mode_name_tdf.

d. Run design rule checking (DRC) using the following command:

check_design_rules

e. Generate the ATPG patters using the following command:

create_patterns

f. Store the TCD, flat model, fault list and PatDB files in the TSDB using the
write_tsdb_data command.

g. Use the read_faults command to merge the fault list from running external mode to
find the total overall fault coverage of the wrapped core.

See Example 5-7 on page 162.

4. Run Verilog simulation of the core-level ATPG patterns.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 161

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing this task ensures that the patterns function as needed when they are
retargeted at the parent level. For parallel load patterns as specified by the -parallel
command, simulate all the patterns. For serial load patterns, a handful of patterns are
sufficient; the run time for simulating gate-level serial load patterns is significant.

Examples

Generate the Graybox Model

The following example creates a graybox model for a scan-inserted processor_core design and
saves the data under the “gate” design ID.

Example 5-5. Graybox Example

set_context patterns –scan –design_id gate
set_tsdb_output_directory ../tsdb_core
read_cell_library ../../../library/tessent/adk.tcelllib

Reads in the scan inserted netlist/design
read_design processor_core -design_id gate -verbose
set_current_design processor_core
add_black_boxes -modules { \
 SYNC_1RW_8Kx16 \
 }

report_dft_signals

import_scan_mode ext_mode
check_design_rules
analyze_graybox
write_design -tsdb -graybox -verbose

exit

Run ATPG on the Core’s External Mode

The following example shows the command flow for running ATPG on the external mode of a
core.

Example 5-6. ATPG External Mode

set_context patterns -scan
set_tsdb_output_directory ../tsdb_core
read_cell_library ../../../library/tessent/adk.tcelllib

Read in the graybox model using the -view switch
read_design processor_core -design_id gate -view graybox -verbose
set_current_design processor_core

Specify a different name that what was used during scan insertion with
the add_scan_mode command
set_current_mode edt_multi_SAF -type external
report_dft_signals

Tessent™ Shell User’s Manual, v2021.3162

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Extract the external mode specified during scan insertion
import_scan_mode ext_mode
report_core_instances
report_static_dft_signal_settings

Run DRC, Tessent Shell prompts changes to Analysis
check_design_rules
report_clocks
set_xclock_handling x

Generate ATPG patterns
create_patterns

Store TCD, flat_model, fault list and PatDB files in the TSDB
write_tsdb_data -replace
write_patterns patterns/processor_core_ext_stuck_parallel.v -verilog \

-parallel -replace -parameter_list {SIM_KEEP_PATH 1}
set_pattern_filtering -sample_per_type 2
write_patterns patterns/processor_core_ext_stuck_serial.v \

-verilog -serial -replace -parameter_list {SIM_KEEP_PATH 1}
exit

Run ATPG on the Core’s Internal Mode

The following example shows the command flow for running ATPG on the internal mode of a
core.

Example 5-7. ATPG Internal Mode

set_context patterns -scan
set_tsdb_output_directory ../tsdb_core
read_cell_library ../../../library/tessent/adk.tcelllib
Read in the full scan-inserted netlist
read_design processor_core -design_id gate
set_current_design processor_core

Extract the internal mode specified during scan insertion
import_scan_mode int_mode

Use add_scan_mode to specify a different name than what was used during
scan insertion
Specify import_scan_mode before set_current_mode because
import_scan_mode overrides the test mode type specified by
set_current_mode
set_current_mode int_mode_sa -type internal

report_dft_signals
report_core_instances
report_static_dft_signal_settings

Run DRC
check_design_rules
report_clocks
report_core_instances
add_fault -all
report_statistics -detail

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Tessent™ Shell User’s Manual, v2021.3 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generate ATPG patterns
create_patterns
report_statistics -detail

Store TCD, flat_model, fault list and PatDB files in the TSDB
write_tsdb_data -replace
write_patterns patterns/processor_core_stuck_parallel.v -verilog \

-parallel -replace -parameter_list {SIM_KEEP_PATH 1}
set_pattern_filtering -sample_per_type 2
write_patterns patterns/processor_core_stuck_serial.v \

-verilog -serial -replace -parameter_list {SIM_KEEP_PATH 1}
exit

To view the coverage of the faults testable by internal mode, you must
eliminate the undetected faults, which would be detected in
external mode. Do this by merging in the fault list generated from
performing ATPG on the graybox in external mode
read_faults -mode ext_multi_SAF –fault_type stuck -merge

Final coverage of the core that includes internal and external modes
report_statistics -detail
exit

Running Recommended Validation Step for Pre-Layout
Design Sign Off

During the first pass of the hierarchical DFT insertion flow for a wrapped core, you insert and
simulate the MemoryBIST hardware, mostly at the RTL level. To ensure that the MemoryBIST
simulation passes before the core is signed off as the pre-layout netlist, rerun MemoryBIST
simulation at gate level on the core’s scan-inserted netlist.

Procedure

1. Read in the scan-inserted netlist from the TSDB

Using the recommended naming conventions for the RTL and scan DFT insertion flow,
the design ID would be “gate” if you inserted the MemoryBIST and EDT logic at the
RTL level and “gate3” if the logic was also inserted into the gate level.

2. Elaborate the design and run DRC.

3. Create the input test patterns and simulation files.

4. Simulate the test bench.

Tessent Shell stores the generated test bench in the TSDB under the Patterns directory
using the design ID “gate”.

Examples

The following example shows how to validate the MemoryBIST patterns for a scan-inserted
netlist.

Tessent™ Shell User’s Manual, v2021.3164

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Physical Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context patterns –ijtag –design_id gate
set_tsdb_output_directory ../tsdb_core

##Reading the tessent cell library
read_cell_library ../../../library/tessent/adk.tcelllib

Reading the scan inserted netlist
read_design processor_core -design_id gate -verbose -view interface
set_current_design processor_core
add_black_boxes -modules { \
 SYNC_1RW_8Kx16 \
 }
check_design_rules

create_patterns_specification
process_patterns_specification
set_simulation_library_sources \

-v ../../../library/memory/SYNC_1RW_8Kx16.v \
-v ../../../library/verilog/adk.v

run_testbench_simulation
exit

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 165

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL and Scan DFT Insertion Flow for the Top Chip
After performing the RTL and scan DFT insertion flow for each wrapped core in your design,
you can perform the DFT insertion process for the top-level chip design.

Before implementing DFT at the top level of the chip, plan how you should test the wrapped
cores at the chip level. The planning for logic testing the wrapped cores is not automated, so you
must decide how you to allocate the resources and organize the test schedule (especially for
ATPG pattern retargeting) and specify your intent by using the add_dft_modal_connections
command.

The RTL and scan DFT insertion flow for the top level of a chip follows the same basic process
you used for the cores, with the addition of a step for retargeting the ATPG patterns you
generated for the wrapped cores.

Figure 5-17. Two-Pass Insertion Flow for RTL, Top Level

In addition, processing at the chip level differs from wrapped cores in that you must insert a
Test Access Mechanism (TAM). A TAM is a mechanism that you use to carry the scan data in
and out of the chip for each group of wrapped cores you intend to run in parallel. The TAM
schedules the tests for the wrapped cores at the top level, and enables access to the chip level so
that you can run these tests.

Tessent™ Shell User’s Manual, v2021.3166

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During insertion and pattern generation, you open the TSDBs that store the wrapped core design
data and read in the designs for their graybox models. The DFT insertion flow for the top level
of the chip requires differentiating between three design views of the wrapped cores.

• Full netlist view — All the logic for the core. This is the default view when you do not
explicitly specify a design view with the read_design command.

• Graybox model — External mode logic for the core as described in “Hierarchical DFT
Terminology,” including its IJTAG interface. You use this view so that Tessent Shell
can connect the wrapped cores at the top level for logic testing of the chip.

• Interface view — The core’s ports only. Tessent auto-loads the interface view of any
sub-physical block for which you have not used read_design to load its view.

Top-Level DFT Insertion Example . 166

First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary Scan. 168

Second DFT Insertion Pass: Inserting Top-Level EDT and OCC 171

Top-Level Scan Chain Insertion Example. 175

Top-Level ATPG Pattern Generation Example . 175

Performing Top-Level ATPG Pattern Retargeting . 177

Top-Level DFT Insertion Example
The RTL and scan DFT insertion flow for the top level of a chip can be illustrated using two
wrapped cores, processor_core and gps_baseband. The processor core has memory instantiated
within it, and the GPS baseband is a logic-only core that is instantiated twice.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 167

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-18. Top-Level Example, Before DFT Insertion

After performing the RTL and scan DFT insertion process for the wrapped cores, each of the
cores has an EDT controller and a child OCC. The processor core has the memories with
MemoryBIST already inserted.

Figure 5-19. Top-Level Example, After DFT Insertion for Wrapped Cores

Tessent™ Shell User’s Manual, v2021.3168

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After inserting DFT at the top level, the design includes a TAP controller along with boundary
scan, a top-level EDT controller, a parent OCC, and a TAM for purposes of retargeting the
wrapped cores (not shown in Figure 5-20 on page 168).

In this top-level example test case, the hierarchical core starts with RTL insertion, and in
addition, at the top level you want to perform DFT at RTL as well. However, there is no RTL
logic at the top level that needs to be synthesized. The PLL and pad IOs are Verilog macros. The
only RTL that needs to be synthesized is the Tessent-generated RTL. Hence, this test case uses
design IDs “gate1” and “gate2” for the first two DFT insertion passes, respectively.

Figure 5-20. Top-Level Example, After DFT Insertion at the Top Level

First DFT Insertion Pass: Performing Top-Level
MemoryBIST and Boundary Scan

For the top level of a chip, insert boundary scan plus MemoryBIST for any memories that are
present at the top level. In addition, build the IJTAG network for the wrapped cores at the top
level and insert a TAP controller or reuse an existing TAP controller.

As with flat designs, the flow for inserting MemoryBIST and boundary scan together is the
same as inserting them separately. For details about this insertion pass flow, refer to:

• “Getting Started” in the Tessent MemoryBIST User’s Manual, or

• “Getting Started With Tessent BoundaryScan” in the Tessent BoundaryScan User’s
Manual

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For information about TAP controller reuse, refer to “create_dft_specification” in the Tessent
Shell Reference Manual.

Prerequisites

• Refer to “First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan” (for
flat designs) for general information and prerequisites. For example, as with flat designs,
you can segment the boundary scan chain into smaller chains that are used during logic
testing with Tessent TestKompress by using the max_segment_length_for_logictest
command.

Procedure

1. Load the design.

Note
Use the open_tsdb command to open the TSDBs for all the lower-level cores.
Opening their TSDBs makes their design data available.

There is no need to specify the read_design command because, by default, Tessent reads
in the interface views of the wrapped cores, which is all that is required for DRC for the
first DFT insertion pass.

2. Set the design level to “chip” for the top level of the chip.

When working with the wrapped cores, you had set the design level to “physical_block.”

3. Create the DFT specification.

4. Specify enough auxiliary input and output ports for the largest retargeting wrapper core
group.

5. Generate the hardware and extract the ICL.

6. Create the input test patterns and simulation test benches.

7. Run simulations to verify the design.

Examples

The following dofile example shows a typical command flow for inserting MemoryBIST and
boundary scan. The flow is the same as you would use for a flat design with the exception of the
commands highlighted in bold. The chip-level design data exists in its own TSDB. This is
recommended for the data flow as described in “TSDB Data Flow for the Tessent Shell Flow.”

Tessent™ Shell User’s Manual, v2021.3170

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context dft -no_rtl -design_id gate1
set_tsdb_output_directory ../tsdb_outdir

Open the TSDB of all the wrapped cores
open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir

Read the Tessent cell library
read_cell_library ../../library/tessent/adk.tcelllib

Read in PLL as a blackbox so that it is excluded in design list that you
write
out for synthesis
read_verilog ../rtl/noncore_blocks/pll.v -blackbox

Point to Verilog libraries for the pad IO macros
set_design_sources -format verilog \
 -v ../rtl/noncore_blocks/pad8_io_macro.v \
 -v ../rtl/noncore_blocks/iopad_sel.v \
 ../rtl/noncore_blocks/iopad.v
read_verilog ../rtl/chip_top.v
set_current_design chip_top
set_design_level chip

Specify and verify the DFT requirements
set_dft_specification_requirements -boundary_scan on -memory_bist on

Identify the TAP pins
set_attribute_value TCK -name function -value tck
set_attribute_value TDI -name function -value tdi
set_attribute_value TMS -name function -value tms
set_attribute_value TRST -name function -value trst
set_attribute_value TDO -name function -value tdo

Some pins cannot add any boundary scan cells
set_boundary_scan_port_options TEST_CLOCK_top -cell_options dont_touch
set_boundary_scan_port_options EDT_UPDATE_top -cell_options dont_touch
set_boundary_scan_port_options SCAN_ENABLE -cell_options dont_touch
set_boundary_scan_port_options RESET_N -cell_options dont_touch
set_boundary_scan_port_options INCLK -cell_options dont_touch

Add DFT signals
add_dft_signals scan_en -source_nodes SCAN_ENABLE
report_dft_signals
add_clocks PLL_1/pll_clock_0 -reference REF_CLK -FREQ_Multiplier 16
add_clock REF_CLK -period 48
check_design_rules

Create a dft specification
set spec [create_dft_specification]
report_config_data $spec
Segment the boundary scan to be used during logic test
set_config_value $spec/BoundaryScan/max_segment_length_for_logictest 80

Equip these ports with auxiliary input/output muxes to be used by EDT
channel pins
read_config_data -in ${spec}/BoundaryScan -from_string {
 AuxiliaryInputOutputPorts {

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 171

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 auxiliary_input_ports : GPIO1_0, GPIO1_1, GPIO1_2, GPIO1_3;
 auxiliary_output_ports : GPIO2_0, GPIO2_1, GPIO2_2, GPIO2_3, GPIO1_0,
GPIO1_1 ;
 }
}

report_config_data $spec
process_dft_specification
extract_icl
run_synthesis
create_patterns_specification
process_patterns_specification
set_simulation_library_sources \

-v ../../library/verilog/*.v \
-v ../rtl/noncore_blocks/pll.v \
-v ../rtl/noncore_blocks/iopad.v \
-v ../../library/memory/SYNC_1RW_8Kx16.v

run_testbench_simulations
exit

Second DFT Insertion Pass: Inserting Top-Level EDT and
OCC

For the top level of a chip, additional considerations for the second DFT insertion pass for EDT
and OCC include grayboxes, DFT signals for purposes of ATPG retargeting, and TAMs. EDT,
or Embedded Deterministic Test, reduces scan data volume and test time.

Note
This procedure follows a similar flow as flat designs as documented in “First DFT Insertion
Pass: Performing MemoryBIST and Boundary Scan” on page 116.

Procedure

1. Specify the open_tsdb command to open the TSDBs for the wrapped cores, as in the first
DFT insertion pass for the chip.

2. Specify the read_design command to read in the graybox models of the wrapped cores.

This enables Tessent to perform DRC on the wrapper chains in addition to the rest of the
top-level logic to be tested.

3. Define a retargeting mode for each group of wrapped cores whose ATPG patterns you
want to retarget to run in parallel.

For ATPG pattern retargeting purposes, Tessent requires you to include retargeting
mode DFT signals in addition to the DFT signals defined in section “DFT Signals”. The
retargeting<X>_mode signals along with the TAM specified with the
add_dft_modal_connections command ensure that ATPG pattern retargeting occurs
correctly. Optionally, you can register your own DFT signals to be used for retargeting
purposes.

Tessent™ Shell User’s Manual, v2021.3172

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 5-8 on page 172 demonstrates retargeting of two wrapped cores:
processor_core and gps_baseband.

4. Apply the add_dft_modal_connections command to specify the TAM.

During the first insertion pass, you identified the functional pins to be shared with EDT
channel pins and added the required auxiliary input and auxiliary output logic. Now you
use the TAM to sensitize paths to and from the top-level EDT using the
set_config_value command.

In Example 5-8 on page 172, the functional input pin GPI01_0 is shared as an EDT
channel input pin. Similarly, the functional output pin GPI02_0 is shared as an EDT
channel output pin.

5. Combine with the top-level EDT mode signal you defined by connecting the EDT
channel IOs of the wrapped cores to top-level pins via the TAM. Use the
add_dft_modal_connections command.

6. Apply the set_defaults_value command to specify that Tessent Shell simulate the
instruments within the wrapped cores in addition to the top-level instruments.

Examples

The following dofile example shows that the DFT insertion flow for inserting EDT and OCC
into the top level of a chip follows the same basic process as for flat designs as described in
“Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC,” with the exception of the
highlighted commands.

Example 5-8. Top-Level Second DFT Pass

set_context dft -no_rtl -design_id gate2
set_tsdb_output_directory ../tsdb_outdir
open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir

read_cell_library ../../library/tessent/adk.tcelllib
read_verilog ../rtl/noncore_blocks/pll.v -blackbox
set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad_sel.v \

-v ../rtl/noncore_blocks/iopad.v
read_design chip_top -design_id rtl1 -verbose
read_design processor_core -design_id gate -view graybox -verbose
read_design gps_baseband -design_id gate -view graybox -verbose
set_current_design chip_top

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 173

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Add DFT Signals
When using boundary scan in logic test without contacting inputs
add_dft_signals int_ltest_en output_pad_disable -create_with_tdr

Needed for Scan Tested Instruments such as MemoryBIST and boundary scan
add_dft_signals tck_occ_en -create_with_tdr

When you are using logic test
add_dft_signals ltest_en -create_with_tdr

Used by top-level EDT
add_dft_signals edt_mode -create_with_tdr

These are used for the top-level EDT
add_dft_signals test_clock edt_update \

-source_nodes {TEST_CLOCK_top EDT_UPDATE_top}
add_dft_signals shift_capture_clock edt_clock -create_from_other_signals

Retargeting mode signals used for ATPG pattern retargeting
add_dft_signals retargeting1_mode retargeting2_mode retargeting3_mode \
retargeting4_mode

Add TAM connections
For chip-level EDT mode, the asterisk(*) means do not make connection to
the data inputs
add_dft_modal_connections -ports GPIO1_0 -input_data_destination_nodes * \

-enable_dft_signal edt_mode
add_dft_modal_connections -ports GPIO2_0 -output_data_source_nodes * \

-enable_dft_signal edt_mode

Connect wrapped core EDT channel I/Os to top level for retargeting1_mode
signal
add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes
PROCESSOR_1/processor_core_rtl2_controller_c1_edt_channels_in[0] \

-enable_dft_signal retargeting1_mode
add_dft_modal_connections -ports GPIO2_2 -output_data_source_nodes
PROCESSOR_1/processor_core_rtl2_controller_c1_edt_channels_out[0] \

-enable_dft_signal retargeting1_mode

Connect wrapped core EDT channel I/Os to top level for retargeting2_mode
signal
add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes
GPS_1/gps_baseband_rtl1_controller_c1_edt_channels_in[0] \

-enable_dft_signal retargeting2_mode
add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes
GPS_2/gps_baseband_rtl1_controller_c1_edt_channels_in[0] \

-enable_dft_signal retargeting2_mode
...
add_dft_modal_connections -ports GPIO1_0 -output_data_source_nodes GPS_1/
gps_baseband_rtl1_controller_c1_edt_channels_out[0] \

-enable_dft_signal retargeting2_mode -pipeline_stages 1
add_dft_modal_connections -ports GPIO1_1 -output_data_source_nodes GPS_1/
gps_baseband_rtl1_controller_c1_edt_channels_out[1] \

-enable_dft_signal retargeting2_mode -pipeline_stages 1
...

Tessent™ Shell User’s Manual, v2021.3174

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_dft_modal_connections
set_dft_specification_requirements -logic_test On
add_clocks INCLK -period 10ns
check_design_rules
report_dft_control_points

Create DFT specification
set spec [create_dft_specification -sri_sib_list {occ edt}]
report_config_data $spec
read_config_data -in $spec -from_string {
 OCC {
 ijtag_host_interface : Sib(occ);
 }
}
set id_clk_list [list \
 pll_clock_0 PLL_1/pll_clock_0 \
 INCLK INCLK \
]
foreach {id clk} $id_clk_list {
 set occ [add_config_element OCC/Controller($id) -in $spec]
 set_config_value clock_intercept_node -in $occ $clk
}
report_config_data $spec
read_config_data -in $spec -from_string {
 EDT {
 ijtag_host_interface : Sib(edt);
 ...
}

set_config_value port_pin_name \
-in $spec/EDT/Controller(c1)/Connections/EdtChannelsIn(1) \
[get_single_name [get_auxiliary_pins GPIO1_0 -direction input]]

set_config_value port_pin_name \
-in $spec/EDT/Controller(c1)/Connections/EdtChannelsOut(1)
[get_single_name [get_auxiliary_pins GPIO2_0 -direction output]]

report_config_data $spec
process_dft_specification
extract_icl

By setting this value, all the lower level instruments in the wrapped
cores are simulated
set_defaults_value /PatternsSpecification/SignoffOptions/
simulate_instruments_in_lower_physical_instances on
create_patterns_specification
process_patterns_specification
set_simulation_library_sources -v ../../library/verilog/*.v \
 ...
run_testbench_simulations
exit

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 175

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level Scan Chain Insertion Example
For the top level of the chip, additional considerations for scan chain insertion include opening
the TSDBs for the wrapped cores and reading in the wrapped core graybox models as you did
for the second DFT insertion pass.

Note
Prior to scan chain insertion, perform synthesis as described in section “Performing
Synthesis.”

Logic that is present at the top-level needs to be scan stitched along with the wrapper chains
(external mode) of the cores.

Refer to “Performing Scan Chain Insertion (Flat Design)” (for flat designs) for more
information about scan chain insertion. The following dofile example shows that Tessent Shell
needs to access the graybox models for each wrapped core.

Example 5-9. Top-Level Scan Chain Insertion

set_context dft -scan -design_id gate

set_tsdb_output_directory ../tsdb_outdir

open_tsdb ../../wrapped_cores/processor_core/tsdb_core

open_tsdb ../../wrapped_cores/gps_baseband/tsdb_core

read_cell_library ../../library/tessent/adk.tcelllib

read_verilog ../rtl/noncore_blocks/pll.v -blackbox

set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad_sel.v \

 -v ../rtl/noncore_blocks/iopad.v

read_verilog ../Synthesis/chip_top_synthesized.vg

read_design chip_top -design_id rtl2 –no_hdl -verbose

read_design processor_core -design_id gate -view graybox -verbose

read_design gps_baseband -design_id gate -view graybox -verbose

set_current_design chip_top

check_design_rules

report_clocks

set edt_instance [get_name_list [get_instance -of_module \

 [get_name [get_icl_module -of_instances chip_top* \

 -filter tessent_instrument_type==mentor::edt]]]]

add_scan_mode edt_mode -edt_instance $edt_instance

analyze_scan_chains

report_scan_chains

insert_test_logic

exit

Top-Level ATPG Pattern Generation Example
At the top level, Tessent Shell uses the scan-inserted design data for the chip. In the
recommended flow this equates to design ID “gate.” In addition, Tessent uses the graybox

Tessent™ Shell User’s Manual, v2021.3176

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

models for the wrapped cores so that you can use the external mode of the wrapper chains to run
ATPG.

Refer to “Performing ATPG Pattern Generation” (for flat designs) for information about
generating the ATPG patterns. The flow for the top level of a chip builds onto the process by
adding in the grayboxes and blackboxes. As with flat designs, you have a choice between using
the boundary scan chains for capture or using the primary pins of the chips (using the pads).

The following dofile example generates ATPG patterns at the top level using the stuck-at fault
model. The dofile shows that you can read in the stuck-at fault models for the wrapped cores to
calculate the total fault coverage for the chip.

Example 5-10. Top-Level ATPG Pattern Generation

set_context pattern -scan
set_tsdb_output_directory ../tsdb_top
open_tsdb ../../wrapped_cores/processor_core/tsdb_core
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_core
read_cell_library ../../library/tessent/adk.tcelllib

Read the Verilog
read_verilog ../rtl/noncore_blocks/pll.v -blackbox
set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad.v \

-v ../rtl/noncore_blocks/iopad_sel.v

read_design chip_top -design_id gate
read_design processor_core -design_id gate -view graybox -verbose
read_design gps_baseband -design_id gate -view graybox -verbose
set_current_design chip_top
set_current_mode edt_top_stuck

import_scan_mode edt_mode
report_core_instances

set_static_dft_signal_values tck_occ_en 1
report_static_dft_signal_settings

set_system_mode analysis
add_fault –all
report_statistics -detail
create_patterns
report_statistics -detail
write_tsdb_data -replace

write_patterns patterns/chip_top_edt_parallel.v -verilog -parallel \
-replace -scan -parameter_list {SIM_KEEP_PATH 1}

set_pattern_filtering -sample_per_type 2
write_patterns patterns/chip_top_edt_serial.v -verilog -serial -replace \

-parameter_list {SIM_KEEP_PATH 1}
write_patterns patterns/chip_top_edt_stuck.stil -stil -replace

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 177

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Total fault coverage for stuck-at patterns at the chip-level including
the cores
read_faults -module processor_core –mode edt_int_stuck \

–fault_type stuck –merge -graybox
read_faults –module gps_baseband –module edt_int_stuck \

–fault_type stuck –merge -graybox
report_statistics –detail
exit

Performing Top-Level ATPG Pattern Retargeting
For each wrapped core, retarget the internal ATPG patterns for all the modes you have specified
and all the fault types.

Note
This procedure is similar to “Performing ATPG Pattern Generation: Wrapped Core” on
page 158.

Procedure

1. Specify the set_context patterns -retargeting command to retarget the ATPG patterns
generated for the wrapped cores.

2. Use the same TSDB for ATPG retargeting as you used for ATPG pattern generation.

3. Set the current mode to a unique mode name that, ideally, indicates the core name, the
fault type, and the retargeting mode DFT signal you had previously defined.

4. Specify which wrapped core ATPG patterns you are retargeting by enabling the correct
retargeting mode DFT signal. Set the set_static_dft_signal_values command to the
retargeting mode for this wrapped core.

5. Apply the add_core_instances command to specify the wrapped core whose internal
ATPG patterns you want to retarget.

6. Apply the read_patterns command to read in the stuck-at ATPG patterns that you want
to retarget.

Examples

The following dofile example shows how you would retarget the stuck-at ATPG patterns for the
wrapped core, processor_core.

Example 5-11. Retarget Stuck-At ATPG Patterns for the Top-Level

set_context pattern -scan_retargeting
set_tsdb_output_directory ../tsdb_top
open_tsdb ../../wrapped_cores/processor_core/tsdb_core
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_core

Tessent™ Shell User’s Manual, v2021.3178

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_cell_library ../../library/tessent/adk.tcelllib
read_verilog ../rtl/noncore_blocks/pll.v -blackbox
set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad.v \

-v ../rtl/noncore_blocks/iopad_sel.v
read_design chip_top -design_id gate
read_design processor_core -design_id gate -view graybox -verbose
read_design gps_baseband -design_id gate -view graybox -verbose

set_current_design chip_top

Retarget processor_core stuck-at patterns
set_current_mode retarget1_processor_stuck
set_static_dft_signal_values retargeting1_mode 1
add_core_instances -instances {PROCESSOR_1} -core processor_core \

-mode edt_int_stuck

report_core_descriptions
report_clocks

set_system_mode analysis
write_tsdb_data -replace

Read the patterns to be retargeted
read_patterns -module processor_core -fault_type stuck -mode edt_int_stuck
set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]

write_patterns patterns/processor_core_edt_stuck_retargeted.v -verilog \
-parallel -replace -begin 0 -end 7 -scan \
-parameter_list {SIM_KEEP_PATH 1}

write_patterns patterns/processor_core_edt_stuck_retargeted_serial.v \
-verilog -serial -replace -Begin 0 -End 2 \
-parameter_list {SIM_KEEP_PATH 1}

Write out the STIL file to use on the tester
write_patterns patterns/processor_core_edt_stuck_retargeted.stil \

-stil -replace
exit

The following dofile snippet shows how you would retarget at-speed transition ATPG patterns
for the wrapped core, gps_baseband. Commands that are not shown are the same as the
commands for processor core in Example 5-11 on page 177.

Example 5-12. Retarget At-Speed Transition ATPG Patterns for the Top-Level

Set the context and open TSDBs ...

Read in cell libraries, PLL, macro IO pads, designs ...

Set the current design ...

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for the Top Chip

Tessent™ Shell User’s Manual, v2021.3 179

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Retarget gps_baseband transition patterns
set_current_mode retarget2_gps_transition
set_static_dft_signal_values retargeting2_mode 1
add_core_instances -instances {GPS_1 GPS_2} -core gps_baseband \

-mode edt_int_transition
report_core_descriptions
import_clocks -verbose
report_clocks

set_system_mode analysis
write_tsdb_data -replace
Read the patterns to be retargeted
read_patterns -module gps_baseband -mode edt_int_transition \

-fault_type transition
set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]

write_patterns patterns/gps_edt_transition_retargeted.v -verilog \
-parallel -replace -begin 0 -end 7 -scan \
-parameter_list {SIM_KEEP_PATH 1}

write_patterns patterns/gps_edt_transition_retargeted_serial.v \
-verilog -serial -replace -Begin 0 -End 2 \
-parameter_list {SIM_KEEP_PATH 1}

Write out the STIL file to use on the tester
write_patterns patterns/gps_edt_transition_retargeted.stil -stil -replace

exit

Tessent™ Shell User’s Manual, v2021.3180

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Sub-Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL and Scan DFT Insertion Flow for Sub-Blocks
When performing the DFT insertion flow with sub-blocks, you insert MemoryBIST and pre-
DFT DRCs at the sub-block level and then move up to the sub-block’s next parent physical
block level (where the sub-block is instantiated) to perform synthesis and scan insertion.

Refer to “Hierarchical DFT Terminology” for more information about sub-blocks.

You may want to use the sub-block flow for any of the following reasons.

• Multiple instantiations — You only need to perform the DFT insertion flow once for a
sub-block. Thereafter, every instantiation of the sub-block includes the inserted DFT
hardware.

• Small size — Most sub-blocks are not big enough to be considered their own physical
regions.

• Readiness — Sometimes the sub-block RTL is complete before the RTL for the
physical layout region, thus you can begin DFT insertion on the sub-block as soon as
RTL is ready.

DFT Insertion Flow for the Sub-Block . 180

DFT Insertion Flow for the Next Parent Level . 181

DFT Insertion Flow for the Sub-Block
The DFT insertion flow for sub-blocks is similar to the insertion flow for physical blocks with a
few exceptions.

• You do not perform synthesis or scan insertion at the sub-block level because the sub-
block netlist may not exist after synthesis.

• During the second DFT insertion pass, you only insert pre-DFT DRCs.

Typically, you do not insert EDT controllers at the sub-block level because the logic
inside of the sub-block is too small, and the sub-block module may not exist after
synthesis. You can insert an EDT controller at the next parent level that you dedicate to
testing the logic inside of a sub-block. In most cases, this EDT controller is active at the
same time as other EDT controllers that are present at the next parent level.

Note
The sub-block flow for inserting MemoryBIST and pre-DFT DRCs follows the same steps
as described in “RTL and Scan DFT Insertion Flow for Physical Blocks,” with the exception

of generating the EDT and OCC hardware. There are slight variations, which are described in
the following procedure.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Sub-Blocks

Tessent™ Shell User’s Manual, v2021.3 181

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan. Ensure that
you set the design level to “sub_block” rather than “physical_block”.

set_design_level sub_block

2. Second DFT insertion pass: insert pre-DFT DRCs. Follow the steps for the “Second
DFT Insertion Pass: Inserting Block-Level EDT and OCC” procedure, excluding
generating the EDT and OCC hardware.

Because you specified that you were working at the sub_block level in the first DFT
insertion pass, you do not need to re-specify this information for the second insertion
pass.

After specifying and verifying the DFT requirements, Tessent Shell performs the
following tasks automatically:

• At the sub-block level, any static DFT signals you have added are implemented as
IJTAG ports rather than inserted via TDRs. Tessent Shell automatically connects the
IJTAG ports to the TDR at the next parent level.

• At the next parent level, adds DFT signals such as ltest_en and
async_set_reset_static_disable. Tessent Shell infers the add_dft_control_point
command on the sub-block pins if you have DFT DRCs that need to be fixed.

• At the next parent level, adds the tck_occ_en DFT signal if there is a STI-SIB
network inside the sub-block.

The following command performs pre-DFT DRC:

set_dft_specification_requirements -logic_test on

During ICL extraction, Tessent Shell generates the Synopsys Design Constraints (SDC)
for the sub-block.

Results

Proceed to performing the DFT insertion flow on the next parent level where this sub-block is
instantiated.

DFT Insertion Flow for the Next Parent Level
The next parent level in the bottom-up flow where a sub-block is instantiated may either be a
physical layout block that is a wrapped core, or the physical layout region that is the chip (the
top level). By moving the focus of DFT insertion from child block to immediate parent block,
you maintain the correctness and consistency of the test hardware. The following procedure
describes the flow when you have a sub-block instantiated at the chip level.

Tessent™ Shell User’s Manual, v2021.3182

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Sub-Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• You have performed the DFT insertion flow as described in “DFT Insertion Flow for the
Sub-Block” for the sub-blocks instantiated at this parent level so that you have the
design after a clean pre-DFT DRC run.

Note
This flow occurs after the DFT insertion process described in “RTL and Scan DFT Insertion
Flow for the Top Chip”. When you have a sub-block inserted inside a wrapped core, you

complete the procedures described in “RTL and Scan DFT Insertion Flow for Physical Blocks”
on page 146 after you load the sub-block design.

Procedure

1. First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary Scan.
When you load the design, open the sub-block’s TSDB and load the design of the sub-
block that passed pre-DFT DRCs.

2. Second DFT Insertion Pass: Inserting Top-Level EDT and OCC. When you load the
design, open the sub-block’s TSDB, load the full design for the sub-block, and load the
design for the top-level after the first DFT insertion pass.

3. Synthesis. Synthesis of the chip-level RTL and the sub-block’s post-DFT inserted RTL
occur at the same time. Tessent Shell merges the sub-block into the parent-level logic.

Refer to “Timing Constraints (SDC)” to learn how the synthesis constraints from the
sub-block are merged at the next parent level.

4. Scan Chain Insertion. Tessent Shell performs scan chain insertion on the sub-block and
parent-level logic at the same time.

5. ATPG Pattern Generation.

Examples

Design Loading for the First DFT Insertion Pass

The following example shows opening the TSDB for the sub-block and using read_design to
read in the sub-block (processor_core) design.

Set the context to insert DFT into RTL-level design
set_context dft -rtl -design_id rtl1
Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_top

Open the TSDBs for all the instantiated sub-blocks
open_tsdb ../../sub_block/tsdb_outdir
Read the tessent cell library
read_cell_library ../../library/tessent/adk.tcelllib
Read the design
read_verilog ../../rtl/chip_top.v

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Sub-Blocks

Tessent™ Shell User’s Manual, v2021.3 183

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Explicitly load the sub-block netlist
read_design processor_core -design_id rtl2 -verbose
set_current_design chip_top
set_design_level chip

Follow the rest of the flow for the first DFT insertion pass for a chip.

Design Loading for the Second DFT Insertion Pass

Set the context to insert DFT. Define a new design ID
set_context dft -rtl -design_id rtl2

Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_top

Open the TSDBs for all the instantiated sub-blocks
open_tsdb ../../sub_block/tsdb_outdir

Read the tessent cell library
read_cell_library ../../library/tessent/adk.tcelllib

Read the verilog
read_verilog ../../rtl/noncore_blocks/pll.v -blackboxset_design_sources \
 -format verilog -v ../../rtl/noncore_blocks/iopad_sel.v \
 -v ../../rtl/noncore_blocks/iopad.v

read_design chip_top -design_id rtl1 -verbose
Explicitly load the sub-block netlist
read_design processor_core -design_id rtl2 -verbose

set_current_design chip_top

Follow the rest of the flow for the second DFT insertion pass for a chip

Tessent™ Shell User’s Manual, v2021.3184

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Instrument Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL and Scan DFT Insertion Flow for Instrument
Blocks

When performing the DFT insertion flow with instrument blocks, create a special empty
module to insert DFT elements into, then move up to the instrument block’s next parent
physical block level to perform synthesis and scan insertion.

You may want to use the instrument block flow if you want to avoid having Tessent Shell
modify your golden RTL.

DFT Insertion Flow for the Instrument Block . 184

Instrument Block DFT Insertion Flow for the Next Parent Level 187

DFT Insertion Flow for the Instrument Block
Create a special empty module into which the DFT elements are inserted.

Procedure

1. Start with an empty DFT module that contains the port definitions for IJTAG and an
input and output port for each functional clock. Optionally, create output ports for the
all_test and async_set_reset_dynamic_disable DFT signals, which you can use to
control clock multiplexers and turn off your asynchronous set and reset signals during
scan shifting.

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Instrument Blocks

Tessent™ Shell User’s Manual, v2021.3 185

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following RTL shows an example module definition required for the instrument
block flow:

module elt1_dft_box (
input clk,
output clk_occ,
input ijtag_tck,
input ijtag_reset,
input ijtag_ce,
input ijtag_se,
input ijtag_ue,
input ijtag_sel,
input ijtag_si,
output ijtag_so,
input [1:0] edt_channels_in,
output edt_channels_out,
input scan_en,
input test_clock,
input edt_update,
output async_set_reset_dynamic_disable
);

// Drive the DFT signal to its off value

assign async_set_reset_dynamic_disable = 1'b0;

// Add feedthroughs for ijtag chain
assign ijtag_so = ijtag_si;
// Add feedthrough for func clock that will be equipped with OCC
assign clk_occ = clk;
endmodule

2. Perform the DFT insertion flow within the DFT module as normal, but you must add
DFT control points to output ports corresponding to DFT signals.

Tessent™ Shell User’s Manual, v2021.3186

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Instrument Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_verilog design/rtl/elt1_dft_box.v
set_current_design elt1_dft_box
set_design_level instrument_block

set_dft_specification_requirements -logic_test on
add_dft_signals ltest_en int_mode int_ltest_en ext_mode ext_ltest_en
add_dft_signals scan_en test_clock edt_update \
 -source_node {scan_en test_clock edt_update}
add_dft_signals edt_clock shift_capture_clock \
 -create_from_other_signals
add_dft_signals x_bounding_en mcp_bounding_en \
 observe_test_point_en control_test_point_en -create_with_tdr
add_dft_signals async_set_reset_static_disable
add_dft_signals async_set_reset_dynamic_disable \
 -create_from_other_signals
add_dft_signals capture_per_cycle_static_en –create_with_tdr

#Add DFT control points
add_dft_control_points async_set_reset_dynamic_disable \
 -type dynamic_dft_control \
 -dft_signal_source_name async_set_reset_dynamic_disable

add_clocks clk -period [expr {1000.0/300.0}]

check_design_rules

set spec [create_dft_specification -sri_sib_list {edt lbist occ}]
set_config_value use_rtl_cells off -in_wrapper $spec

read_config_data -in_wrapper $spec -from_string {
 Edt { // {{{
 ijtag_host_interface : Sib(edt);
 Controller(c1) {
 ...
 Connections {
 EdtChannelsIn(1:2) {
 port_pin_name : edt_channels_in;
 }
 EdtChannelsOut(1) {
 port_pin_name : edt_channels_out;
 }
 }
 }
 } // }}}
 LogicBist { // {{{
 ijtag_host_interface : Sib(lbist);
 Controller(lbist_1) {
 ...
 Connections {
 shift_clock_src : clk;
 }
 }
 NcpIndexDecoder {
 ...
 }
 } // }}}
 OCC { // {{{
 ijtag_host_interface : Sib(occ);

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Instrument Blocks

Tessent™ Shell User’s Manual, v2021.3 187

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 static_clock_control : external;
 Controller(clk_controller) {
 clock_intercept_node : clk;
 }
 } // }}}
}

process_dft_specification
set_system_mode setup
extract_icl
write_design_import_script -replace -use_relative_path_to [pwd]

Results

Proceed to performing the DFT insertion flow on the next parent level where this instrument
block is instantiated.

Instrument Block DFT Insertion Flow for the Next Parent
Level

The next parent level in the bottom-up flow where an instrument block is instantiated may either
be a physical layout block that is a wrapped core, or the physical layout region that is the chip
(the top level). By moving the focus of DFT insertion from child block to immediate parent
block, you maintain the correctness and consistency of the test hardware. The following
procedure describes the flow when you have an instrument block instantiated at the
physical_block level.

Prerequisites

• You have performed the DFT insertion flow as described in DFT Insertion Flow for the
Instrument Block for the instrument blocks instantiated at this parent level so that you
have the design after a clean pre-DFT DRC run.

Procedure

1. Instantiate and connect the special empty DFT module in your parent module. Modify
your RTL to use clk_occ wherever it used clk so that the clock of all your scannable
elements is controlled by the OCC inserted into the block.

Tip
Remember to manually connect in the parent module all the connections for the
IJTAG network and all dynamic DFT signals.

2. At the next level, read your design normally, and then load the DFT module using the
read_design command. Specify your clocks and run the check_design_rules command
to validate and store them. Then, call the extract_icl command.

At that point, it is as if you had inserted the DFT elements from this level using the
normal flow. After ICL is extracted, you can go to the DFT context and verify that the

Tessent™ Shell User’s Manual, v2021.3188

Tessent Shell Workflows
RTL and Scan DFT Insertion Flow for Instrument Blocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL has a controllable clock and reset signals. DRC violation errors indicate if the RTL
is not clean, which you must fix manually.

read_design elt1_dft_box -design_id dft
read_verilog design/rtl/elt1.v
set_current_design elt1
set_design_level physical_block
add_clocks CLK1 -period [expr {1000.0/300.0}]
check_design_rules
extract_icl
report_dft_signals
write_design_import_script -replace -use_relative_path_to [pwd]

#Check that it passes the pre-DFT DRC rules
set_context dft
set_dft_specification_requirements -logic_test on
set_drc_handling dft_c9 -auto_fix off
check_design_rules

Generate patterns
set spec [create_pattern_specification]
process_pattern_specification

Run Simulation
set_simulation_library_sources -v ../techlib_adk.tnt/verilog/adk.v
run_testbench_simulations

3. Synthesis. Synthesis of the chip-level RTL and the instrument_block’s post-DFT
inserted RTL occur at the same time. Tessent Shell merges the instrument_block into the
parent-level logic.

Refer to “Timing Constraints (SDC)” to learn how the synthesis constraints from the
instrument_block are merged at the next parent level.

4. Scan Chain Insertion. Tessent Shell performs scan chain insertion on the
instrument_block and parent-level logic at the same time.

5. ATPG Pattern Generation.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 189

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL and DFT Insertion Flow With Third-Party Scan
The RTL and DFT insertion flow enables you to use a third-party scan insertion tool instead of
Tessent Scan. Regardless of which scan insertion tool you use, you must follow a number of
sequences in the DFT insertion flow that include creating the logic for internal and external
mode, and the multiplexing mechanism that Tessent Scan normally inserts in order to support
hierarchical ATPG.

The workflow uses the standard hierarchical DFT insertion flow, both for each wrapped core
and, once you have inserted DFT in each wrapped core, for top chip.

See “Hierarchical DFT Terminology” on page 142.

Note
If your design consists of wrapped cores as your lower level physical blocks, and the
wrapped cores do not contain embedded pad IOs, refer to “How to Use Boundary Scan in a

Wrapped Core” on page 502.

Caution
Third-party tools may have different insertion capabilities compared to Tessent Scan. This
may affect the quality of the results you achieve.

DFT Insertion Flow With Third-Party Scan Insertion . 189

Wrapped Core DFT Insertion With Third-Party Scan . 191

Top Chip DFT Insertion with Third-Party Scan . 206

DFT Insertion Flow With Third-Party Scan Insertion
The DFT insertion flow with third-party scan insertion requires you to manually collect and
provide certain data during hierarchical ATPG. Normally when using Tessent Scan for scan
insertion and stitching, the information that is needed for performing hierarchical ATPG is
transferred.

Prerequisites

Before starting this flow, you should identify the DFT functions you need to insert in each core
and identify how many scan chains and wrapper cells are needed for each core.

Note
Tessent Scan automatically concatenates scan chain and wrapper chains into mixed chains
to achieve the number of scan channels on the EDT logic.

Tessent™ Shell User’s Manual, v2021.3190

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

CTL (IEEE 1450.6) Generation for Tessent IP With Embedded Scan
Segments

Certain Tessent Shell IP blocks include embedded scan segments that must be a part of scan
chains. To simplify integration with third-party scan insertion tools, Tessent Shell generates the
CTL (IEEE 1450.6) file whenever generating the tcd_scan file for test IP.

The tool generates a CTL file that includes information about embedded scan segments for the
following applications:

• A CTL file to describe the embedded chain to help in connecting the programmable
registers inside the following IP:

o OCC

o STI SIB or Sib(STI)

• A CTL file to describe the controller chain mode (CCM) scan segment, when the tool
generates test IP with enabled segment_per_instrument property. This applies to the
following IP:

o LogicBIST controller

o EDT controller (available only when used as part of hybrid TK/LBIST IP)

o Single Chain Mode Logic controller (part of hybrid TK/LBIST IP)

o InSystemTest (MissionMode) controller

For information about CCM, see “Controller Chain Mode” in the Hybrid TK/LBIST User’s
Manual. For information about CTL files, see “Default Generation of CTL Files” in the Tessent
Shell Reference Manual.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 191

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Wrapped Core DFT Insertion With Third-Party Scan

For each wrapped core, perform a two-pass pre-scan DFT insertion process as you would for a
flat design except that in the first DFT insertion pass, do not insert boundary scan unless you
have embedded pad IO macros present inside the core. The flow details are unique to working
with wrapped cores and using a third-party scan insertion tool to insert the scan.

Refer to “RTL and Scan DFT Insertion Flow for Physical Blocks” on page 146 for overall
details.

Note
This discussion assumes your design consists of wrapped cores as your lower level physical
blocks, and the wrapped cores do not contain embedded pad IOs.

Figure 5-21. Two-Pass Insertion Flow for RTL, Wrapped Cores, and Third-Party
Scan

Perform Two-Pass DFT Insertion and Synthesis for Wrapped Cores 192

Third-Party Scan Insertion for Wrapped Cores . 193

Writing the Design Back to the TSDB . 197

Make Pre-ATPG Connections with Third-Party Scan for Wrapped Cores 200

Performing Wrapped Core Graybox Generation and ATPG Pattern Generation. . . . 202

Tessent™ Shell User’s Manual, v2021.3192

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Perform Two-Pass DFT Insertion and Synthesis for Wrapped
Cores

This flow for wrapped cores is the same as the DFT insertion flow for physical blocks except
you insert the scan with a third-party scan tool instead of Tessent Scan.

Procedure

1. First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan. Ensure you set
the design level to “physical_block”.

set_design_level physical_block

2. Second DFT Insertion Pass: Inserting Block-Level EDT and OCC. Ensure you set the
design level to “physical_block”.

a. During the second insertion pass and when specifying the DFT signals, follow the
procedure defined in “Specifying and Verifying the DFT Requirements: DFT
Signals for Wrapped Cores” on page 152.

The following are the internal and external modes that are required for mode
switching:

add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode \
-create_with_tdr

add_dft_signals input_wrapper_scan_en output_wrapper_scan_en \
-create_from_other_signals

b. Creating the DFT Specification.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The test case implements compressed ATPG test using Tessent TestKompress. You
define the EDT logic for Tessent TestKompress and the Tessent OCC in an EDT
DftSpecification wrapper as follows:

read_config_data -in $spec -from_string "
 OCC {
 ijtag_host_interface : Sib(occ);
 type : standard;
 }
 EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1) {
 longest_chain_range : 50, 65;
 scan_chain_count : 80;
 input_channel_count : 2;
 output_channel_count : 1;
 Connections {
 EdtChannelsIn(2:1) {
 port_pin_name : edt_channel_in[1:0];
 }
 EdtChannelsOut(1:1) {
 port_pin_name : edt_channel_out[0:0];
 }
 }
 }
 }"

You define the scan_chain_count as follows:

scan_chain_count = number of internal only scan chains + number of wrapper
chains

This number covers all chains that the EDT logic at the current level needs to
connect to. In other words the EDT hardware need to be connected to both the
internal only chains and wrapper chains.

3. Generating the EDT, Hybrid TK/LBIST, and OCC Hardware.

4. Extracting the ICL Module Description.

5. Generating ICL Patterns and Running Simulation.

6. Performing Synthesis.

Third-Party Scan Insertion for Wrapped Cores

You can use a third-party scan insertion tool to insert scan and perform scan stitching for
wrapped cores in your design. The actual process depends on the third-party scan insertion tool
you use. You must wrap all the inputs and outputs of hierarchical physical blocks and perform
scan insertion and stitching in your design. Your choice of wrapper cells depends on the
capabilities of the third-party scan tool you are using.

Tessent™ Shell User’s Manual, v2021.3194

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For hierarchical ATPG, you must insert multiplexers before each wrapper chain to multiplex the
primary input from the top level and the current level of the EDT scan input. Figure 5-22 shows
an abstract level depiction of the multiplexing logic. The inclusion of these multiplexers is
mandatory for hierarchical ATPG support using Tessent tools.

Figure 5-22. DFT Signals and Multiplexer Logic Support Hierarchical ATPG

To the child cores, the preregistered static DFT signals ext_mode and int_mode control these
multiplexers as follows:

• External Mode — The ext_mode DFT signal is active, and the int_mode DFT signal is
inactive. The top level drives input into the wrapper chains through the wrapper’s scan
in on the core boundary.

• Internal Mode — The ext_mode DFT signal is inactive and the int_mode DFT signal is
active. The EDT logic drives all the scan chains inside the hierarchical physical block
(both internal only and wrapper chains).

When using this configuration, you must control the corresponding TDR bits for mode
switching. See “Performing Wrapped Core Graybox Generation and ATPG Pattern Generation”
on page 202 for a detailed explanation.

Usage Guidelines

Use the following guidelines and criterion for configuring your third-party scan insertion tool
for wrapper and scan stitching:

• For the hierarchical physical block on which you intend to perform scan insertion, you
have completed the “Perform Two-Pass DFT Insertion and Synthesis for Wrapped
Cores” on page 192 flow.

• You have identified the scan chains of the current core and how many of the scan chains
should be wrapper chains. The total number of scan chains is the same as the EDT
scan_chain_count, as defined in the previous DFT insertion step. The rest of the scan
chains can be specified and used as core chains.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• During wrapper analysis, you must exclude the following pins from any wrapper
insertion:

o IJTAG-related pins

o edt_channel_input pins

o edt_channel_output pins

o scan_enable pins

o Any clock pins

• The DFT signals for input and output wrapper scan enable that you have defined during
the second DFT insertion pass should be used as scan enable signals for input and output
wrapper chains, respectively, during wrapper analysis and insertion.

• To run ATPG after scan insertion, you must create and supply a test procedure file for
the Graybox generation step to trace and control the wrapper chains. A test procedure
file tells the tool how to clock the scan chains, and the tool automatically passes this to
ATPG in the Tessent Shell flow. A graybox does not normally include an OCC and EDT
logic for tracing and controlling wrapper chains; consequently, you must create the test
procedure file manually when using the third-party scan insertion flow.

See “Test Procedure File” on page 533 for complete details on how you create and use a
test procedure file. See also “Example Test Procedure File” on page 198.

• The Tessent Shell environment get_dft_info_dictionary command offers you a method
to access the Tessent Database (TSDB) to use this information with your third-party
scan insertion tool.

The command reads the scan information from the TSDB’s dft_inserted_designs
directory, specifically in a Tcl dictionary file named:

<design_name>.dft_info_dictionary

The Tcl dictionary contains the information about the DFT inserted in the design that
must be considered during scan insertion when using a third-party scan insertion tool.
See “Example dft_info_dictionary File” on page 199.

All instances under "non_scannable_instance_list" should be regarded as non-scan. All
modules under "modules_with_chains" should be considered as sub-chains and should
not be modified during scan insertion.

Tessent™ Shell User’s Manual, v2021.3196

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The Tessent Shell environment provides a mechanism for generating an example usage
script you can customize to work with your third-party scan insertion tool. In the Tessent
Shell tool, invoke the following commands in the dft or pattern contexts:

read_verilog design_netlist
source \
../tsdb_outdir/dft_inserted_designs/
design_name.last_DFT_insertion_design_id/
design_name.dft_info_dictionary
get_dft_info_dictionary -example_usage_script

After issuing these commands, the tool creates an example usage script. Use this script
as a starting example to convert the dictionary into the specific commands used by your
third-party scan insertion tool. In the file, the tool inserts pound signs (#) with comments
that specify which actions your third-party tool must perform. For example:

puts "Declare the Non-Scannable instances"

set non_scannable_instance_list [dict get $tessent_dft_info_dict
non_scannable_instance_list]
if {[llength $non_scannable_instance_list] > 0} {
 ### Command to declare the Non-Scannable instances
 add_nonscan_instances [get_instances
$non_scannable_instance_list]
}
...

After you add your third-party tool specific commands to the file, source the file to your
scan insertion tool to finish the scan insertion and stitching.

• For the hierarchical transition fault model, you may need to insert one additional at-
speed cell at the beginning of each wrapper chain to make the transition on the first cell
of each wrapper chain. This way, you achieve the best coverage. The method you use
depends on the third-party insertion tool. Figure 5-23 shows the logic.

Figure 5-23. At-Speed Flows in the Wrapper Chain

• If required and after you have inserted the scan using your third-party tool, you can
follow the procedure described in “Make Pre-ATPG Connections with Third-Party Scan
for Wrapped Cores” on page 200 if required.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 197

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If no pre-ATPG connections are required, then you can load the scan-inserted netlist into
Tessent Shell and write the modified netlist and scan information back to the Tessent
Shell Database (TSDB).

Writing the Design Back to the TSDB

After completing scan insertion by your third-party scan insertion tool, you must write the scan-
inserted netlist back to the TSDB to associate the netlist with Tessent DFT instruments. You
create this association by creating a softlink to the scan inserted netlist in TSDB, which also
creates the Tessent Core Description files and the ICL information.

Prerequisites

• You have completed scan insertion with a third-party tool.

Use the following procedure to save a scan-inserted netlist to the TSDB. The line numbers are
represented in the Example dofile under Examples:

Procedure

1. Set the context (see lines 1-3).

2. Set the TSDB location if not already set (see line 6).

3. Load the cell library (see line 9).

4. Load the scan-inserted netlist (see line 12). This netlist is modified by your third-party
scan insertion tool and contains the scan cells.

5. Load the supporting DFT files (except the netlist) from the last DFT insertion pass and
set the current design (see lines 15-17).

6. Set the design level. Make sure you specify “physical_block” (see line 21).

7. Write the design information to the TSDB and create the softlink (see line 22).

Examples

Example dofile

1 # Use the design_id as "scan." Use this in all the ATPG
2 # runs that this design is read in.
3 set_context patterns -ijtag -design_id <scan>
4
5 # Set the location of the TSDB. Default is the current working directory
6 set_tsdb_output_directory ../tsdb_outdir
7
8 # Read the Tessent Cell Library
9 read_cell_library ../../../library/tessent/adk.tcelllib
10
11 # Read the scan inserted netlist and elaborate the design
12 read_verilog ../3.synthesize_rtl/<current_core>_scan.vg
13
14 # Read the -no_hdl from the last DFT insertion pass

Tessent™ Shell User’s Manual, v2021.3198

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

15 read_design <current_core> -design_id <rtl2> -no_hdl -verbose
16 read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v
17 set_current_design <current_core>
18
19 # Specify the design level before writing out a softlink of the design in
20 # TSDB
21 set_design_level physical_block
22 write_design -tsdb -softlink_netlist -verbose
23 exit

Example Test Procedure File

set time scale 1.000000 ns ;
 timeplate gen_tp1 =
 force_pi 0 ;
 measure_po 10 ;
 pulse_clock 20 10 ;
 pulse clock2 20 10;
 period 40 ;
 end;
 procedure shift =
 scan_group grp1 ;
 timeplate gen_tp1 ;
 // cycle 0 starts at time 0
 cycle =
 force_sci ;
 measure_sco ;
 pulse clock1;
 pulse clock2;
 end;
 end;

 procedure load_unload =
 scan_group grp1 ;
 timeplate gen_tp1 ;
 // cycle 0 starts at time 0
 cycle =
 force clock1 0;
 force clock2 0;
 force scan_enable 1 ;
 end ;
 apply shift 76;
 end;

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 199

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example dft_info_dictionary File

set tessent_dft_info_dict {
 version 1
 dft_signals {
 dft_signal_name {
 connection_node_name node_name
 connection_node_type port|pin
 forced_value_in_pre_scan_drc 0|1
 }
 }
 modules_with_chains {
 module_name {
 pre_scan_drc_on_boundary_only 0|1
 module_type normal|memory|occ
 is_hard_module 0|1
 internal_scan_only 0|1
 allow_scan_out_retiming 0|1
 instance_list {inst_name ...}
 scan_en_ports|ltest_en_ports|set_reset_ports {
 port_name { active_polarity 0|1
 }
 }
 clock_ports {
 port_name {
 off_state 0|1
 }
 }
 clock_out_ports_or_pins {
 port_or_pin_name {}
 }
 scan_chains {
 scan_chain_name {
 length auto|int
 scan_in_port port_name
 scan_in_clock_name port_name
 scan_in_clock_inversion 0|1
 scan_out_port port_name
 scan_out_clock_name port_name
 scan_out_clock_inversion 0|1
 }
 }
 }
 }
 non_scannable_instance_list {inst_name ...}
 edt_instances {
 instance_name {
 edt_module_name module_name
 scan_chains {
 chain_name {
 scan_in_port port_name
 scan_out_port port_name
 }
 }
 }
 }
}

Tessent™ Shell User’s Manual, v2021.3200

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Make Pre-ATPG Connections with Third-Party Scan for Wrapped
Cores

You perform this step in flow only if the the wrapped core has at least one child wrapped core or
there is one upper layer beyond the current module.

Otherwise, skip this step in the flow and proceed directly to “Performing Wrapped Core
Graybox Generation and ATPG Pattern Generation” on page 202.

This step includes two parts:

1. It creates connections from the current level EDT logic to the wrapped child cores'
wrapper chains for the paths depicted in red in Figure 5-24.

Figure 5-24. Current Level Path to Child Core Wrapper Chains

The external mode logic and chains of child cores become part of the current test
coverage.

2. It also creates logic from the current level wrapper chain to the upper-level logic,
marked in green in Figure 5-24. Logic added at this stage includes the muxes controlled
by dft_signals, ports at the module boundary, and connections between those ports and
the EDT logic. This enables the external mode testing of the wrapped child core from
the upper level.

Note
The line numbers used in this procedure refer to the command flow dofile in “Example
Dofile for Pre-ATPG Connections for Wrapped Cores” on page 201.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 201

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• You must have performed the two-pass DFT insertion as described in “Perform Two-
Pass DFT Insertion and Synthesis for Wrapped Cores” on page 192.

• You must have inserted scan using your third-party scan insertion tool per the guidelines
provided in “Third-Party Scan Insertion for Wrapped Cores” on page 193.

Procedure

1. Load the design. (See lines 1-7.)

2. Change to insertion mode. (See line 9.)

3. Make the red connections shown in Figure 5-24 on page 200. (See lines 12-26.)

4. Make the ports, logic, and connections shown in green in Figure 5-24. (See lines 28-43.)

5. Save the design. (See line 45.)

6. Write the design back to the TSDB. (See lines 30-66.)

Examples

Example Dofile for Pre-ATPG Connections for Wrapped Cores

1 set_context dft -no_rtl
2
3 read_verilog ../3.synthesis/<current_design_name>_scan.vg
4
5 read_cell_library ../../../library/tessent/adk.tcelllib
6
7 set_current_design <current_design_name>
8
9 set_system_mode insertion
10
11
12 # Make the connections marked in red in the preceding figure (see Step 1)
13
14 # empty pins of edt logic were grounded, need to delete before connection
15 delete_connection <current_edt_instance>/edt_scan_out[]
16
17
18 delete_connection <current_edt_instance>/edt_scan_in[]
19
20
21 # connect edt scan-in/scan-out to ext_wsi/ext_wso of every chain
22 create_connection /<child_core_instance>/ext_wsi[] \
23 <current_edt_instance>/edt_scan_in[]
24
25 create_connection /<child_core_instance>/ext_wso[] \
26 <current_edt_instance>/edt_scan_out[]
27
28 # Make the ports, logic, and connection marked in green in the preceding

figure (see Step 2)
29 delete_connection <current_edt_instance>/edt_scan_in[]
30 # create ports for upper level to connect to
31 create_port ext_wsi[]

Tessent™ Shell User’s Manual, v2021.3202

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

32 create_port ext_wso[] –direction output
33 # create mux logic and control logic
34 create_instance wrapper_mux0 –of_module mux21
35 create_instance ext_mode_inv –of_module inv01
36 create_instance mode_and –of_module and02
37 create_connection <current_tdr_instance>/ext_mode ext_mode_inv/A
38 create_connection <current_tdr_instance>/int_mode mode_and/A0
39 # connect mux between ports and wrapper chain beginning/ends
40 create_connection wrapper_mux0/A1 <edt_instance>/edt_scan_in[]
41 create_connection wrapper_mux0/A0 ext_wsi[]
42 create_connection wrapper_mux0/Y <wrapper chain beginning cell or buffer

before it>/A
43 create_connection ext_wso[] <wrapper chain ending cell or buffer after

it>/Q
44
45 write_design -output_file ../3.synthesis/<current_design_name>.vg
46
47 # Use the design_id as "scan." Use this in all the ATPG
48 # runs that this design is read in.
49
50 set_context patterns -ijtag -design_id <scan>
51
52 # Set the location of the TSDB. Default is the current working directory
53 set_tsdb_output_directory ../tsdb_outdir
54
55 # Read the Tessent Cell Library
56 read_cell_library ../../../library/tessent/adk.tcelllib
57
58 # Read the scan inserted netlist and elaborate the design
59 read_verilog ../3.synthesize_rtl/<current_core>_scan.vg
60
61 # Read the -no_hdl from the last DFT insertion pass
62
63 read_design <current_core> -design_id <rtl2> -no_hdl -verbose
64
65 read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v
66
67 set_current_design <current_core>
68
69 # Specify the design level before writing out a softlink of the design in
70 # TSDB
71 set_design_level physical_block
72 write_design -tsdb -softlink_netlist -verbose
73 exit

Performing Wrapped Core Graybox Generation and ATPG Pattern
Generation

This step in the flow creates the graybox model of the current wrapped core and generates
ATPG patterns. You must perform this step for each wrapped core in your design.

Prerequisites

• You must have completed the “Performing Wrapped Core Graybox Generation and
ATPG Pattern Generation” on page 202 step for each wrapped core.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 203

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• You must have inserted scan with your third-party scan insertion tool per the guidelines
cited in “Third-Party Scan Insertion for Wrapped Cores” on page 193 for each wrapped
core, and written the scan-inserted netlist back into the Tessent Shell Database as
described in “Writing the Design Back to the TSDB” on page 197.

• If required, make ATPG connections using the process outlined in “Make Pre-ATPG
Connections with Third-Party Scan for Wrapped Cores” on page 200 for each wrapped
core.

Procedure

1. Generate the graybox model for the wrapped core and add a scan group of wrapper
chains by importing the test procedure file you created during Third-Party Scan
Insertion for Wrapped Cores—see “Example Graybox Generation” on page 204 and
“Performing ATPG Pattern Generation: Wrapped Core” on page 158.

To generate external patterns to check fault coverage for the wrapped core, refer to
“Example External ATPG Pattern Generation” on page 205. You do not retarget these
patterns.

As long as the scan mode (scan chains and test logic) is stitched conforming to DRC,
Tessent Shell generates internal ATPG patterns formed in the correct way.

2. Save the design and write the patterns to the TSDB using the write_tsdb_data command.

write_tsdb_data -replace

3. Repeat Steps 1 and 2 for each wrapped core to generate transition patterns.

All of the information is passed by the Tessent Shell through the TSDB.

Results

When you complete graybox and ATPG for each wrapped core, perform scan insertion for the
top chip. See “Top Chip DFT Insertion with Third-Party Scan” on page 206 for complete flow
details.

Tessent™ Shell User’s Manual, v2021.3204

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Example Graybox Generation

set_context pattern -scan -design_id <scan>
set_tsdb_output_directory ../tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib
read_design <current_design_name> -design_id <scan>
set_current_design <current_design_name>
set memory modules black box
add_black_box -module SYNC_1RW_32x16_RC_BISR
add_black_box -module SYNC_1RW_32x4
add_clock 0 clock1
Graybox generation requires core configured to external mode by
setting DFT signal values:
set_static_dft_signal_values int_mode 0
set_static_dft_signal_values ext_mode 1
set_static_dft_signal_values int_ltest_en 0
set_static_dft_signal_values ext_ltest_en 1
exclude edt_channels for graybox
set_attribute_value [get_ports *edt_channel*] \

-name ignore_for_graybox -value true
import wrapper chain information by importing testproc file of
wrapper chains
add_scan_group grp1 ../4.scan_insertion/wrapper.testproc
add every wrapper chain from input pin to output pin
add_scan_chains chain1 grp1 ext_wsi[0] ext_wso[0]
add_scan_chains chain2 grp1 ext_wsi[1] ext_wso[1]
add_scan_chains chain3 grp1 ext_wsi[2] ext_wso[2]
set_system_mode analysis
external mode information saved in tsdb
write_design -graybox -tsdb -verbose
exit

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 205

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example External ATPG Pattern Generation

set_context pattern -scan -design_id <scan>
set_tsdb_output_directory ../tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib
read_design <current_design_name>-design_id <scan> -view graybox
set_current_design <current_design_name>
add_clock 0 clock
create mode information for external ATPG
set_current_mode ext_multi_stuck -type external
configure core to external mode
set_static_dft_signal_values int_mode 0
set_static_dft_signal_values ext_mode 1
set_static_dft_signal_values int_ltest_en 0
set_static_dft_signal_values ext_ltest_en 1
for transition fault ATPG, replace stuck with transition
set_fault_type stuck
import wrapper chain information
add_scan_group grp1 ../4.scan_insertion/wrapper.testproc
add_scan_chains chain1 grp1 ext_wsi[0] ext_wso[0]
add_scan_chains chain2 grp1 ext_wsi[1] ext_wso[1]
add_scan_chains chain3 grp1 ext_wsi[2] ext_wso[2]
set_system_mode analysis
create_pattern
write_tsdb_data -replace
exit

Example Internal ATPG Pattern Generation

set_context patterns -scan -design_id <scan>
set_tsdb_output_directory ../tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib
set_tsdb_output_directory ../tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib
read_design <current_design_name> -design_id <scan>
add_black_box -module SYNC_1RW_32x16_RC_BISR
add_black_box -module SYNC_1RW_32x4
set_current_design <current_design_name>
current_mode is used when add core instance at top level
set_current_mode edt_int_stuck -type internal
import core instances of OCC, EDT and sib_sti if exist
add_core_instances -module <occ_instance_name> -parameter_values {}
add_core_instances -module <edt_instance_name>
add_core_instances -module <sib_sti_instance_name>
for transition fault ATPG, replace stuck with transition
set_fault_type stuck
add_clock 0 clock -pulse_always
configure core to internal mode
set_static_dft_signal_values int_mode 1
set_static_dft_signal_values ext_mode 0
set_static_dft_signal_values int_ltest_en 1
set_static_dft_signal_values ext_ltest_en 0
report_static_dft_signal_settings
set_system_mode analysis
create_pattern
write_tsdb_data -replace
exit

Tessent™ Shell User’s Manual, v2021.3206

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top Chip DFT Insertion with Third-Party Scan

After performing the RTL and scan DFT insertion flow for each wrapped core in your design,
you can perform the DFT insertion process for the top-level chip design using a third-party scan
insertion tool to insert the scan.

See “RTL and Scan DFT Insertion Flow for the Top Chip” on page 165 for overall flow details,
and a detailed description of the Test Access Mechanism (TAM).

Figure 5-25. Two-Pass Insertion Flow for RTL, Top Level, and Third-Party Scan

Perform Two-Pass Insertion and Synthesis for Top Chip . 206

Third-Party Scan Insertion for Top Chip . 207

Make Pre-ATPG Connections with Third-Party Scan for Top Chip 209

Perform Top Chip Graybox Generation, ATPG Pattern Generation, and Wrapped Core
Pattern Retargeting . 211

Perform Two-Pass Insertion and Synthesis for Top Chip

After performing the RTL and scan DFT insertion flow for each wrapped core in your design,
you can perform the DFT insertion process for the top-level chip design.

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 207

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• Before you perform the top level steps, all the child cores must be ready with their
retargetable patterns. A spec form for the top level logic is also recommended to define
the number of scan chains and what DFT instruments need to be inserted.

• You must have completed the Perform Two-Pass DFT Insertion and Synthesis for
Wrapped Cores step for each wrapped core.

• You must have completed the Third-Party Scan Insertion for Wrapped Cores step for
reach wrapped core.

• If required, you must have completed the Make Pre-ATPG Connections with Third-
Party Scan for Wrapped Cores step for each wrapped core.

• You must have completed the Performing Wrapped Core Graybox Generation and
ATPG Pattern Generation for each wrapped core.

Procedure

1. Set the design level to “chip” for the top level of the chip and insert DFT for
MemoryBIST and Boundary Scan. Refer to “First DFT Insertion Pass: Performing
MemoryBIST and Boundary Scan” on page 116.

2. Insert top-level EDT and OCC. Refer to “Second DFT Insertion Pass: EDT, Hybrid TK/
LBIST, and OCC” on page 120.

Note
You must correctly define the scan_chain_count of the EDT, to include all scan
chain counts of child cores in addition to the top-level scan chain count.

3. Perform synthesis. Refer to “Performing Synthesis” on page 132.

Results

You now have a design ready for top level scan insertion with your third-party scan insertion
tool. Proceed to “Third-Party Scan Insertion for Top Chip” on page 207.

Third-Party Scan Insertion for Top Chip

You can use a third-party scan insertion tool to insert scan into the top chip of your design. Your
process depends on the third-party scan insertion tool you use.

Usage Guidelines

• Top level logic does not require wrapper chains as all primary inputs and primary
outputs are controllable.

Tessent™ Shell User’s Manual, v2021.3208

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The Tessent Shell environment get_dft_info_dictionary command offers you a method
to access the Tessent Database (TSDB) to use this information with your third-party
scan insertion tool.

The command reads the scan information from the TSDB’s dft_inserted_designs
directory, specifically in a Tcl dictionary file named
<design_name>.dft_info_dictionary.

This file can be sourced to any Tcl script engine. The file contains the information about
the DFT inserted in the design that must be considered during scan insertion when using
a third-party scan insertion tool and contains the following sections:

o dft_signals — Contains all of the DFT signals.

o modules_with_chains — Contains all modules that already scanned, which means
that they should be stitched into scan chains as sub-chains.

o non_scannable_instance_list — Contains those instances set to non-scan during scan
insertion.

o edt_instances — Contains and describes the EDT modules that the scan changes
connect to.

• The Tessent Shell environment provides a mechanism for generating an example usage
script you can customize to work with your third-party scan insertion tool. In the Tessent
Shell tool, you invoke the following commands:

read_verilog design_netlist
source \
../tsdb_outdir/dft_inserted_designs/
design_name.last_DFT_insertion_design_id/
design_name.dft_info_dictionary
get_dft_info_dictionary -example_usage_script

After issuing these commands, the tool creates an example usage script. Use this script
as a starting example to convert the dictionary into the specific commands used by your

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 209

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

third-party scan insertion tool. In the file, the tool inserts pound signs (#) with comments
that specify which actions your third-party tool must perform. For example:

puts "Processing DFT signals"
set dft_signals_dict [dict get $tessent_dft_info_dict dft_signals]
puts "Setting up Static Dft Signals"
foreach dft_signal [dict keys $dft_signals_dict] {
 if {[dict exists $dft_signals_dict \

$dft_signal forced_value_in_pre_scan_drc]} {
 set connection_node_name \
 [dict get $dft_signals_dict $dft_signal connection_node_name]
 set connection_node_type \

[dict get $dft_signals_dict $dft_signal connection_node_type]
 set forced_value_in_pre_scan_drc \

[dict get $dft_signals_dict $dft_signal \
forced_value_in_pre_scan_drc]

 puts "--- Static Dft Signal $dft_signal ---"
 if {$connection_node_type eq "pin"} {
 ### Command to cut and force created pseudo port
 add_primary_input [get_pins [list $connection_node_name]] \

-internal
 add_input_constraints \

[get_pins [list $connection_node_name]] \
-c${forced_value_in_pre_scan_drc}

 } else {
 ### Command tp force port
 add_input_constraints \

[get_ports [list $connection_node_name]] \
 -c${forced_value_in_pre_scan_drc}

 }
 }
}
...

• If required and after you have inserted the scan using your third-party tool, you can
proceed to “Make Pre-ATPG Connections with Third-Party Scan for Top Chip” on
page 209.

• When you have completed scan insertion, the next step is to “Perform Top Chip
Graybox Generation, ATPG Pattern Generation, and Wrapped Core Pattern
Retargeting” on page 211.

Make Pre-ATPG Connections with Third-Party Scan for Top Chip

You perform this step in the flow only if the wrapped core has at least one sub-wrapped core.

If your design contains no sub-wrapped cores, skip this step in the flow and proceed directly to
“Perform Top Chip Graybox Generation, ATPG Pattern Generation, and Wrapped Core Pattern
Retargeting” on page 211.

The most important logic to support hierarchical ATPG is the connection from the top level
EDT scan in ports to the primary inputs that you created for each wrapper chain to cover
external faults to all child cores.

Tessent™ Shell User’s Manual, v2021.3210

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-26 illustrates this connection at an abstract level, marked in red.

Figure 5-26. Top Level EDT Connection to Child Cores

Note
The line numbers used in this procedure refer to the command flow dofile in “Example
Dofile for Pre-ATPG Connections for Top Chip” on page 211.

Prerequisites

• You must have performed the two-pass DFT insertion as described in “Perform Two-
Pass Insertion and Synthesis for Top Chip” on page 206.

• You must have inserted scan using your third-party scan insertion tool per the guidelines
provided in “Third-Party Scan Insertion for Top Chip” on page 207.

Procedure

1. Load the design. (See lines 1-9).

2. Change to insertion mode. (See line 12).

3. Make the connections. (See lines 12-32).

4. Save the design. (See line 36).

5. Write the design back to the TSDB. (See lines 38-40).

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 211

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Example Dofile for Pre-ATPG Connections for Top Chip

1 # load the design
2 set_context dft -no_rtl
3 set_tsdb_output_directory ../tsdb_outdir
4 open_tsdb \ ../../cores_will_be_wrapped/<child_core_name>/tsdb_outdir
5 read_cell_library ../../library/tessent/adk.tcelllib
6 read_design <top_level_name> -design_id <rtl2> -no_hdl
7 read_verilog ../<synthesis_path>/<top_level_name>.vg
8 read_design <child_core_name> -design_id <scan> -view graybox
9 set_current_design <top_level_name>
10
11 # make the ATPG connections:
12 set_system_mode insertion
13
14 # disconnect empty scan out from ground
15 delete_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[20]
16 delete_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[21]
17 delete_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[22]
18 delete_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[23]
19 …
20 # connect top level EDT scan in to child core primary input of wrapper
21 # chain
22 create_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_in[20]
23 /<child_core_instance_1>/ext_wsi[0]
24 create_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_in[21]
25 /<child_core_instance_1>/ext_wsi[1]
26 …
27 # connect top level EDT scan out to child core primary output of wrapper
28 # chain
29 create_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[20]
30 /<child_core_instance_1>/ext_wso[0]
31 create_connection /chip_top_rtl2_tessent_edt_c1_inst/edt_scan_out[21]
32 /<child_core_instance_1>/ext_wso[1]
33 # repeat for all ext_wsi/wso of all child core instances
34
35 # save design after insertion
36 write_design -output_file <top_level_name>_scan.vg -replace
37
38 # Specify the design level before writing out a softlink of the design
39 set_design_level physical_block
40 write_design -tsdb -softlink_netlist -verbose
41 exit

Perform Top Chip Graybox Generation, ATPG Pattern
Generation, and Wrapped Core Pattern Retargeting

This step in the flow creates the graybox model of the top chip, generates ATPG patterns, and
retargets those patters for each child core in the design.

Prerequisites

• You must have completed the “Perform Two-Pass Insertion and Synthesis for Top
Chip” on page 206 step for the top chip.

Tessent™ Shell User’s Manual, v2021.3212

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• You must have inserted scan with your third-party scan insertion tool per the guidelines
cited in “Third-Party Scan Insertion for Top Chip” on page 207 for the top chip and
written the scan-inserted netlist back into the Tessent Shell Database.

• If required, make ATPG connections using the process outlined in “Make Pre-ATPG
Connections with Third-Party Scan for Top Chip” on page 209 for the top chip.

Procedure

1. Perform top level ATPG. Refer to “Performing Top-Level ATPG Pattern Retargeting”
on page 177.

See “Top Level ATPG Pattern Generation Example” on page 213 for details on top-
level ATPG. Verification of these patterns is a must to ensure that the circuit functions.

See “Pattern Retargeting of Each Child Core Example” on page 214 for details on the
retargeting of patterns for each child core.

Depending on tester channel availability on how many cores can be run in parallel, the
internal mode ATPG patterns from each of the lower-level cores can be retargeted to the
chip-level top.

2. Save the design and write the patterns to the TSDB using the write_tsdb_data command.

write_tsdb_data -replace

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Tessent™ Shell User’s Manual, v2021.3 213

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Top Level ATPG Pattern Generation Example

Import design:
set_context pattern -scan -design_id <scan>
set_tsdb_output_directory ../tsdb_outdir

this open_tsdb should import all tsdb of child cores
open_tsdb ../../wraped_cores/<child_core_name>/tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib

make sure to import all child cores in graybox view
read_design <child_core_name> -design_id <scan> -view graybox
read_design <top_level_name> -design_id <scan>
set_current_design <design_name>
set_design_level top

Import core instances we want to active:
add_core_instances -module chip_top_gate2_tessent_occ_INCLK
add_core_instances -module chip_top_gate2_tessent_occ_pll_clock_0
add_core_instances -module chip_top_gate2_tessent_edt_c1

Configure top level DFT signal values to edt_mode and all wrapped child
core instances to external mode:
set_static_dft_signal_values edt_mode 1
set_static_dft_signal_values ltest_en 1
set_static_dft_signal_values tck_occ_en 1
set_static_dft_signal_values int_ltest_en 1

configure child core by set_test_setup_icall
set_static_dft_signal_values ext_mode 1 -instance <child_core_name1>
set_static_dft_signal_values ext_ltest_en 1 -instance <child_core_name1>

repeat for all child core instances

generate and save pattern:
set_fault_type stuck
set_system_mode analysis
create_patterns
write_tsdb_data -replace

write parallel testbench and serial testbench for simulation
write_patterns <top_level_name>_parallel.v -verilog -parallel
write_pattenrs <top_level_name>_serial.v -verilog -serial
Repeat to generate transition patterns. Verification of these patterns
are a must to ensure the circuit functions.

Tessent™ Shell User’s Manual, v2021.3214

Tessent Shell Workflows
RTL and DFT Insertion Flow With Third-Party Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Retargeting of Each Child Core Example

Import design:
set_context pattern -scan_retargeting
set_tsdb_output_directory ../tsdb_outdir

this open_tsdb should import all tsdb of child cores
open_tsdb ../../wraped_cores/<child_core_name>/tsdb_outdir
read_cell_library ../../../library/tessent/adk.tcelllib

make sure to import all child cores except the one we are doing
retargeting in graybox view
read_design <child_core_name> -design_id <scan> -view graybox
read_design <current_core_name> -design_id <scan> -view graybox
read_design <top_level_name> -design_id <scan>
set_current_design <top_level_name>
set_design_level top

Read in the internal mode core description file of current child core
by add_core_instance:
-mode should match the mode while generating internal mode patterns
add_core_instances -instance <current_core_instance_name> \
 -core <current_core_name> -mode edt_int_stuck

Configure top level DFT signal values to retargeting_mode for this exact
child core:
set_current_mode retarget1_<current_child_core_name>_stuck
configure top level to retargeting mode for current child core
set_static_dft_signal_values retargeting1_mode 1

generate and save pattern:
for transition fault ATPG, replace stuck with transition
set_fault_type stuck
import_clocks
set_system_mode analysis
create_patterns
write_tsdb_data -replace

write parallel testbench and serial testbench for simulation
write_patterns <current_child_core_name>_parallel.v -verilog \
 -parallel
write_pattenrs <current_child_core_name>_serial.v -verilog \
 -serial

Tessent Shell Workflows
Tessent Shell Post-Layout Validation Flow

Tessent™ Shell User’s Manual, v2021.3 215

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell Post-Layout Validation Flow
Performing physical place and route on pre-layout netlists results in post-layout netlists you
must validate before you can proceed to tape-out.

This flow assumes that you are familiar with the pre-layout flows as described in “Tessent Shell
Flow for Flat Designs” and “Tessent Shell Flow for Hierarchical Designs,” especially as related
to ATPG pattern generation.

Overview of the Post-Layout Validation Flow . 215

Soft Link TSDB and Post-Layout Netlist . 216

Verify MemoryBIST, Boundary Scan and IJTAG Patterns . 217

Verifying the Scan-Inserted ATPG Patterns. 218

Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic 220

Overview of the Post-Layout Validation Flow
You can validate the post-layout netlist for hierarchical core, hierarchical top, and flat chip-level
designs.

As shown in the following figure, you must first generate a soft link in the TSDB that points to
the post-layout netlist. Then you verify the patterns for the MemoryBIST, boundary scan (if
any) and IJTAG network, followed by verifying the post-scan-inserted ATPG patterns.

Figure 5-27. Post-Layout Validation Flow

Tessent™ Shell User’s Manual, v2021.3216

Tessent Shell Workflows
Soft Link TSDB and Post-Layout Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This flow assumes that within the post-layout netlist, modules exist for the IJTAG network and
inserted EDT and OCC instruments. That is, they remain distinct logical entities. Refer to “Post-
Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic” if you have
ungrouped (unpreserved) logic.

Soft Link TSDB and Post-Layout Netlist
The soft link enables Tessent Shell to access the post-layout netlist for validation purposes. You
are associating and linking the post-layout netlist (place-and-routed design) with all the pre-
layout data files such as the ICL, TCD, and PDL.

Prerequisites

• You have previously performed the pre-layout flow so that you have the post-scan
inserted DFT data files (ICL, PDL, TCD, and so on).

• You have a post-layout netlist as a result of place and route.

Procedure

1. Load the design, including the post-layout netlist (lines 1-15). Ensure that you specify a
unique design ID, such as “post_layout”.

2. Add any black boxes, as applicable, and set the design level, which can be chip,
physical_block, or sub_block (lines 17-22).

3. Save the updated netlist (line 23). Ensure that you use the -softlink_netlist option with
the write_design command.

Using this switch references the post-layout netlist rather than copies it into the TSDB.
This prevents duplication and enables the post-layout netlist to be updated without the
need to repeat this step.

Examples

The following example generates an updated netlist for a wrapped core named processor_core
that includes a soft link to the core’s post-layout netlist.

1 set_context patterns -ijtag -design_id post_layout
2
3 # Set the location of the TSDB
4 set_tsdb_output_directory ../tsdb_core
5
6 # Read the Tessent Cell Library
7 read_cell_library ../../../library/tessent/adk.tcelllib
8
9 # Read the post-layout netlist and elaborate the design
10 read_verilog ../netlist/processor_core_layout.vg
11
12 # Read in the scan-inserted design data files generated during pre-layout
13 # The -no_hdl switch loads all relevant data except the original netlist
14 read_design processor_core -design_id gate -no_hdl -verbose

Tessent Shell Workflows
Verify MemoryBIST, Boundary Scan and IJTAG Patterns

Tessent™ Shell User’s Manual, v2021.3 217

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

15
16 set_current_design processor_core
17
18 add_black_boxes -modules { \
19 SYNC_1RW_8Kx16 \
20 }
21
22 # Specify the design level before writing out the softlink
23 set_design_level physical_block
24 write_design -tsdb -softlink_netlist -verbose
25 exit

Verify MemoryBIST, Boundary Scan and IJTAG
Patterns

Create and validate the MemoryBIST, boundary scan (if present), and IJTAG network patterns
by creating and processing a patterns specification with the create_patterns_specification and
process_patterns_specification commands.

Prerequisites

• You have generated a soft link in the TSDB that points to the post-layout netlist as
described in “Soft Link TSDB and Post-Layout Netlist.”

Procedure

1. Load the design by using read_design and pointing to the soft-linked post-layout netlist
(lines 1-9).

2. If needed, add black boxes, and then check the design rules (lines 11-14).

3. Create, simulate, and check the test benches (see lines 16-24). Refer to
“create_patterns_specification” and “process_patterns_specification” in the Tessent
Shell Reference Manual for details.

Examples

Verify the Patterns With a New Patterns Specification

The following example verifies the patterns for a hierarchical core, processor_core.

1 set_context patterns -ijtag -design_id post_layout
2 set_tsdb_output_directory ../tsdb_core
3
4 # Reading the tessent cell library
5 read_cell_library ../../../library/tessent/adk.tcelllib
6
7 # Reading the soft-linked post-layout netlist from the tsdb_core
8 read_design processor_core -design_id post_layout –verbose
9 set_current_design processor_core
10
11 add_black_boxes -modules { \
12 SYNC_1RW_8Kx16 \
13 }

Tessent™ Shell User’s Manual, v2021.3218

Tessent Shell Workflows
Verifying the Scan-Inserted ATPG Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

14 check_design_rules
15
16 create_patterns_specification
17 process_patterns_specification
18
19 set_simulation_library_sources -v ../../../library/memory/

SYNC_1RW_8Kx16.v
20 -v ../../../library/verilog/adk.v
21
22 # Turn off clock monitoring when running simulation on post-layout netlist
23 run_testbench_simulations -simulation_macro_definitions

TESSENT_DISABLE_CLOCK_MONITOR
24 check_testbench_simulations -report_status
25 exit

Verify the Patterns with a Customized Patterns Specification from Pre-Layout Signoff

You may have customized a patterns specification during pre-layout signoff. You can read in
this patterns specification that was stored in the TSDB during pre-layout signoff. Use the
read_config_data command instead of the create_patterns_specification command.

The following example shows how to read in a customized patterns specification from pre-
layout netlist. The pre-layout patterns specification
“processor_core_gate.patterns_spec_signoff” was used to create the patterns on the gate-level
scan-inserted netlist.

set_context patterns –ijtag –design_id after_layout
set_tsdb_output_directory ../tsdb_core
Reading the tessent cell library
Read the soft-linked post-layout netlist and elaborate the design...
check_design_rules
read_config_data ../tsdb_core/patterns/ \

processor_core_gate.patterns_spec_signoff
process_patterns_specification
Read in the required libraries and simulate
...

Verifying the Scan-Inserted ATPG Patterns
Perform ATPG on the post-layout netlist and save the patterns.

Prerequisites

• In the SDC that was created during ICL extraction for the pre-layout DFT insertion
flow, set the tessent_get_preserve_instances proc to add_core_instances when you do
not need grayboxes. For example, when you are working with flat designs.

For wrapped cores, set the tessent_get_preserve_instances proc to icl_extraction to
automatically include ICL instances in the grayboxes.

The SDC file is located in the TSDB directory under dft_inserted_designs. Refer to
“Timing Constraints (SDC)” for more information.

Tessent Shell Workflows
Verifying the Scan-Inserted ATPG Patterns

Tessent™ Shell User’s Manual, v2021.3 219

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Load the design (lines 1-9). Ensure that you set the context to patterns -scan and read in
the soft-linked post-layout netlist.

2. Set the current mode (lines 11-12). Specify a different name than that used during scan
insertion and used during pre-layout pattern generation.

3. Perform the remainder of the ATPG pattern generation flow (see lines 14-35).

Examples

The following example shows how to verify scan-inserted ATPG patterns by using the patterns
-scan context and a post-layout netlist. This example shows the flow for a flat design. For
hierarchical designs, refer to “Performing ATPG Pattern Generation: Wrapped Core” for
specifics related to wrapped cores and “Top-Level ATPG Pattern Generation Example” for a
top-level example.

1 set_context patterns -scan
2 read_cell_library ../library/tessent/adk.tcelllib
3 read_cell_library ../library/mem_ver/memory.lib
4 # Point to the TSDB directory
5 set_tsdb_output_directory ../tsdb_rtl
6
7 # Reading the post-layout netlist
8 read_design cpu_top -design_id post_layout
9 set_current_design cpu_top
10
11 # Use a unique mode name
12 set_current_mode edt_stuck_final
13
14 report_dft_signals
15 # If Tessent Scan was used for scan insertion, can use the scan

#configuration mode
16 import_scan_mode edt_mode
17 # Set the following DFT Signal values to use the boundary scan chain to

#apply/capture values that would normally use the I/O pads
18 set_static_dft_signal_values int_ltest_en 1
19 set_static_dft_signal_values output_pad_disable 1
20 # Set the following DFT signal value to apply the shift_capture_clock to

#the scan-tested network during capture phase of ATPG
21 set_static_dft_signal_value tck_occ_en 1
22 report_static_dft_signal_settings
23
24 set_system_mode analysis
25
26 # Generation of ATPG patterns
27 create_patterns
28 report_statistics -detailed_analysis
29 write_tsdb_data -replace
30
31 # Patterns written out for simulation
32 write_patterns patterns/cpu_top_stuck_parallel.v -verilog -parallel \

-replace -scan -parameter_list {SIM_KEEP_PATH 1}
33 write_patterns patterns/cpu_top_stuck_serial.v -verilog -serial -replace \

-parameter_list {SIM_KEEP_PATH 1}

Tessent™ Shell User’s Manual, v2021.3220

Tessent Shell Workflows
Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

34 # Writing the STIL pattern for tester
35 write_patterns patterns/cpu_top_stuck.stil -stil -replace
36 exit

Post-Layout Validation When You Have Ungrouped
IJTAG/OCC/EDT Logic

During layout, IJTAG, OCC, and EDT logic can become ungrouped, which means the hierarchy
around this logic is dissolved so that the gates that were inside of the ungrouped instances
become part of the next higher instance. Ungrouped test logic during layout can cause some of
the automated setup for pattern generation to no longer operate seamlessly.

The automated flow relies on preservation of Tessent test logic’s hierarchical names. Use the
following post-layout validation flow to update the TSDB with the post-layout netlist and set up
the design for ATPG. The flow assumes knowledge of the ATPG pattern generation flow for
physical blocks as described in “Performing ATPG Pattern Generation: Wrapped Core”.

Figure 5-28. Post-Layout Validation Flow with Ungrouped IJTAG/OCC/EDT
Logic

The best way to avoid complications related to ungrouping in layout is to use the
tessent_get_preserve_instances procedures in the generated SDC file to identify which
instances must be preserved based on their intended uses. See the “Synthesis Helper Procs”
section in the Tessent Shell User’s Manual.

To use the add_core_instances command during ATPG or other post-layout steps, the hierarchy
of the OCC and EDT logic must be preserved. The IJTAG logic nodes only need to be
preserved if you plan to rerun ICL extraction on the post-layout netlist, but in most cases there is
no need to do this.

Tessent Shell Workflows
Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic

Tessent™ Shell User’s Manual, v2021.3 221

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• If you do not preserve the instances, you must write out a TCD file for every mode of
operation at the core level before you perform layout. In some cases, you may not need
to generate patterns until after layout, but even then, you must run ATPG before layout
to generate the core-level TCD files. Failure to perform this task could result in R14 or
R15 rule check errors.

Procedure

1. Soft link the post-layout netlist to the TSDB. Refer to “Soft Link TSDB and Post-Layout
Netlist” for more information.

2. Generate the graybox model.

Graybox models are only required for hierarchical cores, not for hierarchical top or flat
designs. (The line numbers in this step refer to the example “Generate the Graybox
Model” on page 222.)

a. When loading the design (line 4), specify the same design that you used to write the
post-layout netlist to the TSDB, for example “post_layout”.

Using the same design ID for the graybox model that you used for the post-layout
netlist enables Tessent to access the full design view or the graybox model with the
same design ID.

b. Read the core description for external mode using the add_core_instances command
(line 9).

Because you already ran the pre-layout ATPG step and saved the TCD file to the
TSDB, the add_core_instances command can read the existing TCD file and add the
core instances that are active in external mode.

c. Use analyze_graybox to generate the graybox (line 13). If the IJTAG network was
ungrouped in layout, the analyze_graybox command can automatically find and
preserve the IJTAG SRI network as long as the default names of the logic have not
changed.

3. If you are running in hierarchical mode, run ATPG on the core’s internal mode of the
wrapped core to generate the ATPG patterns that you retarget at the top level of the chip.
If you are running in hierarchical top or in flat mode, run ATPG.

The line numbers in this example refer to example “Run ATPG on the Core’s Internal
Mode” on page 223.

a. Specify a unique ATPG mode name with the set_current_mode command (line 9).
Append the name with “_post_layout” or “_final” to clarify which mode to use for
silicon diagnosis, and then set the current mode type to “internal”.

b. Add the core instances using the design ID and mode from the pre-layout step (line
14).

Tessent™ Shell User’s Manual, v2021.3222

Tessent Shell Workflows
Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This loads the TCD file that contains the information for the design’s core instances.
It is unnecessary to match these instances to the test logic instances that may have
been ungrouped during layout.

c. (Optional) use the read_faults command to merge the fault list from running external
mode to find the total overall fault coverage of the wrapped core (line 36).

When you run ATPG in internal mode for transition patterns, you must do the following:

• Specify a unique name for the ATPG run with the set_current_mode command. For
example, edt_int_tdf_final.

• Use the add_core_instances command to read the transition mode TCD. For
example:

add_core_instance -current_design -design_id gate -mode
edt_int_transition

• Ensure that you set the correct fault type:

set_fault_type transition

• You can optimize the number of capture cycles used by the OCCs by specifying the
optional capture_window_size parameter. The following command specifies a
capture_window_size of 2:

set_core_instance_parameters -instrument_type occ
-parameter_values [list capture_window_size 2]

4. Run Verilog simulation of the core-level ATPG patterns.

Performing this task ensures that the patterns function as needed when they are
retargeted at the parent level. For parallel load patterns, as specified by the
write_patterns -parallel command, simulate all the patterns. For serial load patterns, a
handful of patterns are sufficient; the run time for simulating gate-level serial load
patterns is significant. The set_pattern_filtering command (line 27) is used to reduce the
number of serial patterns saved for the simulation.

Examples

Generate the Graybox Model

The following example creates a graybox model for a post-layout processor_core design and
saves the data under the same design ID.

1 set_context patterns -scan -design_id post_layout
2 set_tsdb_output_directory ../tsdb_outdir
3 read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
4 read_design processor_core -design_id post_layout -verbose
5 read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v -interface_only
6 set_current_design processor_core
7 # Use the add_core_instances command to read the TCD file.
8 #import_scan_mode ext_mode
9 add_core_instances -current_design -design_id gate

Tessent Shell Workflows
Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic

Tessent™ Shell User’s Manual, v2021.3 223

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

10 check_design_rules
11 report_scan_cells
12 # Create and write the updated graybox model to the TSDB.
13 analyze_graybox
14 write_design -tsdb -graybox -verbose
15 exit

Run ATPG on the Core’s Internal Mode

1 set_context patterns -scan -design_id post_layout
2 set_tsdb_output_directory ../tsdb_outdirRun/adk.tcelllib
3 read_design processor_core -design_id post_layout -verbose
4 read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v -interface_only
5 set_current_design processor_core
6 # Specify the current mode using a different name than what was used
7 # during scan insertion or pre-layout
8
9 set_current_mode edt_int_stuck_final -type internal
10
11 # Use the -design_id and -mode from pre-layout to read in the TCD of that
12 # mode
13
14 add_core_instance -current_design -design_id gate -mode edt_int_stuck
15 set_system_mode analysis
16 add_fault -all
17 report_statistics -detail
18 create_patterns
19 report_statistics -detail
20 # Store TCD, flat_model, fault list and patDB format files in the TSDB
21 # directory
22
23 write_tsdb_data -replace
24
25 # Write Verilog patterns for simulation
26 write_patterns patterns/processor_core_stuck_parallel.v -verilog -

parallel -replace -parameter_list {SIM_KEEP_PATH 1}
27 set_pattern_filtering -sample_per_type 2
28 write_patterns patterns/processor_core_stuck_serial.v -verilog -serial -

replace -parameter_list {SIM_KEEP_PATH 1}
29 # Optional Step - Can run in external mode and calculate the fault
30 # coverage of the core(both Internal and External) as described below.
31 # In order to understand the coverage of the faults testable by Internal
32 # mode it is necessary to eliminate the undetected faults that would
33 # otherwise be detected in External mode. This is done by merging the
34 # fault list from running the graybox in External mode with read_faults:
35
36 #read_faults -mode ext_multi_stuck -fault_type stuck -merge -verbose
37
38 # Final coverage of the core that includes both Internal and External
39 # modes
40 # report_statistics -detail
41 exit

Tessent™ Shell User’s Manual, v2021.3224

Tessent Shell Workflows
Test Bench Generation and Simulation in RTL Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Bench Generation and Simulation in RTL
Mode

Test bench module generation and the Standard Test Interface (STI) infrastructure support
complex port data types. A simulation wrapper is generated to connect a DUT with complex
pins to the test bench environment.

The simulation wrapper port list includes ports of scalar and one-dimensional bus data types.
The port names are the post-synthesis names of sub-bundle objects as inferred from the original
RTL complex ports of the DUT. This approach isolates the DUT from the test bench
environment and hides the complexity of its ports and other SystemVerilog dependencies.

Simulation Wrapper Creation . 224

Test Bench Examples. 227

Simulation Wrapper Creation
A simulation wrapper is created during process_dft_specification and extract_icl. This wrapper
is needed only if the current design module includes complex ports.

You can also create the simulation wrapper manually with the get_current_design,
report_current_design, and write_design commands.

If read_design encounters ports that can cause issues in simulation or in the TSDB flow, a
warning is issued:

// Warning: The design 'sv_mod1' just read has ports with 'unpacked struct'/'enumerate'

// datatypes declared in Global ($unit) or local scope ('sv_mod1' scope).

// If you try to elaborate this design within its parent, you will get an error.

// It will only work if this design is your current design.

These issues typically arise when port declarations use data types that are not visible to the tool.
The warning indicates that a call to set_current_design of the parent block will raise additional
warnings. Use report_current_design after running set_current_design to obtain more
information about these ports.

Tessent Shell Workflows
Simulation Wrapper Creation

Tessent™ Shell User’s Manual, v2021.3 225

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows how the simulation wrapper is created during extract_icl:

// command: extract_icl
// Writing simulation wrapper : \
./tsdb_outdir/dft_inserted_designs/sv_mod1_RTL1.dft_inserted_design/
sv_mod1.sv09_simulation_wrapper
// Note: Updating the hierarchical data model to reflect RTL design
changes.
// Writing design source dictionary : \
./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL1.dft_inserted_design/sv_mod1.design_source_dictionary
// Flattening process completed, cell instances=111, gates=1310, PIs=470,
POs=166, CPU time=0.04 sec.
// --
// Begin circuit learning analyses.
// --------------------------------
// Learning completed, CPU time=0.02 sec.
// --
// Begin ICL extraction.
// ---------------------
// ICL extraction completed, ICL instances=10, CPU time=0.16 sec.
// --
// --
// Begin ICL elaboration and checking.
// -----------------------------------
// ICL elaboration completed, CPU time=0.09 sec.
// --
// Writing ICL file : ./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL1.dft_inserted_design/sv_mod1.icl
// Writing consolidated PDL file: ./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL1.dft_inserted_design/sv_mod1.pdl
// Writing SDC file: ./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL1.dft_inserted_design/sv_mod1.sdc
// Writing DFT info dictionary: ./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL1.dft_inserted_design/
sv_mod1.dft_info_dictionary

Tessent™ Shell User’s Manual, v2021.3226

Tessent Shell Workflows
Simulation Wrapper Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows how the simulation wrapper is created during
process_dft_specification:

// command: process_dft_specification
//
// Begin processing of /DftSpecification(sv_mod1,RTL2)
// --- IP generation phase ---
// Validation of IjtagNetwork
// Validation of OCC
// Validation of EDT
// Processing of IjtagNetwork
// Generating design files for IJTAG SIB module
sv_mod1_RTL2_tessent_sib_1
// Verilog RTL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_sib_1.v
// IJTAG ICL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_sib_1.icl
// Generating design files for IJTAG SIB module
sv_mod1_RTL2_tessent_sib_2
// Verilog RTL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_sib_2.v
// IJTAG ICL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_sib_2.icl
// Generating design files for IJTAG Tdr module
sv_mod1_RTL2_tessent_tdr_sri_ctrl
// Verilog RTL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_tdr_sri_ctrl.v
// IJTAG ICL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_ijtag.instrument/sv_mod1_RTL2_tessent_tdr_sri_ctrl.icl
//
// Loading the generated RTL verilog files (2) to enable instantiating
the contained modules
// into the design.
// Processing of EDT
// Generating design files for EDT module
sv_mod1_RTL2_tessent_edt_edt1
// Verilog RTL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_edt.instrument/sv_mod1_RTL2_tessent_edt_edt1.v
// IJTAG ICL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_edt.instrument/sv_mod1_RTL2_tessent_edt_edt1.icl
// IJTAG PDL : ./tsdb_outdir/instruments/
sv_mod1_RTL2_edt.instrument/sv_mod1_RTL2_tessent_edt_edt1.pdl
// TCD : ./tsdb_outdir/instruments/
sv_mod1_RTL2_edt.instrument/sv_mod1_RTL2_tessent_edt_edt1.tcd
//
// Loading the generated RTL verilog files (1) to enable instantiating
the contained modules
// into the design.
// --- Instrument insertion phase ---
// Inserting instruments of type 'ijtag'
// Inserting instruments of type 'edt'
//
// Writing out modified source design in ./tsdb_outdir/
dft_inserted_designs/sv_mod1_RTL2.dft_inserted_design
// Writing simulation wrapper : ./tsdb_outdir/dft_inserted_designs/
sv_mod1_RTL2.dft_inserted_design/sv_mod1.sv09_simulation_wrapper
// Writing out specification in ./tsdb_outdir/dft_inserted_designs/

Tessent Shell Workflows
Test Bench Examples

Tessent™ Shell User’s Manual, v2021.3 227

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

sv_mod1_RTL2.dft_spec
// Done processing of
DftSpecification(sv_mod1,RTL2

Related Topics

get_current_design

read_design

report_current_design

write_design

set_current_design

Test Bench Examples

SystemVerilog design definition with the top level named “top” and one SystemVerilog
interface port named “Bus”:

typedef enum logic [2:0] {
 RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW
} color_t;

typedef struct packed{
 logic [2:0] eventbus;
} event_bus_packet_t;

typedef struct packed{
 color_t state_encoded;
 event_bus_packet_t dt_lcp_pulse;
 logic [3:0] eventbus_encoded;
} event_bus_split_packet_t;

interface MSBus;
 event_bus_split_packet_t Addr;
 logic [1:0] Data;
 logic RWn;
 logic Clk;
 modport Secondary (input Addr, RWn, Clk, output Data);
endinterface

module top(MSBus.Secondary Bus);
endmodule

Each bit-blasted bit of the DUT is connected to its associated test pattern wire using the post-
synthesis pin name. The name of the test pattern bit is the same as that of the DUT pin bit,
escaped with a backslash (\). The DUT instance (DUT_inst) is the generated simulation

Tessent™ Shell User’s Manual, v2021.3228

Tessent Shell Workflows
Test Bench Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

wrapper, with the DUT itself instantiated in it. This table cross-references the DUT pin names
and the test pattern bit names:

Table 5-1. Test Pattern Bit Name Assignments

DUT Pin of Port “Bus” Test Pattern Bits

DUT_inst/\Bus.Addr [10] \Bus.Addr [10]

DUT_inst/\Bus.Addr [9] \Bus.Addr [9]

DUT_inst/\Bus.Addr [8] \Bus.Addr [8]

DUT_inst/\Bus.Addr [7] \Bus.Addr [7]

DUT_inst/\Bus.Addr [6] \Bus.Addr [6]

DUT_inst/\Bus.Addr [5] \Bus.Addr [5]

DUT_inst/\Bus.Addr [4] \Bus.Addr [4]

DUT_inst/\Bus.Addr [3] \Bus.Addr [3]

DUT_inst/\Bus.Addr [2] \Bus.Addr [2]

DUT_inst/\Bus.Addr [1] \Bus.Addr [1]

DUT_inst/\Bus.Addr [0] \Bus.Addr [0]

DUT_inst/\Bus.RWn \Bus.RWn

DUT_inst/\Bus.Clk \Bus.Clk

DUT_inst/\Bus.Data [1] \Bus.Data[1]

DUT_inst/\Bus.Data [0] \Bus.Data[0]

Tessent Shell Workflows
Test Bench Examples

Tessent™ Shell User’s Manual, v2021.3 229

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The test bench module generated is as follows, in part:

`timescale 1ns / 1ns
module TB;
 integer _write_DIAG_file;
 integer _DIAG_file_header;
 integer _diag_file;
 integer _diag_chain_header;
 integer _diag_scan_header;
 integer _last_fail_pattern;
 . . .
 wire \Bus.Addr[10], \Bus.Addr[9], \Bus.Addr[8], \Bus.Addr[7],
 \Bus.Addr[6], \Bus.Addr[5], \Bus.Addr[4], \Bus.Addr[3],
 \Bus.Addr[2], \Bus.Addr[1], \Bus.Addr[0], \Bus.RWn ,
 \Bus.Clk , \Bus.Data[1], \Bus.Data[0], ijtag_tck,
 ijtag_reset, ijtag_ce, ijtag_se, ijtag_ue, ijtag_sel,
 ijtag_si, ijtag_so;
 assign \Bus.Addr[10] = _ibus[19];
 assign \Bus.Addr[9] = _ibus[18];
 assign \Bus.Addr[8] = _ibus[17];
 assign \Bus.Addr[7] = _ibus[16];
 assign \Bus.Addr[6] = _ibus[15];
 assign \Bus.Addr[5] = _ibus[14];
 assign \Bus.Addr[4] = _ibus[13];
 assign \Bus.Addr[3] = _ibus[12];
 assign \Bus.Addr[2] = _ibus[11];
 assign \Bus.Addr[1] = _ibus[10];
 assign \Bus.Addr[0] = _ibus[9];
 assign \Bus.RWn = _ibus[8];
 assign \Bus.Clk = _ibus[7];
 assign ijtag_tck = _ibus[6];
 assign ijtag_reset = _ibus[5];
 assign ijtag_ce = _ibus[4];
 assign ijtag_se = _ibus[3];
 assign ijtag_ue = _ibus[2];
 assign ijtag_sel = _ibus[1];
 assign ijtag_si = _ibus[0];
 assign _sim_obus[2] = \Bus.Data[1] ;
 assign _sim_obus[1] = \Bus.Data[0] ;
 assign _sim_obus[0] = ijtag_so;
 . . .
 reg[71:0] mem [0:1864134];
 top_wrapper DUT_inst (.\Bus.Addr ({\Bus.Addr[10], \Bus.Addr[9],
 \Bus.Addr[8], \Bus.Addr[7],
 \Bus.Addr[6], \Bus.Addr[5],
 \Bus.Addr[4], \Bus.Addr[3] ,
 \Bus.Addr[2], \Bus.Addr[1],
 \Bus.Addr[0]}),
 .\Bus.RWn (.\Bus.RWn),
 .\Bus.Clk (.\Bus.Clk),
 .\Bus.Data ({\Bus.Data[1], \Bus.Data[1]},
 .ijtag_tck(ijtag_tck),
 .ijtag_reset(ijtag_reset),
 .ijtag_ce(ijtag_ce),
 .ijtag_se(ijtag_se),
 .ijtag_ue(ijtag_ue),
 .ijtag_sel(ijtag_sel),

Tessent™ Shell User’s Manual, v2021.3230

Tessent Shell Workflows
Test Bench Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 .ijtag_si(ijtag_si),
 .ijtag_so(ijtag_so));
. . .
endmodule

Simulation wrapper:

module top_wrapper(input wire [10:0] \Bus.Addr ,
 input wire \Bus.RWn ,
 input wire \Bus.Clk ,
 output wire [1:0] \Bus.Data
 input wire ijtag_tck,
 input wire ijtag_reset,
 input wire ijtag_ce,
 input wire jtag_se,
 input wire ijtag_ue,
 input wire ijtag_sel,
 input wire ijtag_si,
 output wire ijtag_so);

 MSBus tessent_intf_inst1();

 assign tessent_intf_inst1.Addr = \Bus.Addr ;
 assign tessent_intf_inst1.RWn = \Bus.RWn ;
 assign tessent_intf_inst1.Clk = \Bus.Clk ;
 assign \Bus.Data = tessent_intf_inst1.Data;

 top current_design(.Bus(tessent_intf_inst1),
 .ijtag_tck(ijtag_tck),
 .ijtag_reset(ijtag_reset),
 .ijtag_ce(ijtag_ce),
 .ijtag_se(ijtag_se),
 .ijtag_ue(ijtag_ue),
 .ijtag_sel(ijtag_sel),
 .ijtag_si(ijtag_si),
 .ijtag_so(ijtag_so));
endmodule

Tessent Shell Workflows
Test Bench Examples

Tessent™ Shell User’s Manual, v2021.3 231

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The test bench dofile:

set_context dft -rtl -design_id RTL1
read_cell_library techlib_adk.tnt/current/tessent/adk.tcelllib
read_core_description design/mem/*.tcd_memory
read_verilog design/packages/types.sv -format sv2009
read_verilog -f design/sv.list -format sv2009
set_current_design top
set_design_level phys
set_dft_specification_requirements -memory_test on
add_clocks [get_ports Bus.Clk] -period 10ns
check_design_rules
set spec [create_dft_spec]
// (the spec is populated here)
process_dft_spec
extract_icl
create_pattern_spec
process_pattern_spec
set_simulation_library_sources -v techlib_adk.tnt/current/verilog/adk.v
 -logical_library_map_list memlib
 ./memlib -v design/sv_v_files/pll.v
run_testbench_simulation -simulator_options {-t 10ps -L
memlib}

Tessent™ Shell User’s Manual, v2021.3232

Tessent Shell Workflows
Hybrid TK/LBIST Flow for Flat Designs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hybrid TK/LBIST Flow for Flat Designs
Tessent Shell supports inserting LogicBIST controllers that share IP resources with EDT
controllers to reduce hardware overhead. The process for performing this task is known as the
hybrid TK/LBIST flow. In this flow, Tessent Shell automatically adds hybrid logic to the EDT
controllers for IP resource sharing. The shared LogicBIST and EDT IP is often referred to as
hybrid TK/LBIST IPs, or simply hybrid IPs.

This discussion builds on the Tessent Shell RTL and scan DFT insertion flow as described in
“Tessent Shell Flow for Flat Designs” on page 112. Refer to Hybrid TK/LBIST Flow User’s
Manual for details about the hybrid TK/LBIST flow and inserted architecture.

Tip
This flow increments the basic Tessent Shell RTL and scan DFT insertion flow. To aid
comprehension, ensure that you have reviewed the test case for flat designs.

Refer to the following test case for a detailed usage example of the flow described in this
section. This test case illustrates hybrid IP insertion into a flat design with MemoryBIST in the
first DFT insertion pass and EDT, OCC, and LogicBIST in the second DFT insertion pass.

tessent_example_hybrid_tk_lbist_flow_<software_version>.lbist

You can access this test case by navigating to the following directory:

<software_release_tree>/share/UsageExamples/

RTL and Scan DFT Insertion Flow With Hybrid TK/LBIST. 232

Perform the First DFT Insertion Pass: Hybrid TK/LBIST. 233

Perform the Second DFT Insertion Pass: Hybrid TK/LBIST. 236

Perform Test Point Insertion . 241

Perform Scan Chain Insertion (Hybrid Flow) . 244

Performing ATPG Pattern Generation: Hybrid TK/LBIST. 246

Performing LogicBIST Fault Simulation . 249

Perform LogicBIST Pattern Generation . 251

RTL and Scan DFT Insertion Flow With Hybrid TK/
LBIST

Within the two-pass DFT insertion process for a flat design, insert the hybrid TestKompress/
LogicBIST IP during the second DFT insertion pass. Adding LogicBIST to your Tessent Shell
flow introduces several new steps: X-bounding, test point insertion, and LogicBIST fault
simulation and pattern generation. This hybrid solution adds self-test capabilities and is key to
satisfying the reliability requirements of the ISO 26262 automotive safety standard.

Tessent Shell Workflows
Perform the First DFT Insertion Pass: Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 233

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The test case that illustrates the hybrid TK/LBIST flow does not include boundary scan
insertion. Refer to “First DFT Insertion Pass: Performing MemoryBIST and Boundary

Scan” on page 116 for information about inserting boundary scan in the first DFT insertion
pass.

Figure 5-29. Two-Pass Insertion Flow With Hybrid TK/LBIST

Perform the First DFT Insertion Pass: Hybrid TK/
LBIST

When performing the hybrid TK/LBIST flow to insert the hybrid IP, perform the first pass of
the two-pass DFT and scan insertion process as usual—insert MemoryBIST and boundary scan.
In addition, for the hybrid TK/LBIST flow, enable controller chain mode (CCM) test by
specifying a dedicated control signal.

CCM enables you to generate ATPG patterns that target the hybrid-IP logic so that you can test
the test logic. Refer to “Controller Chain Mode” in the Hybrid TK/LBIST User’s Manual for
details.

Refer to “First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan” on page 116
for additional information.

Tessent™ Shell User’s Manual, v2021.3234

Tessent Shell Workflows
Perform the First DFT Insertion Pass: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-13
on page 234.

Procedure

1. Load the RTL design data and set the design parameters. (See lines 1-11.)

Note
“rtl1” is the recommended naming convention for the design ID for the first insertion
pass, but you can specify any name. Refer to “Loading the Design” for more

information about setting the design ID. The default design ID for the current test case is
“rtl.”

2. Add a DFT signal to use for controller chain mode. (See lines 13-16.) You must register
the DFT signal name and then add the signal.

By default, Tessent Shell adds a pin at the current design level to control CCM. You can
save this pin by using a TDR register to control CCM; do this by specifying the
add_dft_signal -create_with_tdr switch.

Whether or not you are inserting MemoryBIST or boundary scan, you must add the
CCM DFT signal in the first DFT insertion pass because its generated hardware is used
in the second pass when you insert the hybrid IP.

3. Set the set_dft_specification_requirements command to “on” for -memory_bist. (See
lines 18-19.)

4. Define the design clocks. (See lines 21-23.)

5. Check the design rules and set the system mode to analysis. (See lines 25-26.)

6. Create the DFT specification. (See lines 28-31.)

7. Generate the DFT hardware, IJTAG network connectivity, and test patterns. (See lines
33-43.)

8. Run simulations to verify the design. (See lines 45-50.)

Examples

Example 1

The following dofile example shows a typical command flow as detailed in the preceding
procedure. The highlighted command lines are unique to the process for inserting hybrid IP in a
two-pass DFT insertion process.

Example 5-13. Dofile Example for First Pass, Hybrid TK/LBIST With
MemoryBIST

1 # Load the design

Tessent Shell Workflows
Perform the First DFT Insertion Pass: Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 235

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2 set_context dft –rtl
3 set_tsdb_output_directory ../tsdb_outdir
4 read_verilog ../rtl/piccpu_rtl.v
5 read_cell_library ../lib/tessent/adk.tcelllib \
6 ../lib/tessent/picdram.atpglib
7 set_design_source -format tcd_memory -y ../rtl -extension memlib
8
9 set_current_design piccpu
10
11 set_design_level physical_block
12
13 # Add DFT signal for controller chain mode test
14 add_dft_signal controller_chain_mode -create_with_tdr
15
16 # Specify the DFT requirements
17 set_dft_specification_requirements -memory_test on
18
19 # Define memory clock
20 add_clocks 0 ramclk -period 100ns
21 add_clocks 0 clk -period 100ns
22
23 check_design_rules
24 set_system_mode analysis
25
26 # Create and report the DFT specification
27 # This test case reads in the DFT specification from a separate file
28 read_config_data mbist_ip.dftspec
29 report_config_data
30
31 # Generate and insert the hardware
32 process_dft_specification
33
34 extract_icl
35
36 # Generate MemoryBIST and IJTAG network verification patterns
37 create_patterns_specification
38
39 report_config_data
40
41 process_patterns_specification
42
43 # Run and check test bench simulations
44 set_simulation_library_sources -v {../lib/verilog/adk.v} \
45 -y ../lib/verilog -extension v
46
47 run_testbench_simulations
48 check_testbench_simulations -report_status
49
50 exit

Example 2

Typically, you insert MemoryBIST or boundary scan in the first DFT insertion pass before
inserting the hybrid IP (and OCC) in the second DFT insertion pass. The following sample
dofile shows a first DFT insertion pass without MemoryBIST or boundary scan, in which you
are adding the DFT signal for controller chain mode test.

Tessent™ Shell User’s Manual, v2021.3236

Tessent Shell Workflows
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 5-14. Dofile Example for First DFT Pass, Hybrid TK/LBIST Only

Load the design
set_context dft –rtl –design_id rtl1
set_tsdb_output_directory ../tsdb_outdir
set_design_sources -format tcd_memory -y ../rtl -extension memlib
read_verilog ../rtl/piccpu_rtl.v -verbose
read_cell_library ../library/tessent/adk.tcelllib \

../rtl/picdram.atpglib
set_current_design piccpu
set_design_level physical_block

Specify the clocks
add_clocks 0 clk -period 100ns
add_clocks 0 ramclk -period 100ns

Add DFT signal for controller chain mode test
add_dft_signal controller_chain_mode -create_with_tdr

check_design_rules

Create DFT specification
set spec [create_dft_specification]
set_config_value -in $spec user_rtl_cells on

process_dft_specification

extract_icl

Generate patterns
create_patterns_specification

Create patterns specification and create simulation test benches
process_patterns_specification

Run and check testbench simulations
set_simulation_library_sources -v ../library/verilog/adk.v \

-v ../library/memory/ram.v -y ../library/verilog -extensionv
run_testbench_simulations -simulator_option +nowarnTSCALEexit

Perform the Second DFT Insertion Pass: Hybrid TK/
LBIST

In the second DFT insertion pass with the hybrid TK/LBIST flow, insert the EDT, OCC, and
LogicBIST instruments.

Note
The line numbers used in this procedure refer to the command flow dofile in “Example 1:
Dofile Flow for the Second DFT Insertion Pass: Hybrid TK/LBIST” on page 238 unless

otherwise noted.

Tessent Shell Workflows
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 237

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Load the design and set the environment (see lines 1-6). Refer to “Loading the Design”
on page 121 for more information.

2. Define the DFT signals (see lines 8-28). Refer to “Specifying and Verifying the DFT
Requirements” on page 123 for more information.

Note
Hybrid TK/LBIST has additional DFT requirements for the clock signals.

3. Create the LogicBIST test point and X-bounding signals with a TDR (see lines 23-24).

4. Add a core instance for the MemoryBIST mini-OCC for LogicBIST test. (See lines
30-31.)

add_core_instances -instances [get_instances
*_tessent_sib_sti_inst]

This is required when you have inserted MemoryBIST in the first DFT insertion pass.

5. Creating the DFT Specification. (See lines 38-50.) Include a SIB for LogicBIST by
specifying lbist in the create_dft_specification command.

create_dft_specification -sri_sib_list {edt occ lbist}

Customize the generated DFT specification as follows. See “Example 2: DFT
Specification Example for Second DFT Insertion Pass with Hybrid TK/LBIST” on
page 239.

a. For OCC, set the static clock control to external and the capture trigger to
capture_en.

When static_clock_control is set to external, the OCC has an N-bit input (where N
equals the number of shift register bits), which is driven by the NcpIndexDecoder.
This is what gives the OCC programmability for LogicBIST.

When capture_trigger is set to capture_en, the OCC is capable of handling a free-
running slow clock. In LogicBIST applications, the slow clock is a free-running
clock (whereas for ATPG this comes from a top-level tester-controlled clock).

For details about OCC for the hybrid TK/LBIST flow, refer to “Tessent OCC TK/
LBIST Flow” in the Hybrid TK/LBIST Flow User’s Manual.

b. Specify a LogicBist wrapper that contains both a Controller wrapper and an
NcpIndexDecoder wrapper.

This wrapper causes Tessent Shell to automatically convert the EDT controller into a
hybrid controller for the hybrid TK/LBIST flow. In the Controller/Connections
wrapper, you must specify the controller_chain_enable property if you are using a
TDR to control CCM. Specify the full path to the pin or port name.

Tessent™ Shell User’s Manual, v2021.3238

Tessent Shell Workflows
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The NcpIndexDecoder wrapper specifies the named capture procedures (NCPs) for
LogicBIST test. For details, refer to “NCP Index Decoder” in the Hybrid TK/LBIST
Flow User’s Manual.

c. In the EDT/Controller wrapper, define the LogicBistOptions if you are not using the
default values.

When you specify the LogicBIST wrapper, the tool adds a LogicBistOptions
wrapper to the EDT controller automatically populated with default values.

The misr_input_ratio property provides a way to specify the MISR size. The
automatic (default) ratio results in the lowest hardware with a small MISR.

You can control how many chains are masked by a single mask register bit using the
chain_mask_register_ratio property. By default, the ratio is 1:1; there are as many
bits in the chain mask register as there are number of scan chains.

Specify the low-power shift options specifically for hybrid IP usage separately from
the low-power shift options for the EDT controller.

6. Process the DFT specification to generate the test hardware, including LogicBIST (see
line 52). Refer to “Generating the EDT, Hybrid TK/LBIST, and OCC Hardware” on
page 130 for more information.

7. Extract the ICL information (see line 54). Refer to “Extracting the ICL Module
Description” on page 130 for more information.

8. Generate the patterns and simulate the test bench (see lines 56-63). Refer to “Generating
ICL Patterns and Running Simulation” on page 131 for more information.

Examples

Example 1: Dofile Flow for the Second DFT Insertion Pass: Hybrid TK/LBIST

The following dofile example shows a typical command flow. The highlighted command lines
are unique to the process for inserting Tessent Shell LogicBIST and hybrid IP instruments in a
two-pass DFT insertion process. In this example, the dofile reads in the DFT specification that
defines the instruments to be inserted.

1 set_context dft -rtl -design_id rtl2
2 set_tsdb_output_directory ../tsdb_outdir
3 read_design piccpu -design_id rtl1
4 read_cell_library ../lib/tessent/adk.tcelllib \
5 ../lib/tessent/picdram.atpglib
6 set_current_design piccpu
7
8 # Add the DFT signals
9 # For scan test MemoryBIST-related logic
10 # Define tck_occ_en to access mini-OCC during LogicBIST
11 add_dft_signal ltest_en memory_bypass_en tck_occ_en
12
13 # Scan test shift/capture and edt clocks are driven from the
14 # test clock (saves a port)
15 add_dft_signal scan_en edt_update -source_node {scan_en edt_update }

Tessent Shell Workflows
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 239

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

16 add_dft_signal test_clock -source_node test_clock
17 add_dft_signal edt_clock shift_capture_clock -create_from_other_signals
18 # Alternatively, they can be directly driven from a primary port as
19 # follows
20 # add_dft_signal edt_clock shift_capture_clock -source_node {edt_clock
21 # shift_capture_clock}
22
23 # Required DFT signals for hybrid TK/LBIST
24 add_dft_signals control_test_point_en observe_test_point_en X_bounding_en
25
26 add_dft_signals int_ltest_en ext_ltest_en
27
28 set_dft_specification_requirements -logic_test on
29
30 # Add the MemoryBIST mini-OCC for LogicBIST test
31 add_core_instances -instances [get_instances *_tessent_sib_sti_inst]
32
33 # add_clock clk -period 100ns
34 # Need to define it because of ICL clock port tracing
35
36 check_design_rules
37
38 # Create DFT specification
39 # Populated later in this dofile
40 set spec [create_dft_specification -sri_sib_list {occ edt lbist }]
41
42 # You can set this property if there are no library cells
43 # set_config_value -in $spec use_rtl_cells on
44
45 report_config_data $spec
46
47 # Read in the DFT specification data
48 # This test case reads in the DFT specification from a separate file
49 # This file is illustrated in the next example
50 read_config_data logic_instruments.dftspec -in_wrapper $spec -replace
51
52 process_dft_specification
53
54 extract_icl
55
56 create_patterns_specification
57 process_patterns_specification
58
59 set_simulation_library_sources -v {../lib/verilog/adk.v} \
60 -y ../lib/verilog -extension v
61
62 run_testbench_simulations
63 check_testbench_simulations -report_status
64
65 exit

Example 2: DFT Specification Example for Second DFT Insertion Pass with Hybrid TK/LBIST

The following example illustrates a DFT specification customized to include the wrappers for
the LogicBIST controller and additional LogicBIST options for the EDT controller.

1 Occ {

Tessent™ Shell User’s Manual, v2021.3240

Tessent Shell Workflows
Perform the Second DFT Insertion Pass: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2 ijtag_host_interface: Sib(occ);
3 capture_trigger: capture_en;
4 static_clock_control: both;
5 Controller(clk) {
6 clock_intercept_node: clk;
7 }
8 Controller(ramclk) {
9 clock_intercept_node: ramclk;
10 }
11 }
12
13 # Include the LogicBIST controller
14 # Example LogicBIST only; modify for your design requirements
15 LogicBist {
16 ijtag_host_interface : Sib(lbist);
17 Controller(c0) {
18 burn_in : on ;
19 pre_post_shift_dead_cycles : 8 ;
20 SingleChainForDiagnosis { Present : on ; }
21 ShiftCycles {max: 40; hardware_default : 1024;}
22 CaptureCycles {max: 4;}
23 # Hardware default is max
24 PatternCount {max: 10000; hardware_default : 1024;}
25 # Hardware default is 0
26 WarmupPatternCount { max : 512;}
27 ControllerChain {
28 present : on;
29 clock : tck;
30 }
31 Connections {
32 shift_clock_src: clk;
33 controller_chain_enable : piccpu_rtl_tessent_tdr_sri_ctrl_inst/ \
34 controller_chain_mode;
35 }
36 }
37 NcpIndexDecoder{
38 Ncp(clk_occ_ncp) {
39 cycle(0): OCC(clk);
40 cycle(1): OCC(clk);
41 }
42 Ncp(ramclk_occ_ncp) {
43 cycle(0): OCC(ramclk);
44 cycle(1): OCC(ramclk);
45 }
46 # References to piccpu_rtl_tessent_sib_1 only applicable when
47 # inserting MemoryBIST
48 Ncp(ALL_occ_ncp) {
49 cycle(0): OCC(clk) , OCC(ramclk) , piccpu_rtl_tessent_sib_1;
50 }
51 Ncp(sti_occ_ncp) {
52 cycle(0): piccpu_rtl_tessent_sib_1 ;
53 cycle(1): piccpu_rtl_tessent_sib_1 ;
54 }
55 }
56 }
57
58 # Example EDT only; modify for your design requirements
59 # Note the additional LogicBIST options for the hybrid TK/LBIST flow

Tessent Shell Workflows
Perform Test Point Insertion

Tessent™ Shell User’s Manual, v2021.3 241

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

60 EDT {
61 ijtag_host_interface : Sib(edt);
62 Controller (c0) {
63 longest_chain_range : 20, 60;
64 scan_chain_count : 10;
65 input_channel_count : 1;
66 output_channel_count : 1;
67 ShiftPowerOptions {
68 present : on ;
69 min_switching_threshold_percentage : 15 ;
70 }
71 LogicBistOptions {
72 misr_input_ratio : 1 ;
73 chain_mask_register_ratio : 1 ;
74 ShiftPowerOptions {
75 present : on ;
76 default_operation : disabled ;
77 SwitchingThresholdPercentage { min : 25 ; }
78 }
79 }
80 }
81 }

Example 3: DFT Signals Required for the Hybrid TK/LBIST Flow

The following dofile snippet shows the DFT signals required if you are performing the hybrid
TK/LBIST flow only (without MemoryBIST or boundary scan in the first DFT insertion pass).

For logic test
add_dft_signals ltest_en -create_with_tdr
add_dft_signals scan_en edt_update -source_node \

{ scan_en edt_update }
You can create edt_clock and shift_clock from a test clock
add_dft_signals test_clock -source_node { scan_test_clock }
add_dft_signals edt_clock shift_capture_clock -create_from_other_signals

add_dft_signals int_ltest_en ext_ltest_en

Required for TK/LBIST IP
add_dft_signals observe_test_point_en -create_with_tdr
add_dft_signals control_test_point_en -create_with_tdr
add_dft_signals x_bounding_en -create_with_tdr

Related Topics

Sib

Perform Test Point Insertion
The two-pass DFT insertion flow with hybrid TK/LBIST includes a step for test point insertion
prior to performing scan chain insertion. Inserting test points increases the testability of a design
by improving controllability and observability during scan testing.

Tessent™ Shell User’s Manual, v2021.3242

Tessent Shell Workflows
Perform Test Point Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool inserts observation points that enable the tool to observe test responses during scan
cycles and control points that activate and receive pseudo-random values during built-in self
test. For details, refer to “Test Points for LBIST Test Coverage Improvement” in the Tessent
Scan and ATPG User’s Manual.

Before inserting the test points, specify a DFT signal that enables X-bounding signals.
X-bounding is the process of preventing signals originating from X-generating nets (from non-
scan cells, black boxes, and primary inputs) from reaching the scan cells. The tool inserts a
MUX with an X-bounding enable signal that is controlled by a top-level pin. X-bounding
ensures that only valid binary values propagate through the scan cells during test. For details,
refer to “X-Bounding” in the Hybrid TK/LBIST Flow User’s Manual.

Prerequisites

• Prior to test point insertion, perform synthesis as described in section “Performing
Synthesis” on page 132.”

Procedure

1. Specify the following command to set the DFT context for test point insertion:

set_context dft -test_point -no_rtl -design_id gate1

For test point insertion, you must use a gate-level netlist. Ensure that you specify a
design ID with a unique name from the design ID for scan chain insertion that you
perform after test point insertion.

2. Load the cell libraries.

read_cell_library ../lib/tessent/adk.tcelllib ../rtl/
picdram.atpglib

3. Specify the same output directory that you used in the first and second DFT passes.

set_tsdb_output_directory ../tsdb_outdir

4. Load the synthesized netlist. For example:

read_verilog ../03.synthesis/piccpu.vg

5. Load the design data for the DFT hardware you previously inserted. For example:

read_design piccpu -design_id rtl2 -no_hdl -verbose

6. Set the maximum number of test points you want to add. For example:

set_test_point_analysis_options -total_number 50

Typically, the maximum number of test points should be 1%-2% of the number of flops
in the design.

7. Set the test point-related insertion options.

Tessent Shell Workflows
Perform Test Point Insertion

Tessent™ Shell User’s Manual, v2021.3 243

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_test_point_insertion_options -observe_point_share 5

The control_test_point_en and observe_test_point_en enable signals are required for test
point insertion, and they are automatically inferred from the control_test_point_en and
observe_test_point_en DFT signals you previously added.

8. Specify the type of test points you want to insert into the design.

set_test_point_types { lbist_test_coverage edt_pattern_count }

Specify both LogicBIST test coverage and EDT pattern count test point types so that the
tool generates test points to reduce pattern count and improve random pattern testability.

9. Specify to insert test logic on the set and reset signals to make them controllable when
you insert scan chains.

set_test_logic -set on -reset on

This command increases test coverage.

10. Prohibit test point insertion for Tessent-inserted scan-resource instruments (SRIs)—
EDT, OCC, and LogicBIST.

add_notest_point [get_instance *tessent*]

You can only insert test points into scan-tested instruments (STIs).

11. Analyze and optimize the test points.

analyze_test_points

Tessent Shell returns a log file that lists the test points that are inserted into the tool. You
can write out a test point dofile that lists the test point locations. You can use this dofile
to edit the test points you want to insert.

write_test_point_dofile tpi.dofile -all -replace

12. Insert the test point and scan logic.

insert_test_logic

To generate a script to use with third-party test point insertion tools, use the following
command to target the insertion script for Design Compiler.

insert_test_logic -write_in_tsdb off -write_insertion_script \
testpoint_dc.tcl -insertion dc -replace

Tessent™ Shell User’s Manual, v2021.3244

Tessent Shell Workflows
Perform Scan Chain Insertion (Hybrid Flow)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Example 5-15. Dofile Example for Test Point Insertion

set_context dft -test_point -no_rtl -design_id gate
read_cell_library ../lib/tessent/adk.tcelllib ../rtl/picdram.atpglib
set_tsdb_output_directory ../tsdb_outdir
read_verilog ../03.synthesis/piccpu.vg
read_design piccpu -design_id rtl2 -no_hdl -verbose

set_current_design piccpu
add_input_constraint reset -C0

set_test_point_analysis_options -total_number 50

Following command inferred when X-bounding enable DFT signal was added
-xbounding_enable [get_dft_signal x_bounding_en]
set_test_point_insertion_options -observe_point_share 5
set_test_point_types { lbist_test_coverage edt_pattern_count }
set_test_logic -set on -reset on
no test points in Tessent-inserted IPs
add_notest_point [get_instance *tessent*]

set_system_mode analysis

analyze_test_points

insert_test_logic
report_test_logic

exit

Perform Scan Chain Insertion (Hybrid Flow)
Scan chain insertion for the hybrid TK/LBIST flow includes additional commands for
connecting the scan enable signal, performing DRC, specifying non-scannable design objects,
and X-bounding.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-16
on page 245.

Procedure

1. Load the design data and set the design parameters. (See lines 1-6.) Ensure that you
specify a unique design ID name from the name you used for test point insertion.

2. Set DRC handling to issue warnings for E9 and E11 DRC checks. (See lines 8-10.)

set_drc_handling E09 W
set_drc_handling E11 W

Tessent Shell Workflows
Perform Scan Chain Insertion (Hybrid Flow)

Tessent™ Shell User’s Manual, v2021.3 245

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

These DRC checks look for possible bus contention issues. By default, Tessent Shell
ignores these rules. Set these checks to issue warnings so that the X-bounding algorithm
checks them and fixes any X-source contention issues.

3. Specify the pins/ports to exclude from X-bounding. (See lines 12-13.) For example:

set_xbounding_options -exclude { reset }

Exclude the pins/ports that are guaranteed to have a known value during fault simulation
and never propagate an X value to the MISR. The tool does not insert X-bounding
muxes at the specified pins/ports, or at the logic that is driven by these pins.

4. Run X-source analysis with the analyze_xbounding command to identify memory
elements that might capture an unknown during LogicBIST. (See lines 17-19.)

5. Perform wrapper analysis and insertion. (See lines 21-34.)

6. Connect the scan chains to the EDT block, analyze the scan chains, and insert the scan
chains. (See lines 36-50.)

Examples

The following dofile example shows a typical command flow. The highlighted command lines
are unique to the process for inserting Tessent Shell LogicBIST and hybrid IP instruments in a
two-pass DFT insertion process.

Example 5-16. Dofile Example for Scan Chain Insertion: Hybrid TK/LBIST

1 set_context dft -scan -design_id gate2
2 read_cell_library ../lib/tessent/adk.tcelllib \
3 ../lib/tessent/picdram.atpglib
4 set_tsdb_output_directory ../tsdb_outdir
5 # Reading in test point-inserted design
6 read_design piccpu -design_identifier gate1 -verbose
7
8 # Enable DRCs for X-bounding
9 set_drc_handling E09 w
10 set_drc_handling E11 w
11
12 # Set x-bounding options
13 set_xbounding_options -exclude {reset}
14
15 set_system_mode analysis
16
17 # Run X-source analysis
18 analyze_xbounding
19 report_xbounding -verbose -ignored_x_sources on
20
21 ## Perform wrapper analysis and insertion
22 # Exclude the edt_channel in and out ports from wrapper analysis
23 # The ijtag_* edt_update ports are automatically excluded
24 set_wrapper_analysis_options -exclude_ports \
25 [get_ports {*_edt_channels_*}]
26
27 # Add a new wrapper dedicated cell on reset

Tessent™ Shell User’s Manual, v2021.3246

Tessent Shell Workflows
Performing ATPG Pattern Generation: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

28 set_dedicated_wrapper_cell_options on -ports { reset }
29 set_wrapper_analysis_options -input_fanout_flop_threshold 100 \
30 -output_fanin_flop_threshold 40
31
32 # Perform wrapper cell analysis
33 analyze_wrapper_cells
34 report_wrapper_cells -Verbose
35
36 # Find the edt_instance
37 # Instance of module *edt_lbist_c0
38 set edt_instance [get_instances -of_icl_instances [get_icl_instances \
39 -filter tessent_instrument_type==mentor::edt]]
40
41 # Connect scan chains to the EDT signals
42 add_scan_mode int_mode -type internal -edt_instances $edt_instance
43 add_scan_mode ext_mode -type external -chain_count 2
44 analyze_scan_chains
45
46 analyze_scan_chains
47 report_scan_chains
48
49 # Insert scan chains and write the scan-inserted design into the TSDB
50 insert_test_logic
51
52 report_scan_chains
53 report_scan_cells
54
55 exit

Related Topics

Performing Scan Chain Insertion: Wrapped Core

Performing ATPG Pattern Generation: Hybrid TK/
LBIST

ATPG pattern generation for the hybrid TK/LBIST flow includes a process for generating
controller chain mode patterns to test the TK/LBIST logic itself.

For details, refer to “Performing Pattern Generation for CCM in the TSDB Flow” in the Hybrid
TK/LBIST Flow User’s Manual.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-17
on page 247.

Prerequisites

• Perform EDT pattern generation as described in “Performing ATPG Pattern Generation”
on page 135.

Tessent Shell Workflows
Performing ATPG Pattern Generation: Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 247

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Load the design and set the environment (see lines 1-12). Refer to “Loading the Design”
on page 121 for more information.

2. Enable CCM (see lines 16-17).

set_static_dft_signal_values controller_chain_mode 1

You had added a DFT signal for ccm_en during IP creation, which is now being
configured. If this is a port (default), then this command is not required.

3. Define the scan chain for CCM (see lines 19-22).

4. Specify tck or edt_clock for CCM, depending on which you are using in your
implementation (see lines 24-25).

5. Define the pin constraints (see lines 33-37).

You must turn off core clock and reset activity. If ccm_en was not added as a DFT
signal, then also include a pin constraint for it (enabled).

6. For retargeting, specify to pulse the CCM clock during shift. (See line 39.) The
following command is only required when you use edt_clock for CCM and edt_clock is
a top-level port, or when you use tck for CCM.

set_procedure_retargeting_options -pulse_during_shift edt_clock

The tool automatically generates a test procedure file that configures the scan_en and
shift_capture_clock DFT signals. If the edt_clock is derived from test_clock, do not
specify the set_procedure_retargeting_options command.

7. Specify the set_current_mode command with a unique name to indicate that you are
generating CCM patterns (see line 41). For example:

set_current_mode ccm_stuck

8. Create and write the patterns (see lines 43-60).

Examples

The following example generates CCM ATPG patterns. The highlighted statements illustrate
additional considerations for CCM.

Example 5-17. Dofile Example for ATPG with Controller Chain Mode: Hybrid TK/
LBIST

1 ### DESIGN VARIABLES
2 set DesignName piccpu
3 set DesignLevel physical_block
4
5 set_context patterns -scan
6 set_tsdb_output_directory ../tsdb_outdir
7 read_cell_library ../lib/tessent/adk.tcelllib \

Tessent™ Shell User’s Manual, v2021.3248

Tessent Shell Workflows
Performing ATPG Pattern Generation: Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8 ../lib/tessent/picdram.atpglib
9 set_design_source -format tcd_memory -y ../lib/tessent -extension memlib
10
11 # Read in the scan-inserted design
12 read_design $DesignName -design_id gate2
13
14 report_dft_signals
15
16 # Enable CCM
17 set_static_dft_signal_values controller_chain_mode 1
18
19 add_scan_groups grp1
20 # These are the required scan chains for CCM
21 add_scan_chains ccm_chain grp1 control_chain_scan_in \
22 control_chain_scan_out
23
24 # Add edt_clock or tck as the primary clock source for CCM
25 add_clock 0 tck
26
27 # Specify clocks driven by primary-input ports; this is optional
28 add_clocks 0 clk
29 add_clocks 0 ramclk
30 add_clocks 0 reset
31 add_clocks 0 test_clock
32
33 # Define the pin constraints
34 add_input_constraints clk -c0
35 add_input_constraints ramclk -c0
36 add_input_constraints reset -c0
37 add_input_constraints test_clock -c0
38
39 set_procedure_retargeting_options -pulse_during_shift edt_clock
40
41 set_current_mode ccm_stuck
42
43 set_system_mode analysis
44 add_fault -module [get_module *tessent*]
45 report_clocks
46
47 create_patterns
48 report_statistics -detailed_analysis
49
50 report_statistics -instance piccpu_rtl2_tessent_lbist
51 report_statistics -instance \
52 piccpu_rtl2_tessent_lbist_ncp_index_decoder_inst
53 report_statistics -instance piccpu_rtl2_tessent_single_chain_mode_logic
54 report_statistics -instance piccpu_rtl2_tessent_edt_lbist_c0_inst
55
56 write_tsdb_data -replace
57 write_patterns ${DesignName}_ccm_stuck_parallel.v -verilog -parallel \
58 -replace -parameter_list {SIM_KEEP_PATH 1}
59 write_patterns ${DesignName}_ccm_stuck_serial.v -verilog -serial \
60 -replace -parameter_list {SIM_KEEP_PATH 1}
61
62 exit

Tessent Shell Workflows
Performing LogicBIST Fault Simulation

Tessent™ Shell User’s Manual, v2021.3 249

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing LogicBIST Fault Simulation
Perform LogicBIST fault simulation on the scan-inserted, gate-level design. LogicBIST fault
simulation generates pseudo-random, parallel pattern sets.

Refer to “Parallel Versus Serial Patterns” in the Tessent Scan and ATPG User’s Manual for
more information.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-18
on page 250.

Procedure

1. Load the design and set the environment (see lines 1-12). Refer to “Loading the Design”
on page 121 for more information.

2. Set the current test mode to a unique name for the new pattern set you are creating to test
the hybrid IP. (See line 7.)

3. Import the core’s internal mode data. (See line 9.)

Tessent Shell imports the scan-inserted design data for the EDT and OCC logic. For
LogicBIST fault simulation, the tool requires EDT for PRPG/compactor/MISR
configuration and chain tracing, and OCC for the clocks. Using the import_scan_mode
command assumes that you used Tessent Scan to perform scan chain stitching.

For LogicBIST fault simulation, only the internal mode data is valid.

4. Add the hybrid TK/LBIST core instances. (See lines 11-12.) For example:

add_core_instances -instance piccpu_rtl2_tessent_lbist

For the hybrid TK/LBIST flow, you must explicitly add the LogicBIST controller core.

5. Specify the capture procedure names with the set_lbist_controller_options command.
(See lines 16-18.)

Include the names of all Named Capture Procedures (NCPs) that are defined in the
DftSpecification, along with their active percentages, regardless of whether you intend
to use them in LogicBIST simulation.

The tool defines the NCPs in the Tessent Core Description (TCD) file while processing
the DftSpecification. You can override the automatically generated NCPs with the
read_procfile command.

Tessent™ Shell User’s Manual, v2021.3250

Tessent Shell Workflows
Performing LogicBIST Fault Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Define the DFT signals (see lines 23-37). In addition to enabling the ltest_en and
int_ltest_en logic test control signals, you must specify the following signals for the
hybrid TK/LBIST flow:

set_static_dft_signal_values control_test_point_en 1
set_static_dft_signal_values observe_test_point_en 1
set_static_dft_signal_values xbounding_en 1
set_static_dft_signal_values tck_occ_en 1
set_static_dft_signal_values controller_chain_mode 0

7. Set the PLL external capture clocks if your design has a PLL that is a driving clock, but
the PLL itself is driven by external clocks. (See lines 43-46.)

This indicates the number of cycles the NCPs take with respect to the LogicBIST
controller clock, as specified with the -fixed_cycles switch.

8. Specify the maximum number of pseudo-random patterns you want the tool to simulate.
(See line 48.)

9. Set the pattern source to LogicBIST and run fault simulation. (See line 51.)

10. Write out the parallel test bench and save all the data into the TSDB. (See lines 53-57.)

Examples

The following dofile example shows a typical command flow as detailed in the preceding
procedure. The highlighted text illustrates additional considerations for the hybrid TK/LBIST
flow.

Example 5-18. Dofile Example for LogicBIST Fault Simulation

1 set_context pattern -scan -design_id gate2
2 set_tsdb_output_directory ../tsdb_outdir
3 read_cell_library ../lib/tessent/adk.tcelllib ../rtl/picdram.atpglib
4 read_design piccpu
5 set_current_design piccpu
6
7 set_current_mode lbist
8
9 import_scan_mode int_mode
10
11 # Explicitly add the LogicBIST controller core
12 add_core_instances -instance piccpu_rtl2_tessent_lbist
13 # EDT and OCC are loaded with the int_mode imported scan mode
14
15
16 # Define the number of patterns per NCP capture window
17 set_lbist_controller_options -capture_procedure {clk_occ_ncp 70 \
18 ramclk_occ_ncp 10 ALL_occ_ncp 10 sti_occ_ncp 10}
19
20 add_input_constraint test_clock -c0
21 add_nofault [get_instance *tessent*]
22
23 # Set the DFT signals
24 set_static_dft_signal_values ltest_en 1

Tessent Shell Workflows
Perform LogicBIST Pattern Generation

Tessent™ Shell User’s Manual, v2021.3 251

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

25 # The following DFT signal is inferred by ltest_en 1 if you have memory
26 # set_static_dft_signal_value memory_bypass_en 1
27
28 set_static_dft_signal_values control_test_point_en 1
29 set_static_dft_signal_values observe_test_point_en 1
30 set_static_dft_signal_values x_bounding_en 1
31
32 set_static_dft_signal_values int_mode 1
33 # The following DFT signal is inferred by int_mode 1
34 # set_static_dft_signal_values int_ltest_en 1
35
36 set_static_dft_signal_values tck_occ_en 1
37 set_static_dft_signal_values controller_chain_mode 0
38
39 report_static_dft_signal_settings
40
41 set_system_mode analysis
42
43 # Specify the number of cycles the NCPs take with respect to the LogicBIST
44 # controller clock
45 # This ensures that the tool runs the testproc correctly
46 set_external_capture_options -fixed_cycles 4
47
48 set_random_patterns 1000
49 add_faults -all
50
51 simulate_patterns -source bist -store_patterns all
52
53 # Write the parallel pattern Verilog testbench
54 write_patterns piccpu_lbist_parallel.v -verilog -parallel -replace \
55 -parameter_list {SIM_KEEP_PATH 1 SIM_POST_SHIFT 3}
56 # Save the TCD, PatternDB, flat model, and fault list to the TSDB
57 write_tsdb_data -replace
58
59 exit

Perform LogicBIST Pattern Generation
Generate LogicBIST patterns using the scan-inserted and LogicBIST fault simulated design.
The process includes IJTAG pattern retargeting from the extracted ICL module description for
the design. Tessent Shell translates (or retargets) the PDL commands so that you can control the
LogicBIST controller through the TAP controller/IJTAG infrastructure.

Note
Do not confuse IJTAG retargeting with ATPG (or scan) pattern retargeting as described in
“Hierarchical DFT Terminology” on page 142.

Procedure

1. Load the design and set the environment (see lines 1-12). Refer to “Loading the Design”
on page 121 for more information.

Tessent™ Shell User’s Manual, v2021.3252

Tessent Shell Workflows
Perform LogicBIST Pattern Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Set the context to patterns -ijtag and set the design ID to the name of the scan-inserted,
gate-level netlist generated during scan chain insertion.

When you specify the -ijtag switch, Tessent Shell automatically accesses the ICL
module description for the current design, which enables IJTAG retargeting mode.

3. Define clocks and constraints (see lines 7-10).

4. Generate and validate the IJTAG patterns for the design (see lines 14-16).

5. Run and check the test bench simulations (see lines 18-23). The following step is
important for the hybrid TK/LBIST flow:

a. Specify the simulator option to keep all the logic gates for simulation.

The following example applies to Questa® SIM:

run_testbench_simulations -simulator_options \
{ -voptargs="+acc" }

For correct pattern simulation, use the applicable simulator option to ensure that the
necessary design logic is not optimized away during elaboration.

Tessent Shell simulates the logic test operations only, which means the test bench
does not connect all the pins in the design. The tool issues warnings for the
unconnected pins. To filter these warnings out, you can use the
run_testbench_simulations -simulation_option +nowarnTSCALE option.

Examples

The following dofile shows a command flow to generate IJTAG patterns for LogicBIST.
Highlighted text illustrates additional considerations for the hybrid TK/LBIST flow.

1 set_context patterns -ijtag -design_id gate2
2 read_cell_library ../lib/tessent/adk.tcelllib ../rtl/picdram.atpglib
3 set_tsdb_output_directory ../tsdb_outdir
4 read_design piccpu
5 set_current_design piccpu
6
7 # This is the clock driving the internal PLL
8 add_clocks 0 clk -period 100ns
9 # Scan enable has to be tied to low
10 add_input_constraint scan_en -c0
11
12 set_system_mode analysis
13
14 read_config_data ./lbist_mbist_pattern.patspec
15
16 process_patterns_specification
17
18 set_simulation_library_sources -v { ../lib/verilog/adk.v \
19 ../lib/verilog/picdram.v ../lib/verilog/SYNC_1R1W_256x16.v }
20
21 run_testbench_simulation -simulator_options { -voptargs="+acc" \
22 -quiet} -wait

Tessent Shell Workflows
Perform LogicBIST Pattern Generation

Tessent™ Shell User’s Manual, v2021.3 253

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

23 check_testbench_simulations -report_status
24
25 exit

Tessent™ Shell User’s Manual, v2021.3254

Tessent Shell Workflows
Running Multi-Load ATPG on Wrapped Core Memories with Built-In Self Repair

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Multi-Load ATPG on Wrapped Core
Memories with Built-In Self Repair

If your design has wrapped cores that include repairable memories, and you want to test the
logic around the memories at speed, then you use multi-load ATPG patterns.

Overview of Multi-Load ATPG on Memories for Wrapped Cores With Built-in Self Repair
. 254

Performing Multi-Load ATPG Pattern Generation. 255

Performing Multi-Load Top-Level ATPG Pattern Retargeting 258

Overview of Multi-Load ATPG on Memories for
Wrapped Cores With Built-in Self Repair

When generating ATPG multi-load patterns for memories with Built-In Self Repair (BISR), the
memories inside the wrapped cores are tested first. If any memories need to be repaired because
of defects that are present inside the memory, then the BISR registers are programmed such that
the contents of these registers vary based on the repair solution that is stored in the fuses at the
parent level.

To generate multi-load ATPG patterns, the BISR registers need to be excluded from the
retargetable ATPG patterns that you created for the wrapped core. At the wrapped core level, a
test_setup_iCall resets the BISR registers, resulting in all spare elements being unallocated
before ATPG is executed. Only the memory control ports and data ports participate in the
ATPG patterns; the memory repair ports are excluded. If memory defects are detected and
repaired via the BISR registers, the retargeted ATPG patterns also pass.

You must provide an ATPG model of the eFuse during pattern generation to meet the E14
design rule requirements. If such a model is not available, you can instead provide an input
constraint on the fuseValue output pin of the eFuse interface module. To do this, create a
pseudo-port associated with the fuseValue output pin of the fuse box interface instance. Then,
add a constant 0 input constraint on the “fuseValue” pseudo-port, as shown in the following
example:

add_primary_inputs chip_rtl_tessent_mbisr_controller_inst/ \
chip_rtl_tessent_mbisr_generic_fusebox_interface_instance/fuseValue \
-pseudo_port_name fuseValue

add_input_constraints -c0 fuseValue

For more details, refer to the add_primary_inputs and add_input_constraints commands.

Tessent Shell Workflows
Performing Multi-Load ATPG Pattern Generation

Tessent™ Shell User’s Manual, v2021.3 255

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing Multi-Load ATPG Pattern Generation
When you need to generate multi-load ATPG patterns when the memory is not bypassed but
used during ATPG there is no difference in the flow steps used for inserting DFT. You use this
procedure to bypass the memories.

The DFT insertion at the wrapped core level for memories with BISRs is similar to the two-pass
pre-scan DFT insertion process for wrapped cores with the primary difference being the ATPG
pattern generation. There are no changes to creating the graybox model, and running the
wrapped core in external mode for stuck and transition patterns by bypassing the memories.
There are no changes for running the wrapped core in internal mode for stuck and transition
patterns by bypassing the memories.

You should be familiar with the two-pass pre-scan DFT insertion flow as described in “RTL and
Scan DFT Insertion Flow for Physical Blocks” on page 146, especially as related to performing
ATPG pattern generation. Figure 5-30 shows this flow.

Figure 5-30. Two-Pass Insertion Flow for RTL, Wrapped Cores

The init_bisr_chains iProc contains Tcl code you can use to initialize the BISR registers at any
level (core or chip-level) as follows:

• At the wrapped core level, the iProc performs an asynchronous clear of the BISR
registers.

• At the chip-level, the iProc initiates a FuseBox controller power-up emulation.

The power-up emulation clears the BISR registers if the fuse box has not been programmed, or
initializes the BISR registers with the repair data if memory repair information was
programmed in the fuse box. See “Creating and Inserting the BISR Controller” in Tessent
MemoryBIST User's Manual.

Tessent™ Shell User’s Manual, v2021.3256

Tessent Shell Workflows
Performing Multi-Load ATPG Pattern Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-19
on page 257.

Prerequisites

• You have performed the “RTL and Scan DFT Insertion Flow for Physical Blocks” on
page 146 up to the ATPG pattern generation step.

Procedure

1. Load the Tessent Cell Library for the memory. (See lines 1-9.)

2. Load the design. (See lines 11-13.)

3. Set the DFT Signal memory_bypass to 0, so memory is not bypassed. (See lines 24-26.)

4. Load the PDL for the Memory BISR chains, which has an iProc (init_bisr_chains) that is
called with set_test_setup_icall -non_retargetable. (See lines 28-35.)

The init_bisr_chains iProc contains Tcl code you can use to initialize the BISR registers
at any level (core or chip-level) as follows:

• At the wrapped core level, the iProc performs an asynchronous clear of the BISR
registers.

• At the chip level, the iProc initiates a FuseBox controller power-up emulation.

5. Generate the multi-load ATPG patterns. (See lines 39-40.)

6. Write the design data and patterns to the TSDB. (See lines 42-44.)

7. Write out the Verilog test benches for simulation. (See lines 47-50.)

Results

At the wrapped core level, if you inject a fault in the repairable memory, and then run the multi-
load ATPG Pattern, the run should fail. This check shows that if a repairable memory has defect
that is not repaired then when you retarget the multi-load ATPG patterns from the top level,
then the multi-load ATPG pattern run will fail.

You must run the memoryBIST inside the wrapped core to determine if the memory is
repairable. If it is, then the repairable information from Built-In Redundancy Analysis (BIRA)
to BISR must be stored and the repair performed by storing the repairable contents using the
fusebox repair solution that you use at the top-level.

Examples

The following example for the repairable memory “MGC_SYNC_1RW_1024x8_C” generates
ATPG patterns that is run by the memory.

Tessent Shell Workflows
Performing Multi-Load ATPG Pattern Generation

Tessent™ Shell User’s Manual, v2021.3 257

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 5-19. Multi-Load ATPG Pattern Generation for Memories with BISR

1 set_context patterns -scan
2
3 # Set the location of the TSDB. Default is the current working directory.
4 set_tsdb_output_directory ../tsdb_outdir
5
6 # Read Tessent Library
7 read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
8 # Read the Tessent Cell Library for the memory
9 read_cell_library ../../../library/memories/MGC_SYNC_1RW_1024x8_C.atpglib
10
11 # Read in the scan inserted netlist/design
12 read_design processor -design_id gate -verbose
13 set_current_design processor
14
15 # Specify the current mode using a different name than what was used
16 # with the add_scan_mode command
17 set_current_mode edt_int_multi_load_atpg -type internal
18 report_dft_signals
19
20 # Extract the scan chains using the internal mode specified during
21 # scan insertion with the add_scan_mode command
22 import_scan_mode int_mode -fast_capture_mode on
23
24 # Memory is used during ATPG, by setting the DFTSignal memory_bypass
25 # to "0"
26 set_static_dft_signal_values memory_bypass_en 0
27
28 # Read in the PDL for the memory BISR
29 source \
30 ../tsdb_outdir/instruments/processor_rtl1_mbisr.instrument/\
31 processor_rtl1_tessent_mbisr.pdl
32
33 # Specify the iProc init_bisr_chains for the memory BISR as
34 # non_retargetable
35 set_test_setup_icall init_bisr_chains -non_retargetable
36
37 report_statistics -detail
38 # Generate patterns
39 create_patterns
40 report_statistics -detail
41
42 # Store TCD, flat_model, fault list and patDB format files in the TSDB
43 # directory
44 write_tsdb_data -replace
45
46 # Write test benches for Verilog simulation
47 write_patterns patterns/processor_multi_load_parallel.v \
48 -verilog -parallel -replace -parameter_list {SIM_KEEP_PATH 1}
49 write_patterns patterns/processor_multi_load_serial.v
50 -verilog -serial -replace -parameter_list {SIM_KEEP_PATH 1}
51 exit

Tessent™ Shell User’s Manual, v2021.3258

Tessent Shell Workflows
Performing Multi-Load Top-Level ATPG Pattern Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing Multi-Load Top-Level ATPG Pattern
Retargeting

When you have wrapped cores with repairable memories, then at the chip-top level you need to
insert a memory BISR controller. This can be done along with the TAP, boundary scan, and
MemoryBIST insertion if there are any memories present at the top-level.

You should be familiar with the RTL and scan DFT fnsertion flow for the top as described in
“RTL and Scan DFT Insertion Flow for the Top Chip” on page 165, especially as related to
performing ATPG pattern retargeting. Figure 5-31 shows this flow.

Figure 5-31. Two-Pass Insertion Flow for RTL, Top Level

For retargeting multi-load ATPG patterns where the memories are not bypassed from a lower
level wrapped core that has repairable memories, specify the correct retargeting mode signal.
Subsequently, use the add_core_instances command to load the specific core with the correct
ATPG mode that you want to retarget.

Finally, you need to source the PDL of the BISR chain with the iProc init_bisr_chains. This
PDL was created when the BISR controller RTL was generated at the chip-level. The iProc
detects the presence of the fuse box controller and initiates a PowerUpEmulation. When the
iProc is called and no fuse box controller is found, the iProc performs an asynchronous clear of
the BISR chains using the primary inputs (bisr_reset port).

Note
The line numbers used in this procedure refer to the command flow dofile in Example 5-20
on page 259.

Tessent Shell Workflows
Performing Multi-Load Top-Level ATPG Pattern Retargeting

Tessent™ Shell User’s Manual, v2021.3 259

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• You have performed the “RTL and Scan DFT Insertion Flow for the Top Chip” on
page 165 up to the ATPG retargeting step.

Procedure

1. Set the context to pattern retargeting. (See lines 1-2.)

2. Specify the TSDB directory and open the TSDB. (See lines 4-8.)

3. Read the Tessent Cell Library. (See lines 10-11.)

4. Load the Verilog design. (See lines 13-15.)

5. Set the retargeting from the lower-level patterns. (See lines 20-24.)

6. Read the PDL of the memoryBISR chains that has the iProc “init_bisr_chains”. This
PDL is different than the one created at the wrapped core level. (See lines 30-34.)

7. Change mode to analysis. (See line 36.)

Examples

The following example retargets the ATPG pattern from the lower level to the chip-level.

Example 5-20. ATPG Pattern Retargeting for Memories with BISR

1 # Set the context to retarget ATPG Patterns from lower level child cores
2 set_context pattern -scan_retargeting
3
4 # Point to the TSDB directory
5 set_tsdb_output_directory ../tsdb_outdir
6
7 # Open all the TSDB of the child cores
8 open_tsdb ../../wrapped_cores/processor/tsdb_outdir
9
10 # Read the tessent cell library
11 read_cell_library ../../library/standard_cells/tessent/adk.tcelllib
12
13 # Read the verilog
14 read_design chip_top -design_id gate
15 read_design processor -design_id gate -view graybox -verbose
16
17 set_current_design chip_top
18
19
20 # Retarget Transition patterns from processor
21 set_current_mode retarget1_processor_multi_load
22 set_static_dft_signal_values retargeting1_mode 1
23 add_core_instances -instances {processor_inst1 processor_inst2} \
24 -core processor -mode edt_int_multi_load_atpg
25
26 report_core_descriptions
27 import_clocks -verbose
28 report_clocks
29

Tessent™ Shell User’s Manual, v2021.3260

Tessent Shell Workflows
Performing Multi-Load Top-Level ATPG Pattern Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

30 # Read the PDL of the MBISR chains that has the iProc "init_bisr_chains"
31 # that needs to be called before running the ATPG pattern.
32 source ../tsdb_outdir/instruments/chip_top_rtl1_mbisr.instrument/\
33 chip_top_rtl1_tessent_mbisr.pdl
34 set_test_setup_icall init_bisr_chains -front
35
36 set_system_mode analysis
37 report_clocks
38
39 # write the TCD file for chip-level in the TSDB outdir
40 write_tsdb_data -replace
41 # Read the patterns to be retargeted
42 read_patterns -module processor -fault_type transition
43 set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]
44
45
46 # Write Verilog patterns for simulation
47 write_patterns patterns/processor_edt_multi_load_retargeted.v -verilog \
48 -parallel -replace -begin 0 -end 7 -scan -parameter_list {SIM_KEEP_PATH 1}
49 write_patterns patterns/processor_edt_multi_load_retargeted_serial.v \
50 -verilog -serial -replace -Begin 0 -End 2 \
51 -parameter_list {SIM_KEEP_PATH 1}
52 exit

Tessent Shell Workflows
Built-in Self Repair in Hierarchical Tessent MemoryBIST Flow

Tessent™ Shell User’s Manual, v2021.3 261

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Built-in Self Repair in Hierarchical Tessent
MemoryBIST Flow

You use the BISR registers to control the repair ports of repairable memory. The BISR logic
insertion tasks include inserting BISR chains in a block and connecting a BISR controller to
existing BISR chains, to an external fuse box, and to system logic. This omits the additional
BISR capabilities of Repair Sharing and Fast BISR Loading.

You perform the first two tasks in a bottom-up, hierarchical design methodology where BISR
chains are inserted in lower-level blocks before being connected at the chip top level to the
BISR controller. This is the most frequently used method for inserting the repair logic.

You complete the BISR insertion task with the memoryBIST insertion in the same pass at the
block or chip level. If the BISR insertion task is carried out separately from the memory BIST
insertion, you must perform BISR insertion after you have completed all memoryBIST insertion
tasks at the block or chip level in a single pass.

If you use Tessent Scan, do not scan test the BISR hardware if you plan to generate multi-load
patterns for logic test. Tessent Scan does this automatically.

In contrast, if you use a third-party scan insertion tool, then the non_scannable_instance_list in
the dft_info_dictionary should be honored and is located in the TSDB in the
dft_inserted_designs directory—see “RTL and DFT Insertion Flow With Third-Party Scan” on
page 189.

For additional information, see “First DFT Insertion Pass: Performing Top-Level MemoryBIST
and Boundary Scan” on page 168.

Repair Sharing Overview

Fast BISR Loading Overview

Performing Block Level BISR Insertion . 261

Performing Chip Level BISR Insertion . 264

Verification of Block and Chip Level BISR . 266

Performing Block Level BISR Insertion
The insertion of BISR chains is automatic if memories instantiated in the design have spare
resources described in their memory library file. BISR registers associated to repairable
memories are connected together to form scan chains.

Tessent™ Shell User’s Manual, v2021.3262

Tessent Shell Workflows
Performing Block Level BISR Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Assigning Memories to Power Domains

By default, all repairable memories are part of the same power domain, and the tool creates a
single BISR chain. If, however, more than one power domain exists, multiple BISR chains are
required.

The tool determines the power domain of a memory instance by its bisr_power_domain_name
attribute, which you specify in the following two ways:

• Reading a CPF or UPF file corresponding to the design using the read_cpf or read_upf
command. This is the recommended method.

• Manually setting the bisr_power_domain_name attribute using the set_attribute_value
command.

The following example defines power domains with UPF:

UPF:

create_power_domain pd_A
create_power_domain pd_AA -element {mem3 mem4}
create_power_domain pd_AB -element {mem5 mem6}

Generate BISR segment order file:

BisrSegmentOrderSpecification {
 PowerDomainGroup(pd_AA) {
 OrderedElements {
 mem3;
 mem4;
 }
 }
 PowerDomainGroup(pd_AB) {
 OrderedElements {
 mem5;
 mem6;
 }
 }

For additional implementation details, see “Inserting BISR Chains in a Block” in the Tessent
MemoryBIST User's Manual.

Controlling the BISR Chain Order

BISR chains are connected according to the content of the BisrSegmentOrderSpecification
wrapper containing a list of memory instances defining the BISR chain order.

This file is generated automatically when check_design_rules successfully completes. When a
DEF file is provided, the BISR segments are ordered using an algorithm that optimizes the
routing based on the memory coordinates. If a DEF file is not provided, the memories are sorted
alphabetically within each power domain group.

Tessent Shell Workflows
Performing Block Level BISR Insertion

Tessent™ Shell User’s Manual, v2021.3 263

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you wish to change the generated BISR change order, the you can manually modify the
<design_name>.bisr_segment_order file and change the order of memory instance names
before executing the process_dft_specification command.

Turning off Insertion of GISR Registers

It is possible to turn off the generation of BISR registers for specific memory instances.

You do this by issuing the set_memory_instance_options command as follows:

set_memory_instance_options memory_inst -use_in_memory_bisr_dft_specification off

Excluding Child Block BISR Chains

When you do not implement memory repair in a parent design but integrate sub-blocks or
physical blocks that already contain BISR chains, you must not connect or use these chains, and
you must properly tie the chains off.

Note
This is not a typical use model and is rarely implemented.

Related Topics

Inserting BISR Chains in a Block

Excluding Child Block BISR Chains

Tessent™ Shell User’s Manual, v2021.3264

Tessent Shell Workflows
Performing Chip Level BISR Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing Chip Level BISR Insertion
As with the block level, the insertion of BISR chains is automatic if memories instantiated in the
design at the chip level have spare resources. When you insert chip level BISR, you must also
choose a functional repair clock and connect the BISR controller to an existing BISR chain, an
external fuse box, and to system logic.

Functional Repair Clock . 264

Connection of the BISR Controller to Existing BISR Chains . 264

Connection of the BISR Controller to an External Fuse Box . 265

Connection of the BISR Controller to System Logic . 266

Functional Repair Clock
The distributed architecture and conservative clocking methodology used for self-repair require
some care in the selection of the functional repair clock used to apply repairs during chip power
up. You should use a functional clock of 10 MHz or less in that functional mode.

For implementation details, refer to “Inserting BISR Chains in a Block” in the Tessent
MemoryBIST User's Manual.

Connection of the BISR Controller to Existing BISR
Chains

As with block level BISR insertion, BISR chains are connected according to the content of the
BisrSegmentOrderSpecification wrapper containing a list of memory instances defining the
BISR chain order as well as lower level blocks containing pre-inserted BISR chains.

The tool automatically generates this file when the check_design_rules command successfully
completes.

Tessent Shell Workflows
Performing Chip Level BISR Insertion

Tessent™ Shell User’s Manual, v2021.3 265

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows two instances of the same block (blockA, instances
blockA_clka_i1 and blockA_clkb_i2), which has two BISR chains partitioned by two power
domains (pd_AA and pd_AB):

BisrSegmentOrderSpecification {
 PowerDomainGroup(pd_AA) {
 OrderedElements {
 blockA_clka_i1/pd_AA_bisr_si;
 blockA_clkb_i2/pd_AA_bisr_si;
 }
 }
 PowerDomainGroup(pd_AB) {
 OrderedElements {
 blockA_clka_i1/pd_AB_bisr_si;
 blockA_clkb_i2/pd_AB_bisr_si;
 }
 }
}

As with the block level BISR insertion, if you change the generated BISR chain order, the
<design_name>.bisr_segment_order file, you can manually modify this file and change the
order of memory instance names before executing the process_dft_specification command.

Connection of the BISR Controller to an External Fuse
Box

The BISR controller hardware is created at the top level of the chip automatically. The BISR
controller is accessed using the TAP. The BISR chain control ports are automatically connected
to the BISR controller. The BISR controller is also connected to the fuse box. A typical
implementation of BISR is with an external fuse box.

The hardware implements several functions and can be used to perform the following
operations:

• Compress the repair information and write the result into the fuse box

• Decompress the fuse box contents and shift the contents into the chip BISR chain

• Initialize or observe BISR chain content via the TAP

• Read and program fuses via the TAP

Note
A BISR controller with an internal fuse box is supported. For details, refer to
“Implementing and Verifying Memory Repair” in the Tessent MemoryBIST User's Manual.

The design instance for the external fuse box must already be instantiated in the design.
Typically, the fuse box is instantiated within a module that also contains interface logic. All
input ports of the module should be tied off, and the output ports should be left open. When

Tessent™ Shell User’s Manual, v2021.3266

Tessent Shell Workflows
Verification of Block and Chip Level BISR

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

executing the process_dft_specification command, the tool disconnects all input ports and then
reconnects the ports to the BISR controller module.

When using an external fuse box, you must set the fuse_box_location property in the
MemoryBisr/Controller wrapper to external. The fuse_box_interface_module property located
in the same wrapper can be used to specify the library module for the external fuse box. If this is
not specified, the library module is inferred from the design instance specified in the
design_instance property of ExternalFuseBoxOptions wrapper. If neither of these properties are
specified and only a single tcd_fusebox file exists in the design, the fuse box module is inferred
from this tcd_fusebox description.

The core description for the external fuse box can automatically be read in during module
matching using the “set_design_sources -format tcd_fusebox” command or directly using the
read_core_descriptions command.

If the instantiated module has a core description with a FuseBoxInterface wrapper, then
connections between the fuse box controller and the fuse box interface are completed
automatically. If a core description is not available, or not complete, explicit connections can be
made in the MemoryBisr/Controller/ExternalFuseBoxOptions/ConnectionOverrides wrapper.

Related Topics

Fuse Box Interface

Connecting the BISR Controller to an External Fuse Box

Connection of the BISR Controller to System Logic
Typically, system logic is connected to the BISR controller for initiating memory repair and
monitoring the progress of the operation. All connections are specified in the DftSpecification
configuration file in the MemoryBisr:Controller section.

• The BISR controller input clk must be driven by an appropriate functional clock. The
connection is made by specifying the repair_clock_connection property in the
DftSpecification/MemoryBisr/Controller wrapper.

• The BISR controller input resetN is the signal used to reset the BISR chains and initiate
memory repair. The connection is made by specifying the repair_trigger_connection
property in the DftSpecification/MemoryBisr/ wrapper.

Verification of Block and Chip Level BISR
You must verify the BISR at both the block and chip level to guarantee functional hardware.

Block Level BISR Verification

The default signoff is the PatternsSpecification you generate with Tessent Shell.

Tessent Shell Workflows
Verification of Block and Chip Level BISR

Tessent™ Shell User’s Manual, v2021.3 267

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You generate this using the command, which tests the connectivity of the BISR chain using a
pattern named MemoryBisr_BisrChainAccess.

You can create future verification patterns as follows:

• Executing fault-inserted MemoryBIST

• Performing BIRA-to-BISR capture

o Scan external BISR chain into the internal BISR chain

• Executing post-repair memory BIST

Chip Level BISR Verification

The default signoff is the PatternsSpecification that you generate with Tessent Shell using the
create_patterns_specification command for the BISR hardware. PatternsSpecification verifies
the FuseBoxAccess, BisrChainAccess, and Autonomous modes of operation of the BISR
controller and BISR chains via the TAP.

You do not need to run memoryBIST with fault-inserted memories at the top level of the chip.
This type of verification is better performed at the block level where memoryBIST can be run
on the full address space of all memories.

Related Topics

PatternsSpecification

create_patterns_specification

Verifying BISR at the Block Level

Top-Level Verification and Pattern Generation

Tessent™ Shell User’s Manual, v2021.3268

Tessent Shell Workflows
Verification of Block and Chip Level BISR

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 269

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 6
Tessent Shell Automotive Workflow

This chapter describes a pre-layout DFT insertion workflow that helps you meet the safety,
quality, and reliability requirements of the ISO 26262 “Road vehicles - Functional safety”
standard. The usage model provides capability for both manufacturing and in-system chip
testing and diagnosis. It also provides examples of how to run, and how to generate UDFM files
for, Automotive-Grade ATPG.

This chapter highlights the important steps required for you to achieve the optimal automotive
DFT strategy early in your design process. At a high level, this is a comprehensive hybrid TK/
LBIST two-pass RTL and scan DFT insertion flow that includes MemoryBIST, MBISR,
advanced BAP, boundary scan, and in-system test.

Tip
This is an advanced-level workflow, which assumes knowledge about the Tessent Shell
two-pass DFT insertion process. Familiarize yourself with the basic hybrid TK/LBIST flow

for flat models as described in “Hybrid TK/LBIST Flow for Flat Designs” on page 232. In
addition, because this is a hierarchical design, the workflow described in this chapter follows
the bottom-up DFT insertion process as described in “Tessent Shell Flow for Hierarchical
Designs” on page 141.

Refer to the following test case for a detailed usage example of the flow described in this
section:

tessent_automotive_reference_flow_<software_version>.tgz

You can access this test case by navigating to the following directory:

<software_release_tree>/share/UsageExamples/

Introduction to Tessent Automotive . 270

Test Case Overview and Objective. 271

Core-Level DFT Insertion for Automotive . 276
DFT Insertion Flow for the Processor Core Physical Block . 277
DFT Insertion Flow for the GPS Baseband Physical Block . 307

Top-Level DFT Insertion for the Automotive Flow . 314
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan. 314
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test 320
Scan Insertion for the Top Design . 325
ATPG Pattern Generation for the Top Design . 327
ATPG Pattern Retargeting for the Top Design. 328

Tessent™ Shell User’s Manual, v2021.3270

Tessent Shell Automotive Workflow
Introduction to Tessent Automotive

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Interconnect Bridge/Open UDFM Generation for the Top Design 328
Cell-Neighborhood UDFM Generation for the Top Design. 328
Automotive-Grade ATPG Pattern Generation for the Top Design 329
UDFM Generation for Cell-Aware ATPG . 329
TCA Based Pattern Sorting. 331

Functional Mode Fault Tolerance for Static IJTAG Signals. 333

Introduction to Tessent Automotive
Designs with aggressive quality and reliability requirements, such as those required to comply
with the ISO 26262 standard, must exercise efficient test strategy to ensure high quality with
very low defective parts per billion (DPPB). One of the key ISO 26262 requirements is the
ability to test safety-critical portions of a system during power-on and periodically during in-
system operation.

The Tessent product suite provides a flexible design flow that supports a high-level of
automation and integration, creating an RTL-based hierarchical automotive flow that you can
use for implementation of a DFT solution. It provides design rule checking, test planning,
integration, and verification at the RTL- and gate-level, and it achieves high coverage for
functional logic, memories, and test IPs.

Figure 6-1. Integrated Tessent DFT Solution for Automotive

Tessent automotive includes the following features:

• Low-impact in-system test.

o Low resource requirements to design system-side logic for in-system test.

o Interface to access IJTAG network at the chip or block level.

• Unified environment.

Tessent Shell Automotive Workflow
Test Case Overview and Objective

Tessent™ Shell User’s Manual, v2021.3 271

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o Design introspection capabilities.

o Full access to design and pattern data.

o All information stored in one place, the Tessent Shell Database (TSDB).

• Test scheduling flexibility using an IJTAG infrastructure.

o The MissionMode controller used for in-system test can access and operate any
instrument in the IJTAG network.

o Any LogicBIST or MemoryBIST (IJTAG-compliant IP) test can be converted to
in-system test.

o Run the same or different tests multiple times during in-system operation.

• Verification setup.

o Test time is automatically calculated.

o ROM data contents are also generated for the MissionMode controller.

o Designer can easily verify in-system test with Verilog simulation.

• Area optimization

o The hybrid TK/LBIST IP shares the compression logic for scan and LogicBIST.

o Several optimization schemes for MemoryBIST.

• Fully hierarchical flow.

o RTL-level generation and insertion.

o Enable flow automation by using DFT signals.

o Pattern re-targeting to generate and validate patterns at any level of the design
hierarchy.

• Direct access to MemoryBIST.

o Advanced BIST access port (BAP) to access MemoryBIST and consider limited test
time of in-system test.

o Direct control of algorithm, operation set, step, and memories.

o Incremental repair to improve reliability of automotive application.

Test Case Overview and Objective
In the tessent_automotive_reference_flow test case, you perform an RTL and scan DFT pre-
layout insertion process in a bottom-up manner for each core and sub-block in the design. After
inserting DFT into all the lower-level physical blocks, perform the same insertion process into

Tessent™ Shell User’s Manual, v2021.3272

Tessent Shell Automotive Workflow
Test Case Overview and Objective

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the parent blocks until you reach the top level of the chip. You also create ATPG core-level and
top-level patterns and perform ATPG pattern re-targeting of the wrapped cores at the parent
physical block and top level.

Note
The test case and this chapter assume that you understand the Tessent concepts and terms
for hierarchical DFT as described in “Hierarchical DFT Overview” on page 96.

Your objective is to integrate the DFT IP and provide a mechanism to test your logic and
memories during in-system operation. Considering your in-system test time constraints and
coverage requirements, you must:

• Analyze and decide on the algorithms you want to run on the memories in-system for
power-on reset (PoR) and periodic test.

• Analyze and decide the number of pseudo-random patterns during PoR and periodic
test. (This depends on the scan chain length and shift clock frequency.)

• Insert test point and x-bounding cells for LogicBIST.

• Use the advanced BAP capability to provide a low-latency protocol for configuring the
MemoryBIST controller, executing Go/NoGo tests, and monitoring the pass/fail status
for in-system and manufacturing test.

• Insert the MissionMode (also known as “in-system test”) IP to access IJTAG
instruments in system, and, depending on the length of your IJTAG network, insert the
in-system test controller within individual cores as well as at the top level. As a
reference, the tool executes both CPU-based and DMA-based in-system test options.

• Test the inserted test logic. That is, the LogicBIST and EDT IP blocks in addition to
testing the core design logic. Do this by using controller chain mode, which enables you
to generate ATPG patterns that target the hybrid EDT/LBIST blocks and LogicBIST
controller in addition to the single chain mode logic and in-system test controller. While
MemoryBIST IPs can be scan tested, under EDT test mode you can test them in system
through LogicBIST.

Design Overview

The test case uses an UltraSPARC (open-source) design with a processor core and two GPS
basebands. The processor core design includes non-repairable and repairable memory, and the
GPS baseband is a logic-only core that is instantiated twice.

Tessent Shell Automotive Workflow
Test Case Overview and Objective

Tessent™ Shell User’s Manual, v2021.3 273

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-2. Initial Design for Automotive Test Case

Following the bottom-up flow, you insert the following DFT logic at the core level.

Figure 6-3. DFT Integration at the Core Level for Automotive

Tessent™ Shell User’s Manual, v2021.3274

Tessent Shell Automotive Workflow
Test Case Overview and Objective

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After you have inserted the core-level IP, you perform top-level DFT logic insertion and
integration, followed by ATPG and pattern retargeting.

Figure 6-4. DFT Integration at the Top Level for Automotive

To test your IJTAG instrument in system and achieve high test coverage for your automotive
IC, you insert a MissionMode controller (also called the In-System Test, or IST, controller) that
intercepts the TAP controller and run MemoryBIST tests. This test case inserts a direct memory
access (DMA) MissionMode controller at the top level and a CPU-based MissionMode (MM)
controller within the GPS baseband cores. Depending on your IJTAG network length, you
might or might not need an in-system test controller at the core. A single DMA MissionMode
controller could be sufficient to run MemoryBIST and other IJTAG tests.

DFT Insertion Flow

The following figure shows that Tessent Shell generates a TSDB for each core, and then at the
top level, it uses the information stored in the core-level TSDBs for DFT integration.

Tessent Shell Automotive Workflow
Test Case Overview and Objective

Tessent™ Shell User’s Manual, v2021.3 275

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-5. DFT Insertion Flow for Automotive Test Case

For details about the TSDB data flow, refer to “TSDB Data Flow for the Tessent Shell Flow” on
page 339.

Tessent™ Shell User’s Manual, v2021.3276

Tessent Shell Automotive Workflow
Core-Level DFT Insertion for Automotive

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core-Level DFT Insertion for Automotive
The process for inserting DFT into hierarchical designs is performed in a bottom-up process
starting from the lowest level blocks. This section describes how to perform the DFT insertion
flow for the processor core and GPS baseband cores.

For general information about the RTL and scan DFT insertion flow for physical blocks, refer to
“RTL and Scan DFT Insertion Flow for Physical Blocks” on page 146. (The section relates to a
hierarchical test case; however, the basic flow remains the same.)

DFT Insertion Flow for the Processor Core Physical Block . 277
First DFT Insertion Pass: processor_core . 278
Second DFT Insertion Pass: processor_core . 281
Test Point, X-Bounding, and Scan Insertion: processor_core . 285
ATPG Pattern Generation: processor_core. 289
LogicBIST Fault Simulation: processor_core . 291
LogicBIST Pattern Generation: processor_core . 292
Interconnect Bridge/Open UDFM Generation: processor_core . 294
Cell-Neighborhood UDFM Generation: processor_core . 296
Automotive-Grade ATPG Pattern Generation: processor_core . 300

DFT Insertion Flow for the GPS Baseband Physical Block. 307
DFT Insertion Pass With In-System Test: gps_baseband. 308
LogicBIST Fault Simulation With One NCP: gps_baseband. 312
Interconnect Bridge/Open UDFM Generation: gps_baseband . 312
Cell-Neighborhood UDFM Generation: gps_baseband . 313
Automotive-Grade ATPG Pattern Generation: gps_baseband . 313

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 277

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT Insertion Flow for the Processor Core Physical
Block

In addition to the MemoryBIST logic, during the first DFT insertion pass, insert the advanced
BAP and the built-in self-repair (BISR) IP, which includes built-in redundancy analysis
(BIRA). You can control whether to test the memory in the same controller step or not,
depending on memory power domains, test algorithms, and other design factors.

The advanced BAP enables certain feature overrides in the hardware default (hw_default)
operating mode of the MemoryBIST controller and reduces test time by eliminating shift cycles
to serially configure the controllers in the IJTAG environment.

Figure 6-6. DFT Insertion Flow for processor_core

First DFT Insertion Pass: processor_core . 278

Second DFT Insertion Pass: processor_core . 281

Test Point, X-Bounding, and Scan Insertion: processor_core. 285

ATPG Pattern Generation: processor_core . 289

LogicBIST Fault Simulation: processor_core . 291

LogicBIST Pattern Generation: processor_core . 292

Interconnect Bridge/Open UDFM Generation: processor_core 294

Tessent™ Shell User’s Manual, v2021.3278

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cell-Neighborhood UDFM Generation: processor_core . 296

Automotive-Grade ATPG Pattern Generation: processor_core. 300

First DFT Insertion Pass: processor_core
During the first DFT insertion pass, generate a default DFT specification for MemoryBIST that
includes the BISR/BIRA, and then edit the DFT specification to include the additional
connections for the advanced BAP.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-1
on page 279.

For in-system tests, you can apply MemoryBIST during the power-on/off phase of the device
operation or periodically while the device is operating. For details, refer to the Tessent
MissionMode User’s Manual.

Procedure

1. Load the RTL design data and set the design parameters. (See lines 1-15.)

Note
“rtl1” is the recommended naming convention for the design ID for the first insertion
pass, but you can specify any name. Refer to “Loading the Design” for more

information about setting the design ID.

2. Set the set_dft_specification_requirements command to “on” for -memory_bist. (See
lines 17-18.)

When memory_test is on, memory_bist, memory_bisr_chains, and
memory_bisr_controller default to auto; otherwise, they default to off.
memory_bisr_chain auto changes to on for physical blocks having repairable memory,
so the tool inserts a BISR chain with a BIRA engine created within the MemoryBIST
controller.

3. Define the design clocks. (See lines 20-22.)

4. Check the design rules. (See lines 24.)

5. Create the DFT specification. (See lines 26-28.)

6. Edit the DFT specification to add the advanced BAP. (See lines 30-76.)

You can configure the connections to control the BAP directly through your system
logic, thus bypassing the IJTAG network. Or, you can provide a way to control the
advanced BAP as part of the IJTAG network. For this test case, implement the first
strategy. When utilizing the advanced BAP feature, specify the options you plan to
control directly using the ExecutionSelections wrapper in the DFT specification, and

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 279

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

then specify the BAP connections to the system logic. You can specify the connections
within the DftSpecification wrapper or through a post-insertion procedure.

7. Generate the DFT hardware, IJTAG network connectivity, and test patterns. (See lines
79-86.)

8. Run simulations to verify the design. (See lines 88-92.)

Examples

The following dofile example shows a typical automotive command flow for a core-level first
DFT insertion. Modify the DFT specification for you design requirements.

Example 6-1. Dofile Example for First DFT Insertion Pass, processor_core

1 # Load the design
2 set_context dft –rtl -design_id rtl1
3 set_tsdb_output_directory ../tsdb_outdir
4 read_cell_library ../../../lib/standard_cells/tessent/adk.tcelllib \
5 set_design_source -format tcd_memory -y ../../../library/memories
6 -extension tcd_memory
7 read_verilog ../../../library/memories/SYNC_1RW_32x16_RC.v
8 -interface_only -exclude_from_file_dictionary
9 read_verilog ../../../library/memories/SYNC_1RW_8Kx16_RC.v
10 -interface_only -exclude_from_file_dictionary
11 read_verilog -f rtl_file_list
12
13 set_current_design processor_core
14
15 set_design_level physical_block
16
17 # Specify the DFT requirements
18 set_dft_specification_requirements -memory_test on
19
20 # Define memory clock
21 add_clocks 0 dco_clk -period 3
22 add_clocks 0 directclk -period 12
23
24 check_design_rules
25
26 # Create and report the DFT specification
27 set spec [create_dft_specification]
28 report_config_data $spec
29
30 # Edit DFT specification to include additional advanced BAP connections
31 add_config_element DftSpecification(processor_core,rtl1)/MemoryBist/
32 BistAccessPort/DirectAccessOptions
33 set_config_value
34 DftSpecification(processor_core,rtl1)/MemoryBist/
35 BistAccessPort/DirectAccessOptions/direct_access_on
36 set_config_value
37 DftSpecification(processor_core,rtl1)/MemoryBist/
38 Controller(c1)/DirectAccessOptions/ExecutionSelections
39 set_config_value
40 DftSpecification(processor_core,rtl1)/MemoryBist/
41 Controller(c1)/DirectAccessOptions/algorithm on

Tessent™ Shell User’s Manual, v2021.3280

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

42 set_config_value
43 DftSpecification(processor_core,rtl1)/MemoryBist/
44 Controller(c1)/DirectAccessOptions/operation_set on
45 set_config_value
46 DftSpecification(processor_core,rtl1)/MemoryBist/
47 Controller(c1)/DirectAccessOptions/memory on
48 set_config_value
49 DftSpecification(processor_core,rtl1)/MemoryBist/
50 Controller(c1)/DirectAccessOptions/step on
51 set_config_value
52 DftSpecification(processor_core,rtl1)/MemoryBist/Controller(c1)/
53 AdvancedOptions/extra_algorithms {SMARCHCHKB SMARCHCHKBCI SMARCH
54 SMARCHCHKBCIL}
55
56 report_config_data $spec
57
58 # Specify BAP connection to system logic
59 read_config_data -in $spec/MemoryBist/BistAccessPort/Connections/
60 -from_string {
61 DirectAccess {
62 controller_select : DBAP_control/ctrl_select ;
63 step_select : DBAP_control/step_select ;
64 step_select_enable : DBAP_control/step_select_en ;
65 algorithm_select : DBAP_control/algo_select ;
66 algorithm_select_enable : DBAP_control/algo_select_en ;
67 operation_set_select : DBAP_control/opset_select ;
68 operation_set_select_enable : DBAP_control/opset_select_en ;
69 ClockDomain (-) {
70 clock : DBAP_control/clkout ;
71 reset : reset_n ;
72 test_start : DBAP_control/start;
73 test_done : DBAP_control/done ;
74 test_pass : DBAP_control/pass ;
75 }
76 }
77 }
78
79 # Generate and insert the hardware
80 process_dft_specification
81
82 extract_icl
83
84 # Generate test bench verification patterns
85 create_patterns_specification
86 process_patterns_specification
87
88 # Run and check test bench simulations
89 set_simulation_library_sources -y ../../../library/memories/
90 -extension v -v ../../../library/standard_cells/verilog/adk.v
91 run_testbench_simulations
92 check_testbench_simulations
93
94 exit

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 281

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Second DFT Insertion Pass: processor_core
In the second DFT insertion pass, insert the EDT, OCC, and LogicBIST instruments. Use the
hybrid TK/LBIST process to share the EDT and LogicBIST IP. Control the clocking scheme for
the LogicBIST pattern using a named capture procedure (NCP) index decoder, which decodes
the NCP index output of the hybrid controller into clock sequences that are generated by
Tessent OCCs across all capture procedures.

For details about OCC for the hybrid TK/LBIST flow, refer to “Tessent OCC TK/LBIST Flow”
in the Hybrid TK/LBIST Flow User’s Manual.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-2
on page 282 unless otherwise noted.

Procedure

1. Loading the Design.

2. Follow the steps described in “Specifying and Verifying the DFT Requirements: DFT
Signals for Wrapped Cores” on page 152, ensuring that you also include the required
DFT signals for the hybrid TK/LBIST flow and for controller chain mode. (See lines 3-
31.)

3. Creating the DFT Specification with SIBs for EDT, OCC, and LogicBIST, and edit the
default specification to include the OCC, hybrid IP, and LogicBIST. (See lines 33-125.)

Use the read_config_data command to edit the DFT specification as follows:

• Specify the OCC wrapper and specify your clock intercept node for the OCC.

For details about OCC for the hybrid TK/LBIST flow, refer to “Tessent OCC TK/
LBIST Flow” in the Hybrid TK/LBIST Flow User’s Manual.

• Specify the EDT wrapper to include a LogicBistOptions wrapper, and specify a
MISR ratio of one. This reduces the chances of aliasing at the MISR (for better
debugging capability) while trading off the area.

If you want to use the edt_clock as a shift clock source for LogicBIST, specify a
dash (-) value in the interface wrapper, which caused the tool to not create a
shift_clock_src port.

• Specify a LogicBist wrapper that contains both a Controller wrapper and an
NcpIndexDecoder wrapper. Tessent Shell automatically converts the EDT controller
into a hybrid TK/LBIST controller.

You must specify the clocking combinations to be used during TK/LBIST test. The
tool synthesizes the NCP index decoder and generates named capture procedures
based on this description. For details, refer to “NCP Index Decoder” in the Hybrid
TK/LBIST Flow User’s Manual.

Tessent™ Shell User’s Manual, v2021.3282

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
When you have only one NCP, the tool does not generate an NCP index decoder.
You can use this configuration to implement a static clock sequence loaded through

the ICL network. (You notice this for the GPS baseband block.)

4. Generating the EDT, Hybrid TK/LBIST, and OCC Hardware, plus the LogicBIST
hardware. (See line 125.)

5. Extracting the ICL Module Description. (See line 127.)

6. Generating ICL Patterns and Running Simulation. (See lines 129-140.)

Results

The following figure shows the clocking and DFT controls after the second DFT insertion pass.

Figure 6-7. Enhanced Clocking and DFT Controls After Second DFT Insertion
Pass

Examples

The following dofile example shows a typical automotive command flow for a core-level
second DFT insertion. Modify the DFT specifications for you design requirements.

Example 6-2. Dofile Example for Second DFT Insertion Pass, processor_core

1 // Load the design commands ...
2
3 set_dft_specification_requirements -logic_test on
4
5 # Add required DFT signals for logic test
6 add_dft_signals ltest_en -create_with_tdr
7 add_dft_signals scan_en edt_update test_clock
8 -source_node {scan_enable edt_update test_clock u }

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 283

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9 add_dft_signals edt_clock shift_capture_clock -create_from_other_signals
10
11 # Add required DFT signals specific to hybrid TK/LBIST flow
12 add_dft_signals observe_test_point_en control_test_point_en x_bounding_en
13
14 # Add required DFT signal for MemoryBIST
15 # DFT signal used for scan-tested instruments such as MemoryBIST
16 add_dft_signals tck_occ_en
17
18 # Add DFT signals to bypass memories or run multi-load ATPG for memories
19 add_dft_signals memory_bypass_en
20 add_dft_signals mcp_bounding_en
21
22 # Add DFT signals required for hierarchical DFT (external, internal modes)
23 add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode
24
25 # Add DFT signal for controller chain mode
26 add_dft_signals controller_chain_mode
27
28 # Enable Observation Scan Technology (OST) for capturing per shift and

capture
29 add_dft_signals capture_per_cycle_static_en
30
31 check_design_rules
32
33 # Create DFT specification
34 set spec [create_dft_specification -sri_sib_list {occ edt lbist }]
35
36 Use report_config_syntax DftSpecification/edt|occ to see full syntax
37 report_config_data $spec
38
39 # Edit DFT specification to specify OCC’s SIB and to insert OCC
40 read_config_data -in $spec -from_string {
41 OCC {
42 ijtag_host_interface : Sib(occ);
43 static_clock_control : external;
44 }
45 }
46
47 # Specify OCC insertion and intercept node
48 # This is a generic method for populating the OCC; modify for your design
49 # Scan enable and shift capture clock signals are automatically connected
50 # to the OCC instances
51 set id_clk_list [list \
52 dco_clk dco_clk \
53 directclk directclk
54]
55 foreach {id clk} $id_clk_list {
56 set occ [add_config_element OCC/Controller($id) -in $spec]
57 set_config_value clock_intercept_node -in $occ $clk
58 }
59
60 # Specify the hybrid EDT configuration
61 read_config_data -in $spec -from_string {
62 EDT {
63 ijtag_host_interface : Sib(edt);
64 Controller (c1) {
65 longest_chain_range : 100, 200 ;

Tessent™ Shell User’s Manual, v2021.3284

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

66 scan_chain_count : 10;
67 input_channel_count : 1;
68 output_channel_count : 1;
69 LogicBistOptions {
70 misr_input_ratio : 1 ;
71 ShiftPowerOptions {
72 present : on ;
73 default_operation : disabled ;
74 SwitchingThresholdPercentage {
75 min : 25 ;
76 }
77 }
78 }
79 }
80 }
81 }
82
83 # Specify the LogicBIST controller with NCP index decoder
84 read_config_data -in $spec -from_string {
85 LogicBist {
86 ijtag_host_interface : Sib(lbist);
87 Controller(1%ctrl_lbist) {
88 burn_in : on ;
89 pre_post_shift_dead_cycles : 8 ;
90 SingleChainForDiagnosis { Present : on ; }
91 ControllerChain {
92 present : on;
93 clock : tck;
94 }
95 Connections {
96 scan_en_in : scan_enable ;
97 controller_chain_scan_in : ccm_scan_in ;
98 controller_chain_scan_out : ccm_scan_out ;
99 }
100 Interface {
101 shift_clock_src : - ;
102 }
103 ShiftCycles { max : 200 ; }
104 CaptureCycles { max : 7 ; }
105 PatternCount { max : 1024 ; }
106 WarmupPatternCount { max : 512 ; }
107 }
108
109 NcpIndexDecoder{
110 Ncp(dco_clk) {
111 cycle(0): OCC(dco_clk);
112 cycle(1): OCC(dco_clk);
113 }
114 Ncp(ALL) {
115 cycle(0): OCC(dcoo_clk);
116 cycle(1): OCC(directclk);
117 }
118 Ncp(sti_occ) {
119 cycle(0): processor_core_rtl1_tessent_sib_sti_inst ;
120 }
121 }
122 } // End of LogicBIST controller wrapper
123// End of report_config_data

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 285

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

124
125process_dft_specification
126
127extract_icl
128
129# Write script for design compilation
130write_design_import_script for_dc_synthesis.tcl -replace
131
132create_patterns_specification
133process_patterns_specification
134
135set_simulation_library_sources -v
136 ../../../library/standard_cells/verilog/adk.v -y
137 ../../../library/memories ../../../library/standard_cells/verilog
138 -extension v
139
140run_testbench_simulations -simulator_option +nowarnTSCALE
141
142exit

Test Point, X-Bounding, and Scan Insertion:
processor_core

After synthesizing the design using a third-party tool, perform test point analysis and insertion,
X-bounding, wrapper analysis, and scan chain analysis and insertion.

• Test points — Inserting test points increases the testability of a design by improving
controllability and observability during scan testing. This step is part of the hybrid TK/
LBIST workflow; see “Perform Test Point Insertion” on page 241 for details.

In addition, a new type of observe point — the observation scan observe point (OP) — is
inserted during test point insertion. The tool monitors observation scan OPs during
every shift cycle and capture cycle compared with traditional OPs, which are monitored
only during capture. Observation scan observe points are a part of observation scan
technology (OST). For details, refer to “Observation Scan Technology” in the Hybrid
TK/LBIST Flow User’s Manual.

Note
For OST, you must add the capture_per_cycle_static_en DFT signal during the DFT
insertion pass.

• X-bounding — X-bounding ensures that only valid binary values propagate through the
scan cells during test. This prevents X sources from reaching the memory elements and
corrupting the signature during LogicBIST. For details, refer to “X-Bounding” in the
Hybrid TK/LBIST Flow User’s Manual.

• Wrapper analysis — In hierarchical DFT, wrapper analysis prepares the functional
scannable sequential elements (or “flops”) for reuse as wrapper cells. Use the
analyze_wrapper_cells command.

Tessent™ Shell User’s Manual, v2021.3286

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Scan chains — The tool inserts wrapper scan chains around the physical blocks that
connects to each input and output. The input and output wrapper chains are exercised
using the internal and external scan mode DFT control signals. For more information,
see “Performing Scan Chain Insertion: Wrapped Core” on page 154.

In addition, you must configure the controller scan chains and add a scan mode for
controller chain mode (CCM).

Note
Tessent Shell works with any third-party scan insertion or other tools. However, because all
Tessent products reside on the same code and database, you lose some automation with

third-party tools.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-3
on page 287 unless otherwise noted.

Procedure

1. After loading the design and setting the design parameters, perform test point, X-
bounding, wrapper, and scan insertion in the merged DFT context. (See lines 7.)

2. Read the design files and specify the requirements for test points and OST observe
points. (See line 9-51.)

3. Post-test point insertion, specify the requirements for X-bounding. (See lines 60-70.)

4. Specify wrapper cell requirements and perform wrapper cell analysis. (See lines 72-77.)

For details, refer to “Scan Insertion for Wrapped Core” in the Tessent Scan and ATPG
User’s Manual.

5. Activate controller chain segments. (See lines 79-82.)

By default, CCM scan segments in Tessent IP cores are not active to prevent them from
being confused with standard scan elements. You must activate a CCM scan mode on
Tessent IP instances before adding them to the scan mode population.

6. Specify the scan modes: internal, external, and controller chain. (See lines 84-94.)

For internal and external modes, connect the scan chains to the EDT block. For CCM
mode, ensure that you only include CCM scan segments as valid scan elements.

7. Analyze scan chains and insert X-bounding, wrapper, and scan chain logic. (See lines
96-103.)

Examples

The following dofile shows a command flow for test point and scan insertion.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 287

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 6-3. Dofile Example for Test Point and Scan Insertion, processor_core

1 ##======== Test Point, X-bounding, Wrapper, and Scan Insertion ========
2
3 # Open the previous TSDB directory if it is not in the current working

directory
4 set_tsdb_output_directory ../tsdb_outdir
5
6 # Setting context to dft since inserting DFT into gate-level design
7 set_context dft -test_point -scan -no_rtl -design_id gate1
8
9 ##Read in the design (you may use -exclude_from_file_dictionary to

exclude the netlist from the tessent database)
10 read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
11 # Read the synthesized netlist
12 read_verilog ../3.synthesize_rtl/processor_core_synthesized.vg
13
14 ##Read in the memory library model
15 set_design_sources -format tcd_memory -y ../../../library/memories/

-extension tcd_memory
16
17 ##Read in memory verilog model
18 read_verilog ../../../library/memories/SYNC_1RW_32x16_RC.v

-interface_only -exclude_from_file_dictionary
19 read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v -interface_only

-exclude_from_file_dictionary
20
21 ##Read the design files from the RTL insertion pass
22 # Use the -no_hdl switch to skip reading the netlist as the synthesized

netlist has already been read
23 read_design processor_core -design_id rtl2 -no_hdl
24
25 set_current_design processor_core
26
27 ##Setting the design level as physical_block
28 set_design_level physical_block
29
30 set_static_dft_signal_value ltest_en 1
31
32 report_static_dft_signal_settings
33
34 # Specify the number of testpoint (integer or integer %)
35 set_test_point_analysis_options -total_number 250
36
37 # Specify how many observe points to be observed by one scan cell
38 set_test_point_insertion_options -observe_point_share 5
39
40 # Specify both types of test points to reduce both pattern count
41 # and improve random pattern testability
42 set_test_point_type { lbist_test_coverage edt_pattern_count }
43
44 # Specify capture per cycle observation for OST to observe per shift cycle
45 set_test_point_analysis_options -capture_per_cycle_observe_points on
46
47 # Setting the shift length to the anticipated scan chain length of the

design for OST
48 set_test_point_analysis_options -minimum_shift_length 80

Tessent™ Shell User’s Manual, v2021.3288

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

49
50 # Set mcp_bounding_en to 1 to gate BIST.CLK and prevents additional

hardware bounding logic
51 set_static_dft_signal_values mcp_bounding_en 1
52
53 # Check design rule
54 set_system_mode analysis
55
56 # Report clocks and dft signals
57 report_clocks
58 report_dft_signals
59
60 # Analyze test points
61 analyze_test_points
62 write_test_point_dofile processor_core_tpi.dofile -all -replace
63
64 ## Exclude reset from X-bounding to avoid XB DRC. Handled by wrapper

insertion. Automation in 19.2
65 set_xbounding_options -exclude {reset_n}
66
67 ## Perform X-bounding for LBIST
68 analyze_xbounding
69 report_xbounding -verbose > xbound_list
70 report_xbounding -verbose -ignored_x_sources on >

xbound_list_with_ignored_x_source
71
72 # Exclude the edt_channel in and out ports from wrapper chain analysis.

The ijtag_* edt_update ports are automatically excluded
73 set_wrapper_analysis_options -exclude_ports [get_ports

{*_edt_channels_*}]
74
75 # Perform wrapper cell analysis
76 analyze_wrapper_cells
77 report_wrapper_cells -Verbose > wrapper_cell.rpt
78
79 # Set attribute value for in-built chains for controller_chain_mode
80 set_attribute_value [get_instances *tessent_single_chain_mode_logic_*]

-name active_child_scan_mode -value controller_chain_mode
81 set_attribute_value [get_instances *tessent_lbist_inst] -name

active_child_scan_mode -value controller_chain_mode
82 set_attribute_value [get_instance -of_module *_edt_lbist_c1] -name

active_child_scan_mode -value controller_chain_mode
83
84 # Specify different modes (internal and external) how the chains need to

be stitched
85 # The type internal/external and enable_dft_signal are inferred from

registered DFT Signals(int_mode and ext_mode)
86 # Create a scan mode and specify EDT instance to connect the scan chains

to
87 set ccm [get_scan_elements -of_child_scan_mode controller_chain_mode]
88 set core [remove_from_collection [get_scan_elements] $ccm]
89 #set core [remove_from_collection [get_scan_elements -class core] $ccm]
90 set edt_instance [get_instances -of_icl_instances [get_icl_instances

-filter tessent_instrument_type==mentor::edt]]
91
92 add_scan_mode int_mode -edt $edt_instance -include_elements $core

-enable_dft_signal int_mode

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 289

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

93 add_scan_mode controller_chain_mode -include_elements $ccm -chain_count 1
-enable_dft_signal controller_chain_mode -si_port_format ccm_scan_in%d
-so_port_format ccm_scan_out%d

94 add_scan_mode ext_mode -chain_count 2
95
96 # Analyze the scan chains and review the different scan modes and chains

before stitching the chains
97 analyze_scan_chains
98
99 # Insert scan chains and writes the scan inserted design into tsdb_outdir

directory
100insert_test_logic
101
102report_scan_chains
103report_scan_cells > scan_cells.list

ATPG Pattern Generation: processor_core
Generating ATPG patterns for a wrapped core includes a step for generating a graybox model.
In addition, you must perform ATPG twice, once for the core’s external mode and once for the
core’s internal mode, which is typical for any hierarchical design. Controller chain mode, when
used, also requires its own ATPG pass.

Figure 6-8. ATPG Pattern Generation Flow for processor_core

For information about graybox models, refer to “Graybox Model” on page 100.

Tessent™ Shell User’s Manual, v2021.3290

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

Perform ATPG as described in “Performing ATPG Pattern Generation: Wrapped Core” on
page 158 with the following extra considerations:

a. After running ATPG on the internal mode and saving the collateral data to the TSDB
with the write_tsdb_data command (step 3-d), do the following:

i. Return to setup mode and turn off the memory_bypass_en signal.

ii. Read the PDL of the BISR chains that have the init_bisr_chains iProc. The
procedure is located at:

/tsdb_outdir/instruments/
processor_core_rtl1_mbisr.instrument/
processor_core_rtl1_tessent_mbisr.pdl

Invoke the procedure as follows:

set_test_setup_icall init_bisr_chains –front

iii. Run ATPG on the internal mode again and save the data with the
write_tsdb_data command.

ATPG generates a multi-load pattern that can scan through the memory. Multi-
load scan patterns are used to generate scan patterns through ROM and RAM
memories. Before generating multi-load patterns on repairable memories, any
repair information that was previously generated by the execution of
MemoryBIST must be applied to the memory repair ports.

For details, refer to “Running Multi-Load ATPG on Wrapped Core Memories
with Built-In Self Repair” on page 254.

iv. Use the read_faults command to merge the fault list from running external mode
to find the total overall fault coverage of the wrapped core.

b. Run ATPG on the controller chain mode to create APTG patterns for the following
test logic IPs: hybrid controller, LogicBIST controller, single chain mode logic, and
in-system test controller. Do the following:

i. Load the wrapped cores that contain the child wrapped cores.

ii. If you used Tessent Scan for scan insertion, specify “import_scan_mode
controller_chain_mode” to import the controller chain mode.

iii. Specify a unique ATPG mode name for controller chain mode, such as ccm. For
example:

set_current_mode ccm

iv. After running DRC, generate the ATPG patterns, and store the TCD, flat model,
fault list and PatDB files in the TSDB using the write_tsdb_data command.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 291

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The generated ATPG patterns are core-level patterns. You generate these
patterns again at the top level.

v. Use the read_faults command to merge the fault list from running internal mode
to find the total overall fault coverage of the wrapped core.

LogicBIST Fault Simulation: processor_core
Perform LogicBIST fault simulation to generate pseudo-random, parallel pattern sets. Tessent
Shell chooses the PRPG seed value based on the specified warm-up pattern and creates the
signature for the MISR. The signature is stored in the TSDB. Specify the number of random
patterns based on your in-system requirements for test time and LogicBIST coverage.

For details about seeding, refer to “Warm-Up Patterns” in the Hybrid TK/LBIST Flow User’s
Manual.

Note
The line numbers used in this procedure refer to the command flow in Example 6-4 on
page 292. Refer to “Performing LogicBIST Fault Simulation” on page 249 for additional

details about some of the following steps.

Procedure

1. Loading the Design. (See lines 1-10.)

2. Set the current test mode to a unique name for the new pattern set you create to test the
hybrid IP. (See line 12.)

3. Import the core’s internal mode data—that is, the scan-inserted design data for the EDT
and OCC logic. (See line 14.)

Using the import_scan_mode command assumes that you used Tessent Scan to perform
scan chain stitching.

4. Add the hybrid TK/LBIST core instances. (See line 16.)

You must explicitly add the LogicBIST controller core.

5. Specify the capture procedure names and the count percentage to repeat the NCP once
every 256 patterns. (See lines 18-19.)

6. Specify the order of the NCPs. (See lines 21-25.)

7. Read in the NCP testproc file. (See lines 29-32.)

8. Add the faults and specify the maximum number of pseudo-random patterns you want
the tool to simulate. (See lines 34-35.)

9. Set the pattern source to LogicBIST and execute fault simulation. (See line 36.)

Tessent™ Shell User’s Manual, v2021.3292

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

10. Write out the parallel test bench and save the data into the TSDB. (See lines 38-40.)

Examples

The following dofile example shows a typical command flow for LogicBIST fault simulation.

Example 6-4. Dofile Example for LogicBIST Fault Simulation, processor_core

1 set_context patterns -scan -design_id gate2
2 set_tsdb_output_directory ../tsdb_outdir
3 open_tsdb ../tsdb_outdir
4 read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
5 read_cell_library ../../../library/memories/SYNC_8X16.atpglib
6 read_cell_library ../../../library/memories/SYNC_1RW_32x16_RC.atpg
7
8 read_design processor_core -design_id gate1
9
10 set_current_design processor_core
11
12 set_current_mode lbist_sa -type internal
13
14 import_scan_mode int_mode
15
16 add_core_instances -module *tessent_lbist
17
18 set_lbist_controller_options -capture_procedures {ALL 90 directclk 8
19 sti_occ 2 }
20
21 # Specify the full pathname to the dofile located in the
22 # *_lbist_ncp_index_decoder.instrument directory in the TSDB
23 dofile ../tsdb_outdir/instruments/processor_core_rtl2
24 _lbist_ncp_index_decoder.instrument/processor_core_rtl2_tessent
25 _lbist_ncp_index_decoder.dofile
26
27 set_system_mode analysis
28
29 # Specify the full pathname to the testproc file located in the
30 # *_lbist_ncp_index_decoder.instrument directory in the TSDB
31 read_procfile ../tsdb_outdir/instruments/processor_core_rtl2
32 _lbist_ncp_index_decoder.instrument/processor_core_rtl2
33
34 add_faults -all
35 set_random_pattern 1024
36 simulate_patterns -source bist -store_patterns all
37
38 write_patterns patterns/processor_core_lbist_parallel.v -
39 verilog -parallel -replace -parameter_list {SIM_KEEP_PATH 1}
40 write_tsdb -replace

LogicBIST Pattern Generation: processor_core
To program the LogicBIST controller, use the pattern specification in hardware default mode to
generate test bench and pattern range-specific vectors.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 293

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow in Example 6-5 on
page 293. Refer to “Perform LogicBIST Pattern Generation” on page 251 for additional

details about some of the steps in the following.

Procedure

1. Loading the Design, ensuring that you set the context to “patterns -ijtag”. (See lines 1-
7.)

The design ID should be the same design you used for LogicBIST fault simulation.

2. Create the patterns specification. (See lines 15-16.)

3. Edit the patterns specification to specify the LogicBIST pattern configuration. (See lines
18-52.)

If you want to debug Xs in your MISR during simulation, you can enable debugging
with the logic_bist_debug property.

4. Generate the IJTAG patterns for LogicBIST and run simulation. (See lines 55-63.)

Examples

The following dofile shows a command flow for generating IJTAG patterns for LogicBIST in
the automotive Tessent Shell flow.

Example 6-5. Dofile Example for LogicBIST Pattern Generation, processor_core

1 set_context patterns -ijtag
2 set_tsdb_output_directory ../tsdb_outdir
3 read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
4 # read memory library models too
5 read_design processor_core -design_id gate2
6
7 set_current_design piccpu
8
9 # Report clock and DFT signal settings
10 report_static_dft_signal_settings
11 report_clocks
12
13 set_system_mode analysis
14
15 # Create patterns specification
16 set patt_spec [create_patterns_specification]
17
18 # Edit the patterns specification for LogicBIST pattern
19 # Example only; modify for your design requirements
20 read_config_data -replace -in $patt_spec -from_string {
21 AdvancedOptions {
22 ConstantPortSettings {
23 scan_enable : 0;
24 }
25 }

Tessent™ Shell User’s Manual, v2021.3294

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

26 Patterns(ICLNetwork) {
27 ICLNetworkVerify(processor_core) {
28 }
29 }
30 Patterns(LogicBist_processor_core) {
31 ClockPeriods {
32 dco_clk : 3.00ns;
33 directclk: 12.00ns;
34 test_clock_u: 100.00ns;
35 }
36 SimulationOptions {
37 # You can opt to enable debugging Xs in the MISR during simulation
38 logic_bist_debug : off;
39 }
40 TestStep(serial_load) {
41 LogicBist {
42 CoreInstance(.) {
43 run_mode : run_time_prog;
44 mode_name : lbist_sa ;//same as set_current_mode in
45 lbist fault simulation
46 begin_pattern : 0;
47 end_pattern : 255 ;
48 misr_compares : 1 ;
49 }
50 }
51 }
52 }
53 }
54
55 process_patterns_specification
56
57 set_simulation_library_sources -y ../../../library/memories/ -extension v
58 -v ../../../library/standard_cells/verilog/adk.v
59
60 run_testbench_simulation -simulator_options { -voptargs="+acc" }
61
62 # Use the following command if simulation fails
63 check_testbench_simulations -report_status
64
65 exit

Interconnect Bridge/Open UDFM Generation:
processor_core

If you want to perform Automotive-Grade ATPG targeting interconnect bridge and open
defects, generate a UDFM for the interconnect bridge/open defects in your design. Then, read in
the UDFM during Automotive-Grade ATPG.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 295

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow in “Dofile Example for
Interconnect Bridge/Open UDFM Generation, processor_core” on page 295. Refer to the

following directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/processor_core/
11.extract_fault_sites

Procedure

1. Load the post-layout design and generate a flat model. (See lines 1-19.)

2. Load the flat model. (See lines 21–23.)

3. Read in the layout data and generate an LDB. (See lines 25-34.)

4. Load the LDB by applying the open_layout command, and then apply the
extract_fault_sites command with an output file name to generate a UDFM. (See lines
36-40.)

Note
Use “all” as the defect_types option for the extract_fault_sites command to write out
both bridges and opens to the UDFM file.

Examples

Figure 6-9. Interconnect Bridge/Open UDFM Generation Flow for
processor_core

The following dofile shows a command flow for generating a bridge/open UDFM for use in the
Automotive-Grade ATPG flow.

Example 6-6. Dofile Example for Interconnect Bridge/Open UDFM Generation,
processor_core

1 set_context patterns -scan
2 set design_name "processor_core"
3

Tessent™ Shell User’s Manual, v2021.3296

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4 # Read Tessent Library
5 read_cell_library ../../../library/

NangateOpenCellLibrary_PDKv1_3_v2010_12/Front_End/DFT/
NangateOpenCellLibrary.tcelllib

6
7 # Read in the post layout netlist
8 read_verilog ../9.pnr/pnr_db/golden/${design_name}.post.vg
9
10 #Read in the memory library model
11 read_cell_library ../../../library/memories/SYNC_1RW_8Kx16.atpglib
12 read_cell_library ../../../library/memories/SYNC_1RW_32x16_RC.atpg
13 set_design_sources -format tcd_memory -y ../../../library/memories/

-extension tcd_memory
14
15 set_current_design $design_name
16
17 set_system_mode analysis
18
19 write_flat_model flat/${design_name}_post.flat -rep
20
21 set_context patterns -scan_diagnosis
22
23 read_flat_model flat/${design_name}_post.flat
24
25 set deffile [glob -directory ../9.pnr/pnr_db/golden ${design_name}.def]
26
27 set leffile [concat [glob -directory ../../../library/

NangateOpenCellLibrary_PDKv1_3_v2010_12/Back_End/lef
NangateOpenCellLibrary.macro.lef] \

28 [glob -directory ../../../library/
NangateOpenCellLibrary_PDKv1_3_v2010_12/Back_End/lef
NangateOpenCellLibrary.tech.lef] \

29 [glob -directory ../../../library/memories
SYNC_1RW_8Kx16.lef] \

30 [glob -directory ../../../library/memories
SYNC_1RW_32x16_RC.lef] \

31]
32
33 analyze_layout_hierarchy hier_db/${design_name}.hierdb -leflist $leffile

-deflist $deffile -rep
34 create_layout ldb/${design_name}.ldb -rep -deflist $deffile -leflist

$leffile
35
36 open_layout ldb/${design_name}.ldb
37
38 extract_fault_sites -output_file udfm/${design_name}_brdg_opn.udfm

-defect_types all -rep
39
40 exit

Cell-Neighborhood UDFM Generation: processor_core
If you want to perform Automotive-Grade ATPG targeting cell-neighborhood defects, which
may be located between cells, generate a UDFM for your design's cell-neighborhood defects.
Use that UDFM during Automotive-Grade ATPG.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 297

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To generate a cell-neighborhood UDFM, extract cell-neighborhood pairs from the design LDB,
then feed the cell pairs information into Tessent CellModelGen. Combine the UDFM files for
all individual cell pairs into a single UDFM file. The required input data is the same as the data
required for generating a cell-aware UDFM on standard cells. For information on Tessent
CellModelGen or input requirements, refer to the Tessent CellModelGen Tool Reference.

Note
The line numbers used in this procedure refer to the command flow in “Dofile Example for
Extracting Cell-Neighborhood Pairs, processor_core” on page 298. Refer to the following

directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/processor_core/
11.extract_fault_sites

Procedure

1. Extract cell-neighborhood pairs.

a. Load the flat model generated for interconnect bridge/open UDFM generation. (See
lines 1-5.)

b. Load the LDB using the open_layout command, which is generated for interconnect
bridge/open UDFM generation. (See line 7.)

c. Run the extract_inter_cell_data command, specifying an output file name to write
the extracted cell-neighborhood pairs. (See line 9.)

2. Generate the UDFM using Tessent CellModelGen with the extracted cell-neighborhood
pairs.

a. Before running Tessent CellModelGen, ensure that all the required input data is
available and all the required tools are accessible.

b. Create an empty directory, and retrieve run scripts.

cellmodelgen -get_script all

c. Copy the run_flow.merge script into your working directory from the lib/scripts
directory, which you get from step b.

d. Modify the run_flow.merge script for your design. Refer to the comments in the
script for details. The output file from step 1, the extracted inter-cell pairs, is the
input to the run_flow.merge script.

e. Run the run_flow.merge script to run Tessent CellModelGen with the cell-
neighborhood pairs. Specify the filename of the extracted cell-neighborhood pairs
and a working directory name.

f. Copy the run_export.merge script into your working directory from the lib/scripts
directory, which you get from step b.

Tessent™ Shell User’s Manual, v2021.3298

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

g. Modify the run_export.merge script for your working environment.

h. Run the run_export.merge script to combine all single UDFM files on each of the
cell pairs into a single UDFM file.

Examples

Figure 6-10. Cell-Neighborhood UDFM Generation Flow for processor_core

The following dofile shows a command flow for generating a bridge/open UDFM for use in the
Automotive-Grade ATPG flow.

Example 6-7. Dofile Example for Extracting Cell-Neighborhood Pairs,
processor_core

1 set_context patterns -scan_diagnosis
2
3 set design_name "processor_core"
4

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 299

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5 read_flat_model flat/${design_name}_post.flat
6
7 open_layout ldb/${design_name}.ldb
8
9 extract_inter_cell_data -output_file inter_cell_data/

${design_name}_cellpairs.data -rep
10
11 exit

Tessent™ Shell User’s Manual, v2021.3300

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Automotive-Grade ATPG Pattern Generation:
processor_core

Generating automotive-grade ATPG patterns is similar to regular ATPG pattern generation. It
needs several UDFM files for cell-internal defects, interconnect bridge or open defects, and
cell-neighborhood defects.

Refer to Interconnect Bridge/Open UDFM Generation: processor_core for interconnect bridge/
open UDFM generation on your design, and Cell-Neighborhood UDFM Generation:
processor_core for cell-neighborhood UDFM generation for your design.

Refer to “UDFM Generation for Cell-Aware ATPG” on page 329 for details on how to generate
the cell-aware UDFM for your technology library.

As you do for regular ATPG, you must generate a graybox model; then, you must perform
ATPG twice: once for the core’s external mode and once for its internal mode. When you run
ATPG in external mode or internal mode, you can run ATPG with topoff runs by loading only
the UDFM files you want to target during an ATPG run. Also, you can run ATPG all together
by reading in all UDFM files at once.

Automotive-Grade Topoff ATPG Pattern Generation . 300

Automotive-Grade ATPG Pattern Generation Using Only UDFMs 304

Automotive-Grade Topoff ATPG Pattern Generation

This procedure describes how to run cell-aware ATPG topoff when you already have ATPG
patterns from previous runs.

Note
The line numbers used in this procedure refer to the command flow in “Dofile Example for
Interconnect Bridge/Open UDFM Generation, processor_core” on page 295. Refer to the

following directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/processor_core/
12.generate_AGA_patterns

Prerequisites

• Existing patterns from previous ATPG runs.

• Existing UDFM file(s) for your technology library and design.

Procedure

1. Load the flat model generated from a post-layout design. (See lines 1–11.)

2. Set a fault type, read in the UDFM file for your standard cells, and add faults. (See lines
14-18.)

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 301

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Read patterns from previous ATPG runs. (See line 20.)

4. Simulate the patterns to see the baseline test coverage. (See line 21.)

5. Create patterns. (See line 28.)

6. Check how much benefit there is with the newly-created patterns (see line 31). Set a
baseline to see the benefit after step 4. (See line 24.)

7. Write the newly-created patterns. (See lines 34–40.)

8. Check final ATPG test coverage. (See lines 45-48)

Tessent™ Shell User’s Manual, v2021.3302

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Figure 6-11. ATPG Topoff Run Flow With a UDFM for processor_core

The following dofile shows a command flow for generating Automotive-Grade ATPG flow
topoff patterns.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 303

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 6-8. Dofile Example for Running Topoff ATPG With a UDFM in Internal
Mode for processor_core

1 set_context patterns -scan -design_id pnr
2 set design_name "processor_core"
3
4 # Specify the location of TSDB. Default is the current working directory
5 set_tsdb_output_directory ../tsdb_outdir
6
7 # Add more processors to run ATPG
8 add_processors localhost:4
9
10 # Read flat model
11 read_flat_model ../tsdb_outdir/logic_test_cores/

${design_name}_pnr.logic_test_core/${design_name}.atpg_mode_ATPG_int/
${design_name}_ATPG_int.flat.gz

12
13 # Cell-Aware Test Pattern Generation
14 set_fault_type udfm -static_fault
15 read_fault_sites ../../../udfm_gen/stdlib/udfm/

NangateOpenCellLibrary.udfm
16 report_fault_sites -undefined_cells
17 add_fault_sites -all
18 add_faults -all
19
20 read_patterns ../tsdb_outdir/logic_test_cores/

${design_name}_pnr.logic_test_core/${design_name}.atpg_mode_ATPG_int/
${design_name}_ATPG_int_stuck.patdb

21 simulate_patterns -source external
22
23 # Set baseline
24 report_udfm_statistics -set_baseline -group *OAI* *AOI* *OR* *AND* *INV*

BUF *HA* *DFF* *MUX* *DLL*
25 report_statistic
26
27 # Generate patterns
28 create_patterns
29
30 # Check gain
31 report_udfm_statistics -group *OAI* *AOI* *OR* *AND* *INV* *BUF* *HA*

DFF *MUX* *DLL*
32 report_statistic
33
34 write_patterns patterns/${design_name}_int_CAT_static_topoff.stil.gz -

stil -rep
35 write_faults faults/${design_name}_int_CAT_static_topoff.faults.gz -rep
36
37 # Write Verilog patterns for simulation
38 write_patterns patterns/${design_name}_int_CAT_static_topoff_parallel.v -

verilog -parallel -replace -parameter_list {SIM_KEEP_PATH 1}
39 set_pattern_filtering -sample_per_type 2
40 write_patterns patterns/${design_name}_int_CAT_static_topoff_serial.v -

verilog -serial -replace -parameter_list {SIM_KEEP_PATH 1}
41
42 # To understand the coverage of the faults testable by Internal mode it is

necessary to

Tessent™ Shell User’s Manual, v2021.3304

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

43 # eliminate the undetected faults that would otherwise be detected in
External mode. This is done

44 # by merging the fault list from running the graybox in External mode
45 read_faults faults/${design_name}_ext_CAT_static_topoff.faults.gz -merge
46
47 # Final coverage of the core that includes both Internal and External

modes
48 report_stat -detail
49
50 exit

Automotive-Grade ATPG Pattern Generation Using Only UDFMs

This procedure describes how to run cell-aware ATPG using only existing UDFMs.

Note
The line numbers used in this procedure refer to the command flow in “Dofile Example for
Running ATPG With Only UDFMs in Internal Mode for processor_core” on page 305.

Refer to the following directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/processor_core/
12.generate_AGA_patterns

Prerequisites

• Existing UDFM file(s) for your technology library and design.

Procedure

1. Load the flat model generated from a post-layout design. (See lines 1–11.)

2. Set a fault type and read in the UDFM files for your standard cells, interconnect bridge/
open, and cell-neighborhood defects. Then add faults. (See lines 14-20.)

3. Create patterns. (See line 24.)

4. Write the patterns. (See line 27.)

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Tessent™ Shell User’s Manual, v2021.3 305

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Figure 6-12. ATPG Run Flow With All UDFM for processor_core

The following dofile shows a command flow for generating Automotive-Grade ATPG flow
patterns using only UDFMs.

Example 6-9. Dofile Example for Running ATPG With Only UDFMs in Internal
Mode for processor_core

1 set_context patterns -scan -design_id pnr
2 set design_name "processor_core"
3
4 # Specify the location of TSDB. Default is the current working directory
5 set_tsdb_output_directory ../tsdb_outdir
6
7 # Add more processors to run ATPG
8 add_processors localhost:4
9
10 # Read flat model
11 read_flat_model ../tsdb_outdir/logic_test_cores/

${design_name}_pnr.logic_test_core/${design_name}.atpg_mode_ATPG_int/
${design_name}_ATPG_int.flat.gz

Tessent™ Shell User’s Manual, v2021.3306

Tessent Shell Automotive Workflow
DFT Insertion Flow for the Processor Core Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

12
13 # Cell-Aware Test Pattern Generation
14 set_fault_type udfm -static_fault
15 read_fault_sites ../../../udfm_gen/stdlib/udfm/

NangateOpenCellLibrary.udfm
16 read_fault_sites ../11.extract_fault_sites/udfm/

${design_name}_brdg_opn.udfm
17 read_fault_sites ../11.extract_fault_sites/udfm/CELLS_neighbor.udfm
18 report_fault_sites -undefined_cells
19 add_fault_sites -all
20 add_faults -all
21 report_statistics -detail
22
23 # Generate patterns
24 create_patterns
25 report_statistics -detail
26
27 write_patterns patterns/${design_name}_int_AGA_static.stil.gz -stil -rep
28 write_faults faults/${design_name}_int_AGA_static.faults.gz -rep
29
30 # Write Verilog patterns for simulation
31 write_patterns patterns/${design_name}_int_AGA_static_parallel.v -verilog

-parallel -replace -parameter_list {SIM_KEEP_PATH 1}
32 set_pattern_filtering -sample_per_type 2
33 write_patterns patterns/${design_name}_int_AGA_static_serial.v -verilog

-serial -replace -parameter_list {SIM_KEEP_PATH 1}
34
35 # To understand the coverage of the faults testable by Internal mode it is

necessary to
36 # eliminate the undetected faults that would otherwise be detected in

External mode. This is done
37 # by merging the fault list from running the graybox in External mode
38 #read_faults -mode ATPG_ext -fault_type udfm -merge
39 read_faults faults/${design_name}_ext_AGA_static.faults.gz -merge
40
41 # Final coverage of the core that includes both Internal and External

modes
42 report_stat -detail
43
44 exit

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Tessent™ Shell User’s Manual, v2021.3 307

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT Insertion Flow for the GPS Baseband Physical
Block

The GPS baseband design does not include memory. Since MemoryBIST is not required, you
can skip the first DFT insertion pass as described for the processor core. Instead, perform one
DFT pass to insert the hybrid IP, OCC, and in-system test.

In addition to illustrating how to insert in-system test at the block level, the flow for this block
shows you how to perform LogicBIST fault simulation when a design only has one clock, and,
thus, no NCP decoder logic.

Figure 6-13. DFT Insertion Flow for gps_baseband

This section highlights aspects of the flow for gps_baseband that differ from processor_core:
DFT insertion and LogicBIST fault simulation. Refer to the test case for dofile details.

DFT Insertion Pass With In-System Test: gps_baseband . 308

LogicBIST Fault Simulation With One NCP: gps_baseband . 312

Interconnect Bridge/Open UDFM Generation: gps_baseband . 312

Cell-Neighborhood UDFM Generation: gps_baseband . 313

Automotive-Grade ATPG Pattern Generation: gps_baseband. 313

Tessent™ Shell User’s Manual, v2021.3308

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT Insertion Pass With In-System Test: gps_baseband
This DFT insertion pass illustrates how to insert the in-system test controller at the core level.
This could be a requirement for your design depending on the length of your IJTAG network.
The tool generates a CPU-based controller, which is enabled from the system logic at the parent
level.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-10
on page 309 unless otherwise noted.

Procedure

1. Loading the Design. (See lines 1-8.)

2. Follow the steps described in “Specifying and Verifying the DFT Requirements: DFT
Signals for Wrapped Cores” on page 152, ensuring that you also include the required
DFT signals for the hybrid TK/LBIST flow and for controller chain mode. (See lines 10-
35.)

Constrain the enable signal for the in-system test controller to 0 for manufacturing test.
The tool emulates the control of this port during in-system test. (See lines 25-26.)

For the DFT signals, create a new port if a source node does not exist. The ports are
created only if set_design_level is not chip.

3. Creating the DFT Specification with SIBs for EDT, OCC, and LogicBIST, and edit the
default specification to insert the OCC, hybrid IP, and in-system test controllers. (See
lines 37-138.)

As you did with the processor core, use the read_config_data command to edit the DFT
specification.

• Specify the OCC wrapper and specify your clock intercept node for the OCC.

For details about OCC for the hybrid TK/LBIST flow, refer to “Tessent OCC TK/
LBIST Flow” in the Hybrid TK/LBIST Flow User’s Manual.

• Specify the EDT wrapper to include a LogicBistOptions wrapper, and specify a
MISR ratio of one.

The edt_clock and edt_update signals are automatically connected to EDT instances,
and the EDT controller is built with bypass.

• Specify a LogicBist wrapper that contains both a Controller wrapper and an
NcpIndexDecoder wrapper.

Because this core has a single clock, you only need one NCP; the tool does not
generate the NCP index decoder.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Tessent™ Shell User’s Manual, v2021.3 309

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Specify an InSystemTest wrapper, ensuring that you specify that you are using the
CPU interface.

Create a TCD segment for this instrument, and specify the in-system test controller
connections using the Connections wrapper.

4. Generating the EDT, Hybrid TK/LBIST, and OCC Hardware, plus the LogicBIST and
in-system test hardware. (See line 139.)

5. Extracting the ICL Module Description. (See line 141.)

6. Generating ICL Patterns and Running Simulation. (See lines 143-151.)

Examples

The following dofile example shows a typical automotive command flow for a core-level first
DFT insertion. Modify the DFT specifications for you design requirements.

Example 6-10. Dofile Example for DFT Insertion, gps_baseband

1 # Load the design
2 set_context dft –rtl -design_id rtl1
3 set_tsdb_output_directory ../tsdb_outdir
4 read_verilog ../rtl/gps_baseband.v
5
6 set_current_design gps_baseband
7
8 set_design_level physical_block
9
10 # Add required DFT signals for logic test
11 add_dft_signals ltest_en
12 add_dft_signals scan_en edt_update test_clock
13 -source_node {SCAN_EN_w edt_update test_clock_w }
14 add_dft_signals edt_clock shift_capture_clock -create_from_other_signals
15
16 # Add DFT signals required for hierarchical DFT (external, internal modes)
17 add_dft_signals int_ltest_en ext_ltest_en int_mode ext_mode
18
19 # Add DFT signal for controller chain mode
20 add_dft_signals controller_chain_mode
21
22 # Add required DFT signals specific to hybrid TK/LBIST flow
23 add_dft_signals observe_test_point_en control_test_point_en x_bounding_en
24
25 # Constrain the in-system test controller to 0 for manufacturing test
26 add_input_constraints mission_test_enable -C0
27
28 set_dft_specification_requirements -logic_test on
29
30 add_clocks clk -period 3ns
31
32 # Enable Observation Scan Technology (OST) for capturing per shift and

capture
33 add_dft_signals capture_per_cycle_static_en
34
35 check_design_rules

Tessent™ Shell User’s Manual, v2021.3310

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

36
37 # Create and report the DFT specification
38 set spec [create_dft_specification -sri_sib_list {edt occ lbist}]
39 report_config_data $spec
40
41 # Edit DFT specification to specify OCC’s SIB and to insert OCC
42 # Modify for your design requirements
43 read_config_data -in $spec -from_string {
44 OCC {
45 ijtag_host_interface : Sib(occ);
46 static_clock_control : external;
47 }
48 }
49
50 # Specify OCC insertion and intercept node
51 # This is a generic method for populating the OCC; modify for your design
52 # Scan enable and shift capture clock signals are automatically connected
53 # to the OCC instances
54 set id_clk_list [list \
55 clk clk\
56]
57 foreach {id clk} $id_clk_list {
58 set occ [add_config_element OCC/Controller($id) -in $spec]
59 set_config_value clock_intercept_node -in $occ $clk
60 }
61
62 # Specify the hybrid EDT configuration
63 read_config_data -in $spec -from_string {
64 EDT {
65 ijtag_host_interface : Sib(edt);
66 Controller (c1) {
67 longest_chain_range : 50, 65 ;
68 scan_chain_count : 60;
69 input_channel_count : 2;
70 output_channel_count : 2;
71 LogicBistOptions {
72 misr_input_ratio : 1 ;
73 ShiftPowerOptions {
74 present : on ;
75 default_operation : disabled ;
76 SwitchingThresholdPercentage {
77 min : 25 ;
78 }
79 }
80 }
81 }
82 }
83 }
84
85 # Specify the LogicBIST controller with NCP index decoder
86 read_config_data -in $spec -from_string {
87 LogicBist {
88 ijtag_host_interface : Sib(lbist);
89 Controller(1%ctrl_lbist) {
90 burn_in : on ;
91 pre_post_shift_dead_cycles : 8 ;
92 SingleChainForDiagnosis { Present : on ; }
93 ControllerChain {

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Tessent™ Shell User’s Manual, v2021.3 311

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

94 present : on;
95 clock : tck;
96 }
97 Connections {
98 scan_en_in : SCAN_EN_w ;
99 controller_chain_scan_in : ccm_scan_in ;
100 controller_chain_scan_out : ccm_scan_out ;
101 }
102 Interface {
103 shift_clock_src : - ;
104 }
105 NcpOptions {
106 count : 1 ;
107 }
108 ShiftCycles { max : 200 ; }
109 CaptureCycles { max : 7 ; }
110 PatternCount { max : 1024 ; }
111 WarmupPatternCount { max : 512 ; }
112 }
113
114# Specify the in-system test controller
115read_config_data -in $spec -from_string {
116 InSystemTest {
117 Controller(c0) {
118 protocol : cpu_interface ;
119 host_interface : HostScanInterface(ijtag) ;
120 data_width : 8 ;
121 ControllerChain {
122 present : on ;
123 clock : tck ;
124 segment_per_instrument : on ;
125 }
126 Connections {
127 reset : hw_rstn; //reset of gps_baseband core
128 CpuInterface {
129 clock : cpu_interface_clock ;
130 enable : mission_test_enable ;
131 write_en : from_cpu_write_en ;
132 data_in : data_in;
133 data_out : data_out;
134 }
135 }
136 }
137 }
138}
139process_dft_specification
140
141extract_icl
142
143# Write script for design compilation
144write_design_import_script for_dc_synthesis.tcl -replace
145
146set pat_spec [create_patterns_specification]
147process_patterns_specification
148
149run_testbench_simulations
150# If simulation fails use the command below to see which pattern failed
151check_testbench_simulations

Tessent™ Shell User’s Manual, v2021.3312

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

152
153exit

LogicBIST Fault Simulation With One NCP:
gps_baseband

The GPS baseband core contains one clock, and, therefore, one NCP. There is no need for NCP
decoder logic so Tessent Shell does not generate the NCP index decoder during IP insertion.
This means that you must explicitly specify the clock sequence during LogicBIST fault
simulation.

The following dofile extract invokes the clock sequence during LogicBIST fault simulation.
The sequence is generated by a TDR, and the static control clock is set to “both” during IP
insertion.

Example 6-11. Dofile Example for LogicBIST Fault Simulation With One NCP

...

set_core_instance_parameters -instrument_type occ -parameter_values \
{static_clock_control internal clock_sequence 3}

add_bist_capture_range SINGLE_OCC_NCP 0 255

set_lbist_controller_options -programmable_ncp_list { SINGLE_OCC_NCP }

set_system_mode analysis

create_capture_procedures -name SINGLE_OCC_NCP \
-clock_sequence ([get_name_list [get_clock \
gps_baseband_rtl1_tessent_occ_clk_inst/ \
tessent_persistent_cell_clock_out_mux/y]]) \
([get_name_list [get_clock \
gps_baseband_rtl1_tessent_occ_clk_inst/ \
tessent_persistent_cell_clock_out_mux/y]])

...

Interconnect Bridge/Open UDFM Generation:
gps_baseband

Generate an interconnect bridge and open UDFM on the gps_baseband module in the same way
as you did for the processor_core module.

Refer to “Interconnect Bridge/Open UDFM Generation: processor_core” on page 294 to see
how to generate an interconnect bridge/open UDFM on a wrapped core.

Tessent Shell Automotive Workflow
DFT Insertion Flow for the GPS Baseband Physical Block

Tessent™ Shell User’s Manual, v2021.3 313

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Refer to the following directory, which has an example on the gps_baseband module:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/gps_baseband/
10.extract_fault_sites

Cell-Neighborhood UDFM Generation: gps_baseband
Generate a cell-neighborhood UDFM on the gps_baseband module in the same way as the
processor_core module.

Refer to “Cell-Neighborhood UDFM Generation: processor_core” on page 296 to see how to
generate a cell-neighborhood UDFM on a wrapped core.

Refer to the following directory, which has an example on the gps_baseband module:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/gps_baseband/
10.extract_fault_sites

Automotive-Grade ATPG Pattern Generation:
gps_baseband

Generate Automotive-Grade ATPG topoff and UDFM patterns on the gps_baseband module in
the same way as you did for the processor_core module.

Refer to “Automotive-Grade ATPG Pattern Generation: processor_core” on page 300 to see
how to generate ATPG patterns on a wrapped core.

Refer to the following directory, which has an example on the gps_baseband module:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/gps_baseband/
11.generate_AGA_patterns

Tessent™ Shell User’s Manual, v2021.3314

Tessent Shell Automotive Workflow
Top-Level DFT Insertion for the Automotive Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level DFT Insertion for the Automotive
Flow

You previously inserted CPU-based in-system test controllers inside the GPS baseband cores.
At the top level, you now insert a DMA in-system test controller and associated memory block.
In addition to a Verilog test bench, this controller requires memory or lookup table (LUT)-based
logic to save both the controller instructions and the pattern data.

Typically, you use ROM for the DMA memory block, but you can use any storage mechanism
as long as you configure it to behave like a clocked synchronous memory. You can perform
MemoryBIST testing on this memory during manufacturing. For testing the memory in system,
the process for applying power-on reset tests during initialization differs if you are using ROM,
RAM, or LUT-based logic.

For general information about the RTL and scan DFT insertion flow for the top chip, refer to
“RTL and Scan DFT Insertion Flow for the Top Chip” on page 165. (The documented process
relates to a hierarchical test case; however, the basic flow remains the same.)

First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan 314

Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test 320

Scan Insertion for the Top Design . 325

ATPG Pattern Generation for the Top Design . 327

ATPG Pattern Retargeting for the Top Design . 328

Interconnect Bridge/Open UDFM Generation for the Top Design 328

Cell-Neighborhood UDFM Generation for the Top Design. 328

Automotive-Grade ATPG Pattern Generation for the Top Design 329

UDFM Generation for Cell-Aware ATPG . 329

TCA Based Pattern Sorting . 331

First DFT Insertion Pass: Top with MemoryBIST,
BISR, and Boundary Scan

The top design includes I/O pads. Insert boundary scan plus MemoryBIST for any memories
that are present at the top level; this includes the memory block for the DMA IST controller.
Build the IJTAG network for the wrapped cores at the top level. In addition, the design includes
repairable memories in the processor core, so you must insert an efuse with an efuse interface
and a BISR controller.

If you do not plan to implement hard repair, use the Tessent soft-repair only option.

Tessent Shell Automotive Workflow
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan

Tessent™ Shell User’s Manual, v2021.3 315

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
You must perform the first DFT insertion pass, even if you do not use MemoryBIST or
boundary scan to insert IJTAG to configure your child blocks. You cannot run logic test

DRC in this first pass. Logic test DRC requires that the child blocks are connected to the
network in order to be configured. Because of this, you can only run logic test DRC on the
second DFT insertion pass, after the network is configured.

Note
For general instructions about inserting MemoryBIST and boundary scan at the top level,
refer to “First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary

Scan” on page 168. This test case adds in the BISR and DMA memory block to the baseline use
case.

Note
Because you cannot use the in-system test patterns from the DMA memory block to test that
memory block, do not create in-system test patterns for testing the DMA memory.

If you plan to insert a LogicBIST controller at the same level as the DMA IST controller to
generate in-system test logic test patterns (not illustrated by this test case), ensure that the DMA
IST controller and its memory block have the same async clock source. In addition:

• Isolate the DMA memory block, its MemoryBIST logic, and the IST controller by
pushing them into their own module.

• If isolation is not possible because of design considerations, exclude the observation
logic inside the memory interface by disabling the observation_xor_size property. (The
MemoryBIST controller and MemoryBIST interface are scannable logic.) This prevents
a MISR signature difference between manufacturing and in-system LogicBIST tests.
For example:

set_config_value DftSpecification(processor_core,rtl1)/MemoryBist/
Controller(c2)/Step/MemoryInterface(m1)/observation_xor_size off

In addition, turn off the memory library DisableDuringScan property, which removes
both the gating logic at the memory inputs and the memory bypass mux that deactivates
the memory control during scan and LogicBIST test. As needed, re-enable the memory
bypass mux by setting the scan_bypass_logic property to sync_mux, as follows:

set_config_value DftSpecification(processor_core,rtl1)/MemoryBist/
Controller(c2)/Step/MemoryInterface(m1)/scan_bypass_logic sync_mux

The memory bypass mux is supported in this scenario as long as you are directly
connecting the memory data output to the IST controller data input.

Tessent™ Shell User’s Manual, v2021.3316

Tessent Shell Automotive Workflow
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-12
on page 317 unless otherwise noted.

Prerequisites

• To insert boundary scan, you must have an RTL design with instantiated I/O pads if you
are using a chip-level design.

• For RTL netlists, you must have a Tessent cell library or the pad library.

Procedure

1. Load the design, including opening the TSDBs for the child cores: processor_core and
gsp_baseband. (See lines 1-25.)

In addition, load the design for the DMA memory block, fusebox, and fusebox interface.
The dofile example shows an example fusebox. You must include an efuse and efuse
interface in your design unless you are opting for soft repair only.

2. Specify the DFT specification requirements. (See line 27.)

When you set the design level to chip, “-memory_test on” automatically initiates BISR
insertion if BISR chains exist on blocks instantiated in the current design or repairable
memories exist in the current design. This assumes that you have not changed the
set_dft_specification_requirements -memory_bist, -memory_bisr_chains, and
-memory_bisr_controller options from their default auto settings.

3. Identify TAP pins and pins that cannot add boundary scan cells. (See lines 29-41.)

4. Add DFT signals and clocks. (See lines 43-50.)

5. Create the connections for the CPU-based and DMA IST controllers. (See lines 52-68.)

You must connect the CPU-based IST controllers that you inserted at the block level so
that they can be controlled by the system logic. In addition, create the connection
between the DMA memory block and the DMA IST controller clock.

You can use a post-insertion script to connect the system logic with the IST controller.

6. Check the design rules and create the DFT specification. (See lines 70-76.)

7. Segment the boundary scan to be used during logic test. (See lines 78-79.)

8. Create the BISR controller connections for the clock, VDD, and fusebox. (See lines 81-
91.)

To connect the BISR controller to the system logic, you must specify the connection for
the BISR controller to use for repair clock, BISR reset, and VDD. Typically, system
logic is connected to the BISR controller for initiating memory repair and monitoring
the progress of the operation.

Tessent Shell Automotive Workflow
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan

Tessent™ Shell User’s Manual, v2021.3 317

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The BISR controller input clock must be driven by an appropriate functional clock.
Specify the connection with the repair_clock_connection property in the
DftSpecification/MemoryBisr/Controller wrapper. The BISR controller input signal
resets the BISR chains and initiates memory repair. Specify the reset signal with the
repair_trigger_connection property in the DftSpecification/MemoryBisr/Controller
wrapper. Also, specify your fusebox module and its location.

9. Identify the functional pins to be shared with EDT channel pins and add the required
auxiliary I/O logic. (See lines 93-100.)

10. Generate the hardware and extract ICL. (See lines 104-106.)

11. Generate ICL patterns and simulation test benches for the controllers and instruments in
the current and lower physical instances. (See lines 108-115.)

To re-execute the lower physical instance simulations at higher levels, enable the
set_default_values simulate_instruments_in_lower_physical_instances property.

12. Run and check test bench simulations. (See lines 117-130.)

Examples

The following dofile example shows a command dofile for the top-level first DFT insertion pass
for the automotive flow.

Example 6-12. Dofile Example for Top-Level First DFT Insertion Pass,
Automotive Flow

1 set_context dft -rtl -design_id rtl1
2 set_tsdb_output_directory ../tsdb_outdir
3 open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
4 open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir
5 read_cell_library ../../library/standard_cells/tessent/adk.tcelllib
6 read_verilog ../rtl/noncore_blocks/pll.v -blackbox
7
8 set_design_sources -format verilog \
9 -v ../rtl/noncore_blocks/pad8_io_macro.v \
10 -v ../rtl/noncore_blocks/iopad_sel.v \
11 ../rtl/noncore_blocks/iopad.v
12
13 # Read the memory block for the DMA IST controller too
14 read_verilog ../../library/memories/SYNC_1R1W_4096x8.v \
15 -interface_only -exclude_from_file_dictionary
16
17 read_verilog ../rtl/chip_top.v
18
19 # Read fusebox, example only
20 read_verilog fusebox/LVFuseBox.vb -exclude
21 read_verilog fusebox/genericFuseBox.vb
22 read_core_description fusebox/genericFuseBox.tcd_fbox
23
24 set_current_design chip_top
25 set_design_level chip
26

Tessent™ Shell User’s Manual, v2021.3318

Tessent Shell Automotive Workflow
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

27 set_dft_specification_requirements -boundary_scan on -memory_test on
28
29 # Specify the TAP pins
30 set_attribute_value TCK -name function -value tck
31 set_attribute_value TDI -name function -value tdi
32 set_attribute_value TMS -name function -value tms
33 set_attribute_value TRST -name function -value trst
34 set_attribute_value TDO -name function -value tdo
35
36 # Specify pins that cannot add any boundary scan cells
37 set_boundary_scan_port_options TEST_CLOCK_top -cell_options dont_touch
38 set_boundary_scan_port_options EDT_UPDATE_top -cell_options dont_touch
39 set_boundary_scan_port_options SCAN_ENABLE -cell_options dont_touch
40 set_boundary_scan_port_options RESET_N -cell_options dont_touch
41 set_boundary_scan_port_options INCLK -cell_options dont_touch
42
43 # Add DFT signals
44 add_dft_signals scan_en -source_nodes SCAN_ENABLE
45
46 # Specify the clocks
47 add_clocks PLL_1/pll_clock_0 -reference REF_CLK -freq_multiplier 16
48 add_clocks REF_CLK -period 48
49 add_clocks TEST_CLOCK_top -period 10
50 add_clocks INCLK -period 10ns
51
52 # Create connections for CPU-based IST controller inserted in gps_baseband
53 proc process_dft_specification.post_insertion {topWrapper args} {
54 create_connection RDS_1/mission_test_enable_gps GPS_1/mission_test_enable
55 create_connection RDS_2/mission_test_enable_gps GPS_2/mission_test_enable
56 create_connection istb/write_en GPS_1/from_cpu_write_en
57 create_connection istb/write_en GPS_2/from_cpu_write_en
58 create_connection istb/clock GPS_1/cpu_interface_clock
59 create_connection istb/clock GPS_2/cpu_interface_clock
60 create_connection istb/data_out GPS_1/data_in
61 create_connection istb/data_out GPS_2/data_in
62 create_connection GPS_1/data_out istb/data_in1
63 create_connection GPS_2/data_out istb/data_in2
64
65 # Create connection for DMA IST controller
66 create_connection IST_memory/CLK
67 chip_top_rtl1_tessent_in_system_test_post_inst/dma_clock
68 }
69
70 check_design_rules
71 set_system_mode analysis
72
73 report_clocks
74
75 set spec [create_dft_specification]
76 report_config_data $spec
77
78 # Segment the boundary scan to be used during logic test
79 set_config_value $spec/BoundaryScan/max_segment_length_for_logictest 80
80
81 # Create BISR controller connection for clock, VDD and fusebox
82 set_config_value -in $spec MemoryBisr/Controller/
83 repair_clock_connection PLL_1/pll_clock_0
84 set_config_value -in $spec

Tessent Shell Automotive Workflow
First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan

Tessent™ Shell User’s Manual, v2021.3 319

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

85 MemoryBisr/Controller/programming_voltage_source VDD/C
86 set_config_value -in $spec MemoryBisr/Controller/
87 repair_trigger_connection BISR_RESET/C
88 set_config_value -in $spec MemoryBisr/Controller/fuse_box_location
89 external
90 set_config_value -in $spec MemoryBisr/Controller/
91 fuse_box_interface_module genericFuseBox
92
93 # Add auxilary MUX on the inputs and outputs used for EDT channel pins
94 read_config_data -in ${spec}/BoundaryScan -from_string {
95 AuxiliaryInputOutputPorts {
96 auxiliary_input_ports : GPIO1_0, GPIO1_1, GPIO1_2, GPIO1_3;
97 auxiliary_output_ports : GPIO2_0, GPIO2_1, GPIO2_2, GPIO2_3, GPIO1_0,
98 GPIO1_1 ;
99 }
100}
101
102report_config_data $spec
103
104process_dft_specification
105
106extract_icl
107
108# Include the lower-level physical instances for IJTAG retargeting
109set_defaults_value PatternsSpecification/SignOffOptions/
110 simulate_instruments_in_lower_physical_instances on
111
112# Create pattern test benches to verify the inserted DFT logic
113set pat_spec [create_patterns_specification]
114
115process_pattern_specification
116
117set_simulation_library_sources -v ../../library/standard_cells/verilog/ \
118*.v
119-v ../rtl/noncore_blocks/pll.v \
120-v ../rtl/noncore_blocks/pad8_io_macro.v \
121-v ../rtl/noncore_blocks/iopad_sel.v \
122-v ../rtl/noncore_blocks/iopad.v \
123-v ../../library/memories/SYNC_1RW_8Kx16.v \
124-v ../../library/memories/SYNC_1RW_32x16_RC.v \
125-v ../../library/memories/SYNC_1R1W_4096x8.v \
126-v ../../library/standard_cells/verilog/adk.v \
127-v fusebox/LVFuseBox.vb
128
129run_testbench_simulations -exclude {InSystemTest_0_MemoryBist_P1}
130check_testbench_simulations -report_status
131
132exit

Tessent™ Shell User’s Manual, v2021.3320

Tessent Shell Automotive Workflow
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Second DFT Insertion Pass: Top with EDT, OCC,
and In-System Test

For the top level, the second DFT insertion pass for EDT and OCC include gray boxes, DFT
signals for purposes of ATPG retargeting, and TAMs. In addition, for the automotive flow, you
insert the DMA IST controller.

Note
For top-level EDT and OCC, this procedure follows a typical second DFT insertion flow for
a top design as detailed in “Second DFT Insertion Pass: Inserting Top-Level EDT and

OCC” on page 171. Refer to this section for associated details.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-13
on page 321 unless otherwise noted.

Procedure

1. Load the design. (See lines 1-14.)

Ensure that you load in the TCD for the DMA memory block that is used for in-system
test. (See line 10.)

2. Add DFT signals. (See lines 16-30.)

Ensure that you include a DFT signal for controller chain mode and define retargeting
modes for each group of wrapped cores whose ATPG patterns you want to retarget.

3. Apply the add_dft_modal_connections command to specify the TAM and to connect the
EDT channel IOs of the wrapped cores to top-level pins via the TAM. (See lines 32-76.)

Include connections for controller chain mode. For the processor core, use
retargeting_mode1, and for the GPS baseband, use retargeting_mode2.

With Tessent Shell you can share functional pins as EDT channel pins. The dofile shows
that the input pin GPI01_0 is shared as an EDT channel input pin, and the output pin
GPI02_0 is shared as an EDT channel output pin. Different modes can also share input
and output pins. For example, GPIO1_2 functions as both the processor core EDT mode
channel input and the controller chain mode uncompressed input for the entire design.

4. Set the DFT specification requirements. (See line 78.)

5. Create and process the DFT specification, using the read_config_data command to add
the EDT controller with bypass and the DMA IST controller. (See lines 83-150.)

The top-level EDT controller includes bypass, and the edt_clock and edt_update signals
are automatically connected to EDT instances. The
connect_bscan_segments_to_lsb_chains property defaults to auto and connects the

Tessent Shell Automotive Workflow
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test

Tessent™ Shell User’s Manual, v2021.3 321

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

divided boundary scan segments from the previous insertion pass to the top-level EDT
controller.

Using the set_config_value command, connect the top-level EDT channels that you left
unconnected during step 3 to the GPIO ports. (See lines 108-114.) The controller chain
connections are completed during scan insertion.

Finally, insert the DMA IST controller. (See lines 116-150.) Set the protocol property to
direct_memory_access. To account for ATPG coverage of the IST controller under
controller chain mode, you can specify a TCD scan segment. Specify the data width,
address width, and max_test_program_count that determine the bus width of the IST
controller’s program index, and thus the number of patterns that are programmed for the
controller. In addition, specify the connections for the DirectMemoryAccess interface.
The DMA IST controller inserts a comparator circuit and outputs a fail flag and done bit.

6. Generate ICL patterns and simulation test benches for the instruments in the current and
lower physical instances. (See lines 152-172.)

Create the in-system test patterns for the IJTAG instruments you want to test. The dofile
example illustrates applying the MemoryBist_P1 pattern to test the memory inside the
processor core. The resulting Verilog test bench file is named
FilePrefix_TestProgramIndex_PatternSetName.v, and the memory file (for use with the
DMA IST controller) is named testbench_file_name.mem.

7. Run and check test bench simulations. (See line 174-194.)

For in-system test, ensure that you point to the memory file that contains the control
instructions for the test bench and the data necessary for interaction with the DMA IST
controller. (See line 191.) This file has the same name as the test bench file with the
addition of a “.mem” suffix. The test bench loads the memory file during simulation.

In addition, add three levels to the IST controller’s actual location because execution
occurs inside three levels in the simulation_outdir directory.

After running the in-system test patterns, run the remaining test bench simulations for
the top and the physical blocks.

Examples

The following dofile example shows a command dofile for the top-level second DFT insertion
pass for the automotive flow.

Example 6-13. Dofile Example for Top-Level Second DFT Insertion Pass,
Automotive Flow

1 set_context dft -rtl -design_id rtl2
2 set_tsdb_output_directory ../tsdb_outdir
3 open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
4 open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir
5
6 read_design chip_top -design_id rtl1 -verbose

Tessent™ Shell User’s Manual, v2021.3322

Tessent Shell Automotive Workflow
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7 read_design processor_core -design_id gate1 -view graybox -verbose
8 read_design gps_baseband -design_id gate1 -view graybox -verbose
9
10 read_core_description ../../library/memories/SYNC_1R1W_4096x8.lvlib
11 read_verilog ../../library/memories/SYNC_1R1W_4096x8.v \
12 -interface_only exclude_from_file_dictionary
13
14 set_current_design chip_top
15
16 # Add DFT signals
17 add_dft_signals int_ltest_en output_pad_disable
18 add_dft_signals tck_occ_en
19 add_dft_signals ltest_en
20 add_dft_signals edt_mode
21 add_dft_signals controller_chain_mode
22
23 # These are used for top-level EDT
24 add_dft_signals test_clock edt_update \
25 -source_nodes {TEST_CLOCK_top EDT_UPDATE_top}
26 add_dft_signals shift_capture_clock edt_clock -create_from_other_signals
27
28 # Define retargeting modes
29 add_dft_signals retargeting1_mode retargeting2_mode retargeting3_mode \
30 retargeting4_mode
31
32 # TAM connections
33 add_dft_modal_connections -ports GPIO1_0 \
34 -input_data_destination_nodes * -enable_dft_signal edt_mode
35 add_dft_modal_connections -ports GPIO2_0 \
36 -output_data_source_nodes * -enable_dft_signal edt_mode
37 add_dft_modal_connections -ports GPIO1_0 -input_data_destination_nodes \
38 * -enable_dft_signal controller_chain_mode
39 add_dft_modal_connections -ports GPIO2_0 -output_data_source_nodes \
40 * -enable_dft_signal controller_chain_mode
41
42 # For processor_core
43 add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes \
44 PROCESSOR_1/processor_core_rtl2_controller_c1_edt_channels_in[0] \
45 -enable_dft_signal retargeting1_mode
46 add_dft_modal_connections -ports GPIO2_2 -output_data_source_nodes \
47 PROCESSOR_1/processor_core_rtl2_controller_c1_edt_channels_out[0] \
48 -enable_dft_signal retargeting1_mode
49
50 # For gps_baseband
51 add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes \
52 GPS_1/gps_baseband_rtl1_controller_c1_edt_channels_in[0] \
53 -enable_dft_signal retargeting2_mode
54 add_dft_modal_connections -ports GPIO1_2 -input_data_destination_nodes \
55 GPS_2/gps_baseband_rtl1_controller_c1_edt_channels_in[0] \
56 -enable_dft_signal retargeting2_mode
57 add_dft_modal_connections -ports GPIO1_3 -input_data_destination_nodes \
58 GPS_1/gps_baseband_rtl1_controller_c1_edt_channels_in[1] \
59 -enable_dft_signal retargeting2_mode
60 add_dft_modal_connections -ports GPIO1_3 -input_data_destination_nodes \
61 GPS_2/gps_baseband_rtl1_controller_c1_edt_channels_in[1] \
62 -enable_dft_signal retargeting2_mode
63 add_dft_modal_connections -ports GPIO1_0 -output_data_source_nodes \
64 GPS_1/gps_baseband_rtl1_controller_c1_edt_channels_out[0] \

Tessent Shell Automotive Workflow
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test

Tessent™ Shell User’s Manual, v2021.3 323

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

65 -enable_dft_signal retargeting2_mode -pipeline_stages 1
66 add_dft_modal_connections -ports GPIO1_1 -output_data_source_nodes \
67 GPS_1/gps_baseband_rtl1_controller_c1_edt_channels_out[1] \
68 -enable_dft_signal retargeting2_mode -pipeline_stages 1
69 add_dft_modal_connections -ports GPIO2_0 -output_data_source_nodes \
70 GPS_2/gps_baseband_rtl1_controller_c1_edt_channels_out[0] \
71 -enable_dft_signal retargeting2_mode -pipeline_stages 1
72 add_dft_modal_connections -ports GPIO2_1 -output_data_source_nodes \
73 GPS_2/gps_baseband_rtl1_controller_c1_edt_channels_out[1]
74 -enable_dft_signal retargeting2_mode -pipeline_stages 1
75
76 report_dft_modal_connections
77
78 set_dft_specification_requirements -logic_test on -memory_test on
79
80 set_system_mode analysis
81 report_dft_control_points
82
83 # Create DFT specification
84 set spec [create_dft_specification -sri_sib_list {occ edt lbist}]
85 report_config_data $spec
86 read_config_data -in $spec -from_string {
87 OCC {
88 ijtag_host_interface : Sib(occ);
89 }
90 }
91 set id_clk_list [list \
92 pll_clock_0 PLL_1/pll_clock_0 \
93 INCLK INCLK \
94]
95 foreach {id clk} $id_clk_list {
96 set occ [add_config_element OCC/Controller($id) -in $spec]
97 set_config_value clock_intercept_node -in $occ $clk
98 }
99 report_config_data $spec
100
101read_config_data -in $spec -from_string {
102 EDT {
103 ijtag_host_interface : Sib(edt);
104 Controller (c1) {
105 ...
106}
107
108# Connect the EDT channels to the GPIO ports
109set_config_value port_pin_name \
110 -in $spec/EDT/Controller(c1)/Connections/EdtChannelsIn(1) \
111 [get_auxiliary_pins GPIO1_0 -direction input]]
112set_config_value port_pin_name \
113 -in $spec/EDT/Controller(c1)/Connections/EdtChannelsOut(1) \
114 [get_single_name [get_auxiliary_pins GPIO2_0 -direction output]]
115
116# Insert DMA IST controller
117read_config_data -in $spec -from_string {
118 InSystemTest {
119 Controller(post) {
120 DesignInstance (.) {}
121 // host_interface: HostScanInterface(tap);
122 data_width : 8 ;

Tessent™ Shell User’s Manual, v2021.3324

Tessent Shell Automotive Workflow
Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

123 protocol : direct_memory_access ;
124 ControllerChain {
125 present : on ;
126 clock: tck;
127 segment_per_instrument: on;
128 }
129 DirectMemoryAccessOptions {
130 max_wait_cycles: 6400;
131 address_width: 12;
132 max_test_program_count: 2;
133 }
134 Connections {
135 reset: RESET_N;
136 DirectMemoryAccess {
137 clock: PLL_1/pll_clock_0_100; // free-running clock
138 enable: istb/enable;
139 test_program_index: istb/program_index;
140 mem_data: IST_memory/Q[%d];
141 mem_address: DMA_A/Y[%d];
142 fail_flag: istb/fail_flag ;
143 test_program_done: istb/test_done;
144 }
145 }
146 }
147 }
148}
149
150process_dft_specification
151
152extract_icl
153
154write_design_import_script for_dc_synthesis.tcl -replace
155
156# Include the lower-level physical instances for IJTAG retargeting
157set_defaults_value PatternsSpecification/SignOffOptions/
158 simulate_instruments_in_lower_physical_instances on
159
160set pat_spec [create_patterns_specification]
161
162# Create in-system test pattern for core-level memory
163add_core_instance -module [get_name [get_icl_module *post]]
164read_config_data -replace -in $pat_spec -from_string {
165 InSystemTest {
166 Controller(chip_top_rtl1_tessent_in_system_test_post_inst) {
167 TestProgram(0) { pattern : MemoryBist_P1 ; }
168 }
169 }
170}
171
172process_pattern_specification
173
174set_simulation_library_sources
175 -v ../../library/standard_cells/verilog/*.v
176-v ../rtl/noncore_blocks/pll.v \
177-v ../rtl/noncore_blocks/pad8_io_macro.v \
178-v ../rtl/noncore_blocks/iopad_sel.v \
179-v ../rtl/noncore_blocks/iopad.v \
180-v ../../library/memories/SYNC_1RW_8Kx16.v \

Tessent Shell Automotive Workflow
Scan Insertion for the Top Design

Tessent™ Shell User’s Manual, v2021.3 325

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

181-v ../../library/memories/SYNC_1RW_32x16_RC.v \
182-v ../../library/memories/SYNC_1R1W_4096x8.v \
183-v ../../library/standard_cells/verilog/adk.v \
184-v fusebox/LVFuseBox.vb
185
186# Add three levels to the actual location because execution occurs inside
187# three levels in the simulation_outdir/
188run_testbench_simulations -simulator_option
189 { +nowarnTSCALE -voptargs="+acc"
190 +IST_INIT_MEM=../../../../tsdb_outdir/patterns/
191 chip_top_rtl2.patterns_signoff/InSystemTest.mem }
192 -select InSystemTest_0_MemoryBist_P1
193
194run_testbench_simulations -exclude {InSystemTest_0_MemoryBist_P1 }
195
196exit

Scan Insertion for the Top Design
After synthesizing your design, stitch the scan logic at the top-level along with the wrapper
chains (external mode) of the cores. During scan insertion, the non-scan instances such as EDT
are automatically understood. In addition, the built-in OCC sub-chains are understood and
stitched into scan chains. The TCD segments that were created for the hybrid IP and IST
controller test logic must be stitched together within the controller chain mode so that you can
test them during ATPG.

Tessent uses the DFT signals that you specified during the previous insertion passes, therefore
you do not need to specify them again.

Note
Tessent Shell works with any third-party scan insertion or other tools. However, because all
Tessent products reside on the same code and database, you lose some automation with

third-party tools.

Note
The line numbers used in this procedure refer to the command flow dofile in Example 6-14
on page 326 unless otherwise noted.

Procedure

1. Load the design. (See lines 1-12.)

Ensure that you specify a unique design ID, and that you open the TSDB for all the child
cores.

2. Exclude some design objects from the scan insertion process. (See lines 17-19.)

Exclude the pipeline stages that you added using add_dft_modal_connections and the
fusebox instance.

Tessent™ Shell User’s Manual, v2021.3326

Tessent Shell Automotive Workflow
Scan Insertion for the Top Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Constrain the BISR reset to constant 1 (c1). (See line 21.)

4. Create EDT and controller chain mode scan modes. (See lines 25-55.)

Create an EDT scan mode to connect the scan chains to the EDT signals and EDT
hardware that you inserted during the second DFT insertion pass.

Create a top-level controller chain mode. To do this, you must first set the
active_child_scan_mode attribute value, which enables you to select the active child
scan mode of a multi-mode core and build a single chain for all controller chain mode
IPs in all cores and also the top-level IST controller. The IST controller must be tested in
controller chain mode.

When you specify add_chain_mode for the controller chain mode, include controller
chain mode segments from the processor core, GPS baseband cores and the top
elements. To reuse the I/O pins you created with add_dft_modal_connections during the
second DFT insertion pass, specify the auxiliary pin SI/SO connections. For controller
chain mode, you must specify the SI/SO-associated ports so the tool recognizes that the
chains are uncompressed.

5. Perform scan insertion. (See lines 57-61.)

Examples

The following dofile example shows a command dofile for top-level scan insertion for the
automotive flow.

Figure 6-14. Dofile Example for Top-Level Scan Chain Insertion, Automotive
Flow

1 # Load the design
2 set_context dft -scan -design_id gate3
3 open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
4 open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir
5 read_cell_library ../../library/standard_cells/tessent/adk.tcelllib
6 read_verilog ../3.synthesize_rtl/chip_top_synthesized.vg
7
8 read_design chip_top -design_id rt12 -no_hdl -verbose
9 read_design processor_core -design_id gate1 -verbose
10 read_design gps_baseband -design_id gate1 -view graybox -verbose
11
12 set_current_design chip_top
13
14 report_clocks
15 report_static_dft_signal_settings
16
17 # Specify the non-scan instances
18 add_nonscan_instances *tessent_dft_modal_*
19 add_nonscan_instances -instances fbi_instance
20
21 add_input_constraints BISR_RSTN_PAD -c1

Tessent Shell Automotive Workflow
ATPG Pattern Generation for the Top Design

Tessent™ Shell User’s Manual, v2021.3 327

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

22
23 set_system_mode analysis
24
25 # Create a scan mode to connect scan chains to EDT
26 set edt_instance [get_name_list [get_instance -of_module [get_name
27 [get_icl_module -of_instances chip_top* -filter
28 tessent_instrument_type==mentor::edt]]]]
29
30 add_scan_mode edt_mode -edt_instance $edt_instance
31
32 # Start creating a scan mode for controller_chain_mode
33 set_attribute_value [get_instance -of_module *in_system_test*] -name
34 active_child_scan_mode -value controller_chain_mode
35 set_attribute_value [get_instance PROCESSOR_1] -name
36 active_child_scan_mode -value controller_chain_mode
37 set_attribute_value [get_instance GPS_1] -name active_child_scan_mode
38 -value controller_chain_mode
39 set_attribute_value [get_instance GPS_2] -name active_child_scan_mode
40 -value controller_chain_mode
41
42 # Create a scan chain family for elements at the top
43 create_scan_chain_family ccm_mm_top -include_elements
44 [get_scan_elements -of_child_scan_mode controller_chain_mode]
45
46 # Create the ccm scan mode and include elements at core and top
47 add_scan_mode controller_chain_mode -include_chain_families
48 {ccm_mm_top}
49 -include_elements{controller_chain_mode/PROCESSOR_1/ccm_scan_out
50 controller_chain_mode/GPS_1/ccm_scan_out
51 controller_chain_mode/GPS_2/ccm_scan_out} -si_connections
52 [get_single_name [get_auxiliary_pins GPIO1_2 -direction input]]
53 -so_connection [get_single_name [get_auxiliary_pins GPIO2_2
54 -direction output]] si_associated_ports GPIO1_2
55 -so_associated_ports GPIO2_2 -enable_dft_signal controller_chain_mode
56
57 analyze_scan_chains
58 report_scan_chains
59
60 insert_test_logic
61 report_scan_cells > scan_cells.list
62
63 exit

ATPG Pattern Generation for the Top Design
For top-level ATPG pattern generation, use the scan-inserted design data for the chip. Tessent
uses the graybox models for the wrapped cores so that you can use the external mode of the
wrapper chains to run ATPG.

Note
Top-level ATPG pattern generation for the automotive flow follows the typical hierarchical
flow as described in “Top-Level ATPG Pattern Generation Example” on page 175.

Tessent™ Shell User’s Manual, v2021.3328

Tessent Shell Automotive Workflow
ATPG Pattern Retargeting for the Top Design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you used Tessent Scan to insert the scan chains, specify the import_scan_mode command for
ATPG pattern generation. Tessent Shell passes the scan-inserted design data through for the
EDT and OCC logic. This data includes the scan structures that are stored in the TSDB under
the “gate” design ID. You can create ATPG patterns for any mode that you need, such as stuck-
at, transition, and controller chain mode.

In addition, Tessent automatically creates and simulates the test_setup procedure cycles that are
required to initialize the EDT and OCC static signals. You only need to specify non-default
parameter values, if, for example, you run EDT with bypass on or set int_ltest_en to 1 to use the
boundary scan as the source of the core values and isolate the ATPG test from the top-level IOs.

You can read in the stuck-at fault models for the wrapped cores to calculate the total fault
coverage for the chip.

ATPG Pattern Retargeting for the Top Design
For each wrapped core, retarget the internal ATPG patterns for all the modes you specified and
all the fault types.

Perform pattern retargeting as described in “Performing Top-Level ATPG Pattern Retargeting”
on page 177.

Interconnect Bridge/Open UDFM Generation for the
Top Design

Generate an interconnect bridge and open UDFM for the top design module in the same way as
you did for the processor_core module.

Refer to “Interconnect Bridge/Open UDFM Generation: processor_core” on page 294 to see
how to generate an interconnect bridge/open UDFM on a wrapped core.

Refer to the following directory, which has an example on the top design module:

tessent_automotive_reference_flow_<software_version>/top/9.extract_fault_sites

Cell-Neighborhood UDFM Generation for the Top
Design

Generate a cell-neighborhood UDFM for the top design module in the same way as the
processor_core module.

Refer to “Cell-Neighborhood UDFM Generation: processor_core” on page 296 to see how to
generate a cell-neighborhood UDFM on the top design.

Tessent Shell Automotive Workflow
Automotive-Grade ATPG Pattern Generation for the Top Design

Tessent™ Shell User’s Manual, v2021.3 329

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Refer to the following directory, which has an example on the top design module:

tessent_automotive_reference_flow_<software_version/top/9.extract_fault_sites

Automotive-Grade ATPG Pattern Generation for the
Top Design

Generating automotive-grade ATPG patterns on the top design is similar to regular ATPG
pattern generation. It needs several UDFM files for cell-internal defects, interconnect bridge or
open defects, and cell-neighborhood defects.

Refer to the Interconnect Bridge/Open UDFM Generation: processor_core for interconnect
bridge/open UDFM generation on your design, and Cell-Neighborhood UDFM Generation:
processor_core for cell-neighborhood UDFM generation for your design.

Refer to “UDFM Generation for Cell-Aware ATPG” on page 329 for details on how to generate
the cell-aware UDFM for your technology library.

As you do for regular ATPG, you must use graybox models for wrapped cores. The only
difference with the regular top-level ATPG, in terms of the flow, is that you must read UDFM
files for Automotive-Grade ATPG on the top design. You can run ATPG with topoff runs by
loading only the UDFM files you want to target during an ATPG run. Also, you can run ATPG
all together by reading in all UDFM files at once.

Refer to “Automotive-Grade ATPG Pattern Generation: processor_core” on page 300 to see
how to generate ATPG patterns on a wrapped core.

Refer to the following directory, which has an example on the top design module:

tessent_automotive_reference_flow_<software_version>/top/10.generate_AGA_patterns

UDFM Generation for Cell-Aware ATPG
To run cell-aware ATPG, you should generate cell-aware UDFMs for standard cells using
Tessent CellModelGen. Ensure that all input requirements and required tools are available
before running Tessent CellModelGen.

For information on Tessent CellModelGen or input requirements, refer to the Tessent
CellModelGen User’s Manual.

Note
Refer to the following directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/udfm_gen/stdlib

Tessent™ Shell User’s Manual, v2021.3330

Tessent Shell Automotive Workflow
UDFM Generation for Cell-Aware ATPG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-15. Cell-Aware UDFM Generation Flow

Tessent Shell Automotive Workflow
TCA Based Pattern Sorting

Tessent™ Shell User’s Manual, v2021.3 331

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Check all inputs and tools requirements are met.

For details, refer to the “Required Licenses and Input Data” chapter in the Tessent
CellModelGen Tool Reference.

2. Create an empty directory, and retrieve run scripts:

cellmodelgen -get_script all

3. Look at the existing run_flow script in the directory. Modify the run_flow script for your
design. Refer to the inline comments within the script for details.

4. Run the run_flow script to run Tessent CellModelGen on your standard cells.

5. Look at the existing run_export script in the directory. Modify the run_export script for
your design. Refer to the inline comments within the script for details.

6. Run the run_export script to combine the individual standard cell UDFM files into a
single UDFM file.

TCA Based Pattern Sorting
Tessent Shell provides a way to sort ATPG patterns based on the total critical area (TCA) of
defects. The TCA defect data is saved in cell-aware, interconnect bridge/open, and cell-
neighborhood UDFM files.

Note
The line numbers used in this procedure refer to the command flow in “Dofile Example for
Running ATPG With All Types of UDFM in Internal Mode for gps_baseband” on page 332.

Refer to the following directory, which has a usage example described in this section:

tessent_automotive_reference_flow_<software_version>/wrapped_cores/gps_baseband/
12.pattern_sorting

Procedure

1. Load the flat model generated from a post-layout design. (See lines 1–11.)

2. Set a fault type, read in the UDFM file for your standard cells, and add faults. (See lines
13-18.)

3. Read the patterns you want to sort. (See lines 20-26.)

4. Run the “set_critical_area_options -reporting on” command to enable the TCA coverage
reporting feature. (See line 28.)

5. Simulate the patterns. (See line 30.)

6. Run the “order_patterns -critical_area” to sort the patterns based on TCA. (See line 31.)

Tessent™ Shell User’s Manual, v2021.3332

Tessent Shell Automotive Workflow
TCA Based Pattern Sorting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Write out the sorted patterns (See line 33.)

Examples

Figure 6-16. TCA Based Pattern Sorting Flow

The following dofile shows a command flow for generating a bridge/open UDFM for use in the
Automotive-Grade ATPG flow.

Example 6-14. Dofile Example for Running ATPG With All Types of UDFM in
Internal Mode for gps_baseband

1 set_context patterns -scan -design_id pnr
2 set design_name "gps_baseband"
3
4 # Specify where the tsdb_outdir is to be located, default is the current

working directory
5 set_tsdb_output_directory ../tsdb_outdir

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Tessent™ Shell User’s Manual, v2021.3 333

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6
7 # Add more processors to run ATPG
8 add_processors localhost:4
9
10 # Read flat model
11 read_flat_model ../tsdb_outdir/logic_test_cores/

${design_name}_pnr.logic_test_core/${design_name}.atpg_mode_ATPG_int/
${design_name}_ATPG_int.flat.gz

12
13 # Read UDFMs
14 set_fault_type udfm -static_fault
15 read_fault_sites ../../../udfm_gen/stdlib/udfm/

NangateOpenCellLibrary.udfm
16 read_fault_sites ../10.extract_fault_sites/udfm/

${design_name}_brdg_opn.udfm
17 read_fault_sites ../10.extract_fault_sites/udfm/CELLS_neighbor.udfm
18 add_faults -all
19
20 # Read patterns
21 #read_patterns ../tsdb_outdir/logic_test_cores/

${design_name}_pnr.logic_test_core/${design_name}.atpg_mode_ATPG_int/
${design_name}_ATPG_int_stuck.patdb

22 read_patterns ../11.generate_AGA_patterns/patterns/
${design_name}_int_stuck.stil.gz

23 read_patterns ../11.generate_AGA_patterns/patterns/
${design_name}_int_CAT_static_topoff.stil.gz -append

24 read_patterns ../11.generate_AGA_patterns/patterns/
${design_name}_int_BRDG_static_topoff.stil.gz -append

25 read_patterns ../11.generate_AGA_patterns/patterns/
${design_name}_int_OPN_static_topoff.stil.gz -append

26 read_patterns ../11.generate_AGA_patterns/patterns/
${design_name}_int_intercell_static_topoff.stil.gz -append

27
28 set_critical_area_options -reporting on
29
30 simulate_patterns -source external -store_patterns all
31 order_patterns -critical_area
32
33 write_patterns patterns/${design_name}_int_static_topoff_sorting.stil.gz

-stil -rep
34 exit

Functional Mode Fault Tolerance for Static
IJTAG Signals

Tessent Shell provides a way to implement gating logic to ensure that a single-event upset
(SEU) does not affect the mission mode operation of a user design.

TDR outputs are ORed in a hardware fault tolerant (HFT) module. The result is available as
gated DFT signals and an alarm signal that you monitor during functional operation mode. The
alarm indicates that a test signal register value has been altered because of an SEU.

Tessent™ Shell User’s Manual, v2021.3334

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This gating and monitoring logic is available for static DFT signals implemented with the
-create_with_tdr option. You can control the implementation of this logic for individual signals.

Procedure

1. Add the dft_signal_disable DFT signal to gate the TDR logic:

add_dft_signals dft_signal_disable

2. Enable the creation of the HFT module for all static DFT signals interacting with
functional logic:

set_dft_signals_options -disable_for_functional_safety static

3. Add the individual DFT signals that you want to monitor:

add_dft_signals dft_signal -create_with_tdr \
-disable_for_functional_safety on

4. Add any DFT signals you want to exclude from monitoring:

add_dft_signals dft_signal -create_with_tdr \
-disable_for_functional_safety off

5. Create and process the DftSpecification:

check_design_rules
create_dft_specification
process_dft_specification

Results

An instance of an HFT module is created in a TDR hosting the static DFT signals. This module
provides the gating of the specified static DFT signals in addition to SEU monitoring logic. See
Figure 6-17 for an example.

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Tessent™ Shell User’s Manual, v2021.3 335

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-17. Hardware Fault Tolerant Module Example

The alarm signal is raised only in functional mode, and is gated with the all_test_out signal (the
all_test signal gated with fault tolerant logic). It is accessible on a persistent buffer regardless of
the DftSpecification add_persistent_buffers_in_scan_resource_instruments setting. The buffer
instance name is <tessent_persistent_cell_prefix>_hft_alarm_buf.

Use the following command to introspect the alarm signal:

get_icl_pins –filter \
{tessent_dft_function=="functional_mode_alarm"} \
-of_instance [get_icl_instance –filter \
{tessent_instrument_type=="mentor::ijtag_node"}]

Note
If you do not add the DFT signals explicitly, the tool creates all_test and dft_signal_disable
automatically.

Note
Typically, the reset value for DFT signals is 0. When the reset value is 1, the gating logic is
inverted, as shown with <sig_ResetVal_1> in Figure 6-17. Each DFT signal holds its reset

value in the functional mode of circuit operation.

In the single-pass DFT insertion flow, the dft_signal_disable signal is created in a Scan
Resource Instrument (SRI) TDR. See Figure 6-18 for an example.

Tessent™ Shell User’s Manual, v2021.3336

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-18. HFT Module in the Single-Pass Flow

In the two-pass DFT insertion flow, the dft_signal_disable and all_test signals are defined in a
Tdr(sri_ctrl) module created during the first insertion pass. The TDR with logic test signals is
created in the second DFT insertion pass, and takes the all_test and dft_signal_disable signals as
primary inputs. Each TDR instance contains its own HFT logic, and two alarm signals are
available on the TDR output ports. See Figure 6-19 for an example.

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Tessent™ Shell User’s Manual, v2021.3 337

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-19. HFT Modules in the Two-Pass Flow

If you implement signal monitoring with the global set_dft_signals_options command, only
those signals that affect the functional mode of operation can be monitored. If you implement
signal monitoring and gating on a per-signal basis, any signal can be monitored.

By default, the capture_per_cycle_static_en and se_pipeline_en logic test control signals are not
monitored. Also, no scan mode signals are monitored by default. Monitoring and gating is
possible only for those static DFT signals you create with the -create_with_tdr option.

If you create the dft_signal_disable signal using the -source_node option, the tool implements
the source node as part of an ICL network regardless of design level.

Related Topics

add_dft_signals

set_dft_signals_options

get_dft_signals_option

Tessent™ Shell User’s Manual, v2021.3338

Tessent Shell Automotive Workflow
Functional Mode Fault Tolerance for Static IJTAG Signals

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 339

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 7
TSDB Data Flow for the Tessent Shell Flow

The Tessent Shell Database (TSDB) is a repository for all the files and directories that Tessent
Shell generates. The TSDB enhances flow automation by acting as the central location where
Tessent can access the data it requires for the current task, whether that task be reading in a
design, performing DRC, inserting logic test hardware, or performing ATPG pattern generation.

The TSDB structure aids data management between steps in a process even if you are not
performing these steps within the Tessent Shell platform. If the steps are performed within
Tessent Shell, then specifying the correct design ID automatically ensures that Tessent uses the
correct file inputs for the current task.

Refer to “Tessent Shell Database (TSDB)” in the Tessent Shell Reference Manual for details
about the TSDB directory structure and contents.

The data flow content builds on the material described in “Tessent Shell Flow for Flat Designs”
and “Tessent Shell Flow for Hierarchical Designs” regarding the RTL and scan DFT insertion
flow. During the RTL and scan DFT insertion process, Tessent Shell generates many output
files and directories that it accesses later in the flow as data inputs. This chapter illustrates the
data flow through each step of the RTL and scan DFT insertion flow.

Core-Level or Flat TSDB Data Flow . 339

Top-Level TSDB Data Flow . 344

Core-Level or Flat TSDB Data Flow
The core-level TSDB data flow applies to wrapped cores in a hierarchical DFT insertion flow.
In the bottom-up insertion process, you process the wrapped cores before the top-level chip.

Refer to “Tessent Shell Flow for Hierarchical Designs” for details.

With the addition of boundary scan in the first DFT insertion pass and the exclusion of graybox
modeling, this data flow also applies to flat and DFT-inserted designs unless the core includes
embedded pad I/O macros that need boundary scan to be inserted as well. Refer to “Tessent
Shell Flow for Flat Designs” for details.

Tessent™ Shell User’s Manual, v2021.3340

TSDB Data Flow for the Tessent Shell Flow
Core-Level or Flat TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During the first DFT insertion pass, you provide the required files for your DFT
implementation. These files can include the RTL netlist, libraries for MemoryBIST insertion
and boundary scan, and gate-level cells that require a Tessent cell library.

Tessent Shell generates the dft_inserted_designs, instruments, and patterns directories within
the TSDB you specified. By default, Tessent Shell generates the TSDB in the current working
directory if you do not specify a location. For details about these directories and the TSDB, refer
to “Tessent Shell Database (TSDB)” in the Tessent Shell Reference Manual.

Tessent modifies the RTL netlist for the design into which the first-pass instrument hardware
needs to be inserted. This hardware may include a MemoryBIST controller, BAP interface, and
IJTAG network. In the flat DFT implementation, it may also include boundary scan and a TAP
controller. Tessent Shell generates new RTL for the newly inserted DFT instruments.

In addition, Tessent Shell produces the TCD, ICL, and PDL for the design and the inserted
instruments. As shown in Figure 7-1, the design-level files and modified RTL are stored within
the dft_inserted_designs subdirectory for this insertion pass (design ID “rtl1”). However, the

Table 7-1. Core-Level TSDB Data Flow Inputs and Outputs

Task Input Output

DFT insertion:
first pass

Design ID for
output: rtl1

• RTL netlist
• Libraries
• Required DFT signals
• MemoryBIST requirements
• For flat: boundary scan

requirements also

• Modified RTL + new RTL
• ICL for IJTAG network
• TCD: clocks, DFT signals
• ICL for Memory + PDL
• For flat: boundary scan also

DFT insertion:
second pass

Design ID for
output: rtl2

• rtl1 design data
• libraries
• required DFT signals
• EDT and OCC requirements

• modified RTL + new RTL
• ICL for IJTAG network
• TCD: clocks, DFT signals
• ICL for OCC and EDT + PDL

Synthesis

Third-party tool

• output from
write_design_import_script
command (use rtl2 design data)

• synthesized gate-level netlist

Scan chain
insertion

Design ID for
output: gate

• synthesized gate-level netlist
• scan modes
• TCD, ICL, PDL from rtl2

• scan-stitched gate-level netlist
• ICL, PDL
• TCD with scan modes
• graybox model (not flat)

ATPG pattern
generation

• gate scan-inserted design data
• ATPG run name
• scan mode

• flat model
• fault list
• patterns database
• TCD

TSDB Data Flow for the Tessent Shell Flow
Core-Level or Flat TSDB Data Flow

Tessent™ Shell User’s Manual, v2021.3 341

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

new RTL, TCD, ICL, and PDL files for each inserted instrument are stored in subdirectories
within the instruments directory.

The patterns directory stores the patterns associated with the rtl1 design ID in an associated
subdirectory.

Tip
To facilitate data management, you can save each design (whether flat, core, sub-block, or
chip) in its own TSDB. This is the recommended practice when using Tessent Shell for DFT

insertion.

Figure 7-1. TSDB Data Flow, Core Level, First Insertion Pass

Figure 7-2 shows the data flow for the second DFT insertion pass. Tessent uses the design data
that was saved as rtl1 in the first pass as input for the second pass.

The relevant design RTL, TCD, ICL, and PDL files from the first DFT insertion pass are
automatically read in when you specify the read_design command as described in “Loading the
Design”. You only need to supply a library, if required, and any DFT input requirement for the
DFT instruments you are inserting during this pass.

The hardware you insert in this pass, such as EDT and OCC, is stored in the instruments
directory. Separate directories are created for each type of hardware inserted in each insertion
pass.

The patterns directory stores the patterns associated with the rtl2 design ID in an associated
subdirectory.

Tessent™ Shell User’s Manual, v2021.3342

TSDB Data Flow for the Tessent Shell Flow
Core-Level or Flat TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-2. TSDB Data Flow, Core Level, Second Insertion Pass

Figure 7-3 shows the data flow for scan chain insertion. After synthesis, which you perform
using a third-party tool, you have a synthesized gate-level netlist. This netlist is the input for
scan chain insertion along with the design-level TCD, ICL, and PDL from the rtl2 design
generated during the second DFT insertion pass.

For wrapped cores, Tessent performs wrapper analysis along with scan chain insertion, whereas
for flat designs, Tessent performs scan chain replacement and stitching. For information about
using Tessent Scan for scan insertion, refer to “Internal Scan and Test Circuitry Insertion” in the
Tessent Scan and ATPG User’s Manual.

Scan insertion does not insert instruments, so the instruments and patterns directories are not
utilized in this step.

TSDB Data Flow for the Tessent Shell Flow
Core-Level or Flat TSDB Data Flow

Tessent™ Shell User’s Manual, v2021.3 343

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-3. TSDB Data Flow, Core Level, Scan Insertion

Figure 7-4 shows that the input to ATPG is the scan-inserted netlist and all the supporting files
such as TCD, ICL, and PDL files that were stored in the TSDB during the scan insertion pass
(design_id “gate”). Tessent creates the logic_test_cores directory, which stores the output
pattern data for each ATPG run, which can include runs for various test types and associated
fault models as described in “Fault Modeling Overview” in the Tessent Scan and ATPG User’s
Manual.

Before generating patterns for wrapped cores, Tessent creates a graybox model of the core. This
model is stored using the same design ID as the one created during scan insertion (design ID
“gate”), so that at the top-level you can either use the full design view or graybox view of the
wrapped core. Refer to “Performing ATPG Pattern Generation: Wrapped Core” for more
information.

Figure 7-4. TSDB Data Flow, Core Level, Pattern Generation

Tessent™ Shell User’s Manual, v2021.3344

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level TSDB Data Flow
The top-level TSDB data flow applies to the hierarchical RTL and scan DFT insertion flow. In
the hierarchical DFT insertion flow, you insert boundary scan and MemoryBIST, if present, at
the top level of a chip during the first DFT insertion pass.

At the chip level, the core-level design data that was stored in the core-level TSDBs is used for
ATPG pattern retargeting. Refer to “RTL and Scan DFT Insertion Flow for the Top Chip” for
details.

Figure 7-5 shows the data flow for the first DFT insertion pass. Tessent modifies the RTL netlist
for the design and generates new RTL for the boundary scan and MemoryBIST (if inserted)

Table 7-2. Top-Level TSDB Data Flow Inputs and Outputs

Task Input Output

DFT insertion:

first pass

design ID for
output: rtl1

• RTL netlist
• libraries
• required DFT signals
• boundary scan requirements
• TSDBs, lower core design data

• modified RTL + new RTL
• ICL for IJTAG network
• TCD: clocks, DFT signals
• ICL for boundary scan + PDL

DFT Insertion:
second pass

design ID for
output: rtl2

• rtl1 design data
• libraries
• required DFT signals
• EDT and OCC requirements

• modified RTL + new RTL
• ICL for IJTAG network
• TCD: clocks, DFT signals
• ICL for OCC and EDT + PDL

Synthesis

third-party tool

• output from
write_design_import_script
command (use rtl2 design data)

• synthesized gate-level netlist

Scan chain
insertion

design ID for
output: gate

• synthesized gate-level netlist
• scan modes
• TCD, ICL, PDL from rtl2

• scan-stitched gate-level netlist
• ICL, PDL
• TCD with scan modes

ATPG pattern
generation (flat)

• gate scan-inserted design data
• ATPG run name
• scan mode

• flat model
• fault list
• patterns database
• TCD

ATPG pattern
generation (core
level)

• gate scan-inserted design data
• ATPG run name
• scan mode
• wrapped core ATPG pattern data,

retargeted

• flat model
• fault list
• patterns database
• TCD

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Tessent™ Shell User’s Manual, v2021.3 345

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

hardware. In addition, it produces the TCD, ICL, and PDL for the design and the inserted
instruments.

For integration at the top level, the scan-inserted design data and the interface views from the
wrapped cores are used. This is done by opening the core TSDB directories and using the
read_design command to read in the graybox model and the TCD, ICL, and PDL files.

The patterns directory stores the patterns associated with the rtl1 design ID in an associated
subdirectory.

Tip
To facilitate data management, you can save each design (whether flat, core, sub-block, or
chip) in its own TSDB. This is the recommended practice when using Tessent Shell for DFT

insertion. You should have one TSDB per design.

Figure 7-5. TSDB Data Flow, Top Level, First Insertion Pass

Figure 7-6 shows the data flow for the second DFT insertion pass. In addition to the other input
requirements that you provide as shown in Table 7-2, Tessent uses the design data that was
saved as rtl1 in the first pass, the gate scan-inserted design data, and graybox models from the
wrapped cores.

Tessent™ Shell User’s Manual, v2021.3346

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent saves the output design data for the EDT and OCC hardware in their applicable
instruments subdirectories. The design-level TCD, ICL, PDL, and modified RTL that includes
the EDT, OCC, and IJTAG network is placed in the dft_inserted_designs subdirectory for this
insertion pass (rtl2).

The patterns directory stores the patterns associated with the rtl2 design ID in an associated
subdirectory.

Figure 7-6. TSDB Data Flow, Top Level, Second Insertion Pass

Figure 7-7 shows the data flow for scan chain insertion. Scan insertion does not insert
instruments, so the instruments and patterns directories are not utilized in this step.

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Tessent™ Shell User’s Manual, v2021.3 347

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-7. TSDB Data Flow, Top Level, Scan Insertion

Figure 7-8 shows that output from ATPG pattern generation gets stored in the logic_test_cores
directory. As inputs, Tessent uses the scan-inserted design data for the chip and for the cores.

Tessent™ Shell User’s Manual, v2021.3348

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-8. TSDB Data Flow, Top Level, ATPG Pattern Generation

As the final step for the top level in a hierarchical design, you perform ATPG pattern retargeting
of the core ATPG patterns as shown in “Top-Level ATPG Pattern Generation Example”.
Figure 7-9 shows that you read in the ATPG patterns from the logic_test_cores directory from
each of the core TSDB directories and the scan-inserted design data for the chip and for the
cores.

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Tessent™ Shell User’s Manual, v2021.3 349

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-9. TSDB Data Flow, Top Level, ATPG Pattern Generation With Pattern
Retargeting

Tessent™ Shell User’s Manual, v2021.3350

TSDB Data Flow for the Tessent Shell Flow
Top-Level TSDB Data Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 351

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 8
Streaming Scan Network (SSN)

Tessent Streaming Scan Network (SSN) is a bus-based scan data distribution architecture for
use with Tessent TestKompress. The design of SSN addresses common DFT challenges in
testing system-on-chip (SoC) designs, such as planning effort, tiled designs with abutment, test
cost, and routing and timing closure.

SSN decouples test delivery and core-level DFT requirements. This means that instance core-
level compression can be defined completely independently of chip I/O limitations. It enables
programmatic decisions, such as selecting which cores will be tested concurrently. In a
traditional pin-muxed approach, these options would be hard-wired.

This section describes the recommended SSN work flows, including how to use SSN to
effectively test designs with identical cores and how to use different clock networks with SSN.

Tessent SSN Workflows . 352
Block-Level SSN Insertion and Verification . 355
Top-Level SSN Insertion and Verification . 380

Advanced Topics . 405
Streaming-Through-IJTAG Scan Data . 405
On-Chip Compare With SSN . 408
Types of Clock Networks To Use With SSN . 417
Broadcast to Identical SSN Datapaths . 421
Yield Statistics on ATE With SSN . 422
Manufacturing Patterns With SSN . 427
Signoff Patterns With SSN . 444
SSN SDC Constraints in the Design Flow . 453

Tessent SSN Examples and Solutions . 484
Third-Party OCCs With SSN . 484

SSN Frequently Asked Questions. 486

SSN Limitations . 488

Tessent™ Shell User’s Manual, v2021.3352

Streaming Scan Network (SSN)
Tessent SSN Workflows

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent SSN Workflows
There are several SSN Workflows, which are based on the Tessent Shell Flow for Hierarchical
Designs.

In the general SSN Workflow, you perform a bottom-up DFT insertion for each physical block
followed by DFT insertion at the parent level. You continue this bottom-up flow until you have
reached the top level of the design.

The SSN Workflow description focuses on the differences from the base flows described in the
Tessent Shell Workflows section of this manual. The descriptions of the Workflows assume you
understand the information contained in the following sections. It is recommended that you read
them first if you are new to the Tessent Workflows.

• “Tessent Shell Flow for Hierarchical Designs”

• “How the DFT Insertion Flow Applies to Hierarchical Designs”

• “Hierarchical DFT Terminology”

Reference Testcase

The Tessent Shell release tree includes a testcase to accompany the block- and top-level
workflows described in the following sections. From within Tessent Shell, use the
getenv TESSENT_HOME command to find the installation tree. The testcase is in
$TESSENT_HOME/share/UsageExamples in the following file:

tessent_example_hierarchical_flow_with_ssn_v<year>.<quarter>.tgz

Figure 8-1 shows the structure of the directories in the testcase. You can run each step of the
workflow in one of these directories.

Streaming Scan Network (SSN)
Tessent SSN Workflows

Tessent™ Shell User’s Manual, v2021.3 353

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-1. Directory Structure of Reference Testcase

Block-Level SSN Insertion and Verification . 355
First DFT Insertion Pass: Performing Block-Level MemoryBIST 357
Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and SSN 357
Synthesis for Block-Level Insertion . 364
Creating the Post-Synthesis TSDB View (Block-Level) . 365
Performing Scan Chain Insertion With Tessent Scan (Block-Level) 367

Tessent™ Shell User’s Manual, v2021.3354

Streaming Scan Network (SSN)
Tessent SSN Workflows

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Verifying the ICL-Based Patterns After Synthesis (Block-Level) 370
Generating Block-Level ATPG Patterns . 373

Top-Level SSN Insertion and Verification . 380
First DFT Insertion Pass: Performing Top-Level MemoryBIST . 382
Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN 385
Synthesis for Top-Level Insertion . 393
Creating the Post-Synthesis TSDB View (Top-Level). 394
Performing Scan Chain Insertion With Tessent Scan (Top-Level) 394
Verifying the ICL-Based Patterns After Synthesis (Top-Level) . 395
Generating Top-Level ATPG Patterns . 395
Retargeting ATPG Patterns . 397
Performing Reverse Failure Mapping for SSN Pattern Diagnosis 400

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 355

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Block-Level SSN Insertion and Verification
This section presents the block-level Tessent Workflow for SSN by highlighting the minor
differences from the normal workflow where SSN is not present.

The SSN Workflow for block-level insertion contains minor differences in the dofiles relative to
the flow in the “RTL and Scan DFT Insertion Flow for Physical Blocks” section of this manual.
These differences include minor additions and deletions required in the dofiles specific to each
step. In Figure 8-1 on page 353 in the section “Tessent SSN Workflows”, the wrapped_cores
subdirectories contain the block-level SSN flow. The text preceding the figure explains how to
find the testcase within the release directory.

Note
This procedure assumes your design meets the prerequisites of the hierarchical flow, as
described in “DFT Architecture Guidelines for Hierarchical Designs”. Additionally, each

physical block must have a full OCC with a shift clock injection mux and shift_only_mode.

The following figure shows an identical block-level workflow used to process a child physical
block to when you are not using SSN. As highlighted in the figure, you insert SSN into the
design during the second DFT insertion pass. In this same step, you add a second smaller EDT
to the design for the wrapper chains during external test. Click the boxes in the flow diagram to
see the section describing each step.

Tessent™ Shell User’s Manual, v2021.3356

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-2. SSN Block-Level Workflow

First DFT Insertion Pass: Performing Block-Level MemoryBIST. 357

Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and SSN. 357

Synthesis for Block-Level Insertion . 364

Creating the Post-Synthesis TSDB View (Block-Level) . 365

Performing Scan Chain Insertion With Tessent Scan (Block-Level) 367

Verifying the ICL-Based Patterns After Synthesis (Block-Level). 370

Generating Block-Level ATPG Patterns . 373

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 357

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

First DFT Insertion Pass: Performing Block-Level
MemoryBIST

The first DFT insertion pass is identical to the Tessent Shell Flow for Hierarchical designs.

You can perform this step in the following directory of the Reference Testcase:

Procedure

The first DFT insertion pass inserts the non-scan DFT elements, such as memory BIST and
IJTAG. It happens before the second insertion pass inserts the logic test elements. Using SSN in
the second DFT insertion pass does not affect the first DFT insertion pass. At the top level, you
must equip the boundary scan cells with auxiliary input and output pins to connect the SSN bus.
This change to the first DFT insertion pass for the top level is described in “First DFT Insertion
Pass: Performing MemoryBIST and Boundary Scan” on page 116. For complete information
about the current step at the block level, see “First DFT Insertion Pass: Performing Block-Level
MemoryBIST” on page 147.

Examples

Refer to the example dofile run_mbist_insertion in the directory shown in the “Referenced
Testcase Step” section earlier in this topic.

Second DFT Insertion Pass: Inserting Block-Level EDT,
OCC, and SSN

In the second DFT insertion pass, you insert the block-level EDT, OCC, and SSN elements.

This section explains the slight modifications that you do to the standard flow when you insert
the SSN, EDT, and OCC into the physical block level. For a complete description of this step in
the standard flow, refer to “Second DFT Insertion Pass: Inserting Block-Level EDT and OCC”
on page 149.

Tessent™ Shell User’s Manual, v2021.3358

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directories of the Reference Testcase:

Notes About This Procedure

• Similar to EDT and OCC, the tool creates the SSN hardware based on the SSN wrapper
of the DftSpecification. For a description of the SSN wrapper, see the “SSN” wrapper
description in the Tessent Shell Reference Manual.

• When the tool creates the SSH, EDT, and OCC elements at the same time with a single
invocation of the process_dft_specification command, the tool automates the
connections between the SSH, EDT, and OCC instances.

• As with the normal flow, after the insertion of the SSN and the other logic test elements,
you must simulate the ICLNetwork pattern to verify the correct IJTAG access to all
inserted logic test elements, including the SSN elements. Following a successful
simulation of the ICLNetwork pattern, you must simulate the SSN Continuity pattern to
verify that the SSN datapath is correctly integrated into the design. The tool automates
the ICL verification patterns and the SSN continuity patterns as part of the
create_patterns_specification and process_patterns_specification commands. During
validation of the SSN datapath, you are responsible to use the iProc command to write to
the Multiplexer node to configure the datapath for which you want to verify continuity,
as explained in Step 7 in the following procedure. You must complete simulation of both
the ICLNetwork pattern and SSN continuity pattern before moving to the next step of
the DFT flow.

• To use third-party OCC with SSN, refer to the topic “Third-Party OCCs With SSN” on
page 484 in the “Tessent SSN Examples and Solutions” section.

To insert the logic test elements with SSN, use the following procedure to modify the dofile
described in “Second DFT Insertion Pass: Inserting Block-Level EDT and OCC” on page 149.

Lint Checks for the SSN Hardware

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 359

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

RTL output for SSN includes waivers for SpyGlass® to avoid lint errors. These waivers include
comments detailing why the rules are waived and use the following format:

// <explanatory comment>
// spyglass disable_block <rule list>
// <waived code>
// spyglass enable_block <rule list>

The <rule list> uses SpyGlass naming for the rules that are being waived (for example,
“W116 W164a”).

Prerequisites

• SSN requires that each physical block have a full OCC with a clock injection
multiplexer and support of the shift_only_mode feature.

Procedure

1. Remove the add_dft_signals commands for the scan signals edt_clock, edt_update,
scan_en, shift_capture_clock, and test_clock.

These signals are not needed because they are sourced by the ScanHost node during scan
test. If you want to have your legacy channel access mechanism coexist with SSN for
your first few designs, see Example 2 in the ScanHost reference page.

a. Delete this line:

add_dft_signals scan_en edt_update_test_clock –source_node \
{ scan_enable edt_update test_clock_u }

b. Delete this line:

add_dft_signals edt_clock shift_capture_clock \
–create_from_other_signals

2. Update the “create_dft_specification -sri_sib_list” option to include SSN:

set spec [create_dft_specification -sri_sib_list {edt occ ssn}]

This creates a dedicated IJTAG Sib node to serve as the host for the IJTAG interfaces of
the ScanHost and Multiplexer SSN nodes.

3. Update the comment for the report_config_syntax command to include SSN as an
option to view the syntax of the SSN DftSpecification:

// Use report_config_syntax DftSpecification/edt|occ|ssn to see full syntax.

4. Update the DftSpecification to include the SSN wrapper to create one or more SSN
Datapaths with the nodes you want to insert in them. The following example creates a

Tessent™ Shell User’s Manual, v2021.3360

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

32-bit wide Datapath with a ScanHost node preceded and followed by a Pipeline node.
The SSN reference page contains several example of different SSN DftSpecifications:

SSN {
 ijtag_host_interface : Sib(ssn);
 DataPath(main) {
 output_bus_width : 32;
 Pipeline(out) {
 }
 ScanHost(1) {
 }
 Pipeline(in) {
 }
 }
 }

5. Update the EDT wrapper of the DftSpecification to include mode enables for the EDT,
and add a second EDT for the wrapper chains to be used during external test mode.

a. Change the name of the EDT Controller from “Controller (c1)” to “Controller
(c1_int)” to indicate that this EDT controller is used for internal test mode and is
different from the second EDT that is used in external test mode.

b. Add a Connections wrapper within the EDT “Controller (c1_int)” wrapper with the
mode_enables property to define the DFT Signal “int_edt_mode” as the mode
enable for this EDT. This DFT Signal was added previously in the dofile and is used
in the muxing logic that selects this EDT’s channel outputs to the SSH during the
internal test mode.

EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1_int) {
 longest_chain_range : 70, 80;
 scan_chain_count : 20;
 input_channel_count : 3;
 output_channel_count : 3;
 Connections {
 mode_enables : DftSignal(int_edt_mode);
 }

}

c. Add a second EDT controller for the wrapper chains to be used during external test
mode. The “ext_edt_mode” DFT signal is used as the mode enable for this EDT.
This DFT signal was added previously in the dofile and is used in the muxing logic
that selects this EDT’s channel outputs to the SSH during the external test mode.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 361

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Controller (c1_ext) {
 longest_chain_range : 70, 80;
 scan_chain_count : 2;
 input_channel_count : 1;
 output_channel_count : 1;
 Connections {
 mode_enables : DftSignal(ext_edt_mode);
 }
}

6. The SSN network that the specification just inserted is checked and extracted within the
ICL model using the same extract_icl command that already checks and extracts the
IJTAG network description. These design rule checks run automatically, and there is
generally no need for additional input, except that you must specify the
“-create_ijtag_graybox on” switch to create the IJTAG graybox in the TSDB.

7. The create_patterns_specification command creates a pattern specification for the ICL
network that includes the SSN logic that was just inserted and all other element types,
such as the Memory BIST logic (if present). The SSN continuity pattern is also created
as part of the create_patterns_specification process and verifies the SSN datapath is
properly connected. This is a mandatory verification step. The following example
contains no Multiplexer node to configure at the block level. If you have such nodes at
the block level, see how they are handled at the bottom of the dofile example in the
section “Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN” on
page 385. Because you created an IJTAG graybox, the tool creates the ICL verification
patterns wrapper and SSN continuity patterns wrapper using the IJTAG graybox view
for both simulations.

Note
You can also create the SSN continuity pattern with the low-level
create_ssn_continuity_patterns command, as shown at the bottom of the example

dofile found at the end of this section.

Examples

The following is a dofile for the second DFT pass. You can also find it in the
run_ssh_edt_occ_insertion scripts in the testcase directories shown in the “Referenced Testcase
Step” section earlier in this topic. The testcase also includes the run_continuity_sims script that
shows how to simulate the SSN continuity patterns.

Set the context to insert DFT into RTL-level design
Define a new design ID
set_context dft -rtl -design_id rtl2

Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_outdir

Read in the Tessent cell library
read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
Read in memory verilog model
read_verilog ../../../library/memories/*.v -exclude_from_file_dictionary

Tessent™ Shell User’s Manual, v2021.3362

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Use read_design with the design ID from the first DFT insertion pass
read_design processor_core -design_id rtl1 -verbose
set_current_design processor_core

DFT Signal used for logic test
add_dft_signals ltest_en
DFT Signal used to test memories with multi-load ATPG patterns
add_dft_signals memory_bypass_en
DFT Signal required to test STI network during logic test
add_dft_signals tck_occ_en
DFT Signals required for hierarchical DFT and used during scan insertion
add_dft_signals int_ltest_en ext_ltest_en int_mode, ext_mode, \

int_edt_mode ext_edt_mode

report_dft_signals

Run pre-DFT DRC rules
set_dft_specification_requirements -logic_test on
check_design_rules

Create and report a DFT Specification
set spec [create_dft_specification -sri_sib_list {edt occ ssn}]
Use report_config_syntax DftSpecification/edt|occ|ssn to see full syntax
report_config_data $spec

Specify the logic to be created with the EDT, OCC, and SSN wrappers.
The connection between the EDT, OCC, and SSH created by the too.
Modify the below specification to your specific design requirements.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 363

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_config_data -in_wrapper $spec -from_string {
 Occ {
 ijtag_host_interface : Sib(occ);
 include_clocks_in_icl_model : on;
 Controller(dco_clk) {
 clock_intercept_node : dco_clk;
 }
 }
 SSN {
 ijtag_host_interface : Sib(ssn);
 DataPath(1) {
 output_bus_width : 32;
 Pipeline(2) {
 }
 ScanHost(1) {
 }
 Pipeline(1) {
 }
 }
 }
 EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1_int) {
 longest_chain_range : 70, 80;
 scan_chain_count : 20;
 input_channel_count : 3;
 output_channel_count : 3;
 Connections {
 mode_enables : DftSignal(int_edt_mode);
 }
 }
 Controller (c1_ext) {
 longest_chain_range : 70, 80;
 scan_chain_count : 2;
 input_channel_count : 1;
 output_channel_count : 1;
 Connections {
 mode_enables : DftSignal(ext_edt_mode);
 }
 }
 }
}

Display the content of the DftSpecification just defined above
report_config_data $spec

Generate the hardware
process_dft_specification

Extract IJTAG network and create ICL file for core level
extract_icl -create_ijtag_graybox on

Write updated RTL into this new file to elaborate and synthesize later
write_design_import_script -use_relative_path_to . for_dc_synthesis.tcl -
replace

Tessent™ Shell User’s Manual, v2021.3364

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generate test bench for ICLNetwork and Continuity patterns
Generate ICL Verify patterns. Use the variable to update it if needed.
set spec [create_patterns_specification]
process_patterns_specification

Point to simulation libraries and run the Verilog simulation
set_simulation_library_sources \
 -v ../../../library/standard_cells/verilog/adk.v \
 -v ../../../library/memories/*.v
run_testbench_simulations

exit

The following is an alternate way to create the SSN continuity pattern. Refer to Step 7 in the
Procedure section of this topic for an explanation of how to create the SSN continuity pattern.

#
Create the continuity pattern
#
Define SSN bus clock. If you are using time multiplexing
you must specify the -freq_multiplier switch
add_clocks ssn_bus_clock

check design rules and transition to analysis mode
check_design_rules

set ijtag period
set_ijtag_retargeting_options -tck_period 10

set ssn bus clock period
set_load_unload_timing_options -usage ssn -ssn_bus_clock_period 5

Create the SSN continuity pattern
open_pattern_set ssn_continuity -usage ssn
 create_ssn_continuity_patterns
close_pattern_set
Write simulation testbench
write_patterns patterns/ssn_continuity.v -verilog -replace \
 -parameter_list {SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1}

Synthesis for Block-Level Insertion
Use the following dofile changes to synthesize the DFT-inserted RTL block.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 365

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directories of the Reference Testcase:

In the dofile of the section “Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and
SSN” on page 357, you used the write_design_import_script command to export a design load
script for use in your synthesis tool.

Refer to the section “Synthesis Guidelines for RTL Designs with Tessent Inserted DFT” on
page 779 for guidelines on how to perform the synthesis step. Also, see the section “Example
Scripts using Tessent Tool-Generated SDC” on page 760 for example scripts specific to various
synthesis tools.

When synthesis completes, it produces a file containing the concatenated netlist of the physical
block you just synthesized.

• If you performed scan insertion within the synthesis tool, continue with the steps
described in the section “Creating the Post-Synthesis TSDB View (Block-Level)” on
page 365.

• If you are inserting your scan chains within Tessent, continue with the steps described in
the section “Performing Scan Chain Insertion With Tessent Scan (Block-Level)” on
page 367.

Example

Example dofiles are available as the <module_name>.dc_synth_script files found in the
testcase directories shown in the “Referenced Testcase Step” section earlier in this topic. These
files specify the TCK period and the set_load_unload_timing_options values using a separate
file called <design_name>.timing_options. When you source this file at this point, it configures
the SDC during synthesis. A step later in the flow also sources this file from ATPG dofiles to
configure the patterns with the exact timing options that the tool used during timing closure.

Creating the Post-Synthesis TSDB View (Block-Level)
When you are using third-party scan insertion, use the following procedure to create the post-
synthesis TSDB, separate from scan insertion. Creation of the post-synthesis TSDB occurs
automatically as part of scan insertion when you use Tessent Scan.

Tessent™ Shell User’s Manual, v2021.3366

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directories of the Reference Testcase:

Notes About This Procedure

This step combines a third-party scan-inserted netlist and the collateral from the RTL insertion
step into a new dft_inserted_design directory. By consolidating the netlist and the collateral into
the dft_inserted_design directory, you can use the tool automation in future steps to load the
design using the read_design command.

The TSDB consolidation flow works by using the read_verilog command to read the third-party
scan-inserted netlist into the tool and then using the “read_design -no_hdl -design_id rtl2”
command to read the collateral from the last RTL insertion step. Write the design into the
tsdb_outdir directory using the “write_design -tsdb -softlink_netlist -create_ijtag_graybox on”
command.

The following procedure and example dofile show how to create a dft_inserted_design directory
with the post-synthesis TSDB flow.

Procedure

1. Set the context to -no_rtl and define the design_id as “gate” using the set_context
command.

2. Use the read_verilog command to read the scan-inserted design. This is the output of the
third-party scan-insertion step.

3. Use the “read_design -no_hdl -design_id rtl2” command to load the collateral from the
last DFT RTL insertion step.

The design collateral includes the block level ICL, PDL, SDC, TCD, and other files.

4. Use the “write_design -tsdb -softlink_netlist -create_ijtag_graybox_on” command to
populate the dft_inserted_design directory with the collateral and a symbolic link to
your scan-inserted netlist. This also creates a gate-level IJTAG graybox view for the
design that you can use during the ICL-based pattern verification step, and also later
during SSN scan retargeting at the top level.

The tool also updates design instance names in the ICL file. This happens when the ICL
objects were below generated blocks in the RTL.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 367

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

The following is an example dofile for the TSDB consolidation step:

Set context for this step
set_context dft -no_rtl -design_id gate

Specify the TSDB output directory to write into.
set_tsdb_output_directory ../tsdb_outdir

Read the scan-inserted design
read_verilog ../3.synthesize_rtl/processor_core_synthesized.vg

Read only the collateral from the last DFT insertion step
read_design processor_core -design_identifier rtl2 -no_hdl –verbose
set_current_design processor_core

Write the netlist and collateral to the tsdb_outdir
write_design -tsdb -softlink_netlist -create_ijtag_graybox on –verbose

exit

Performing Scan Chain Insertion With Tessent Scan
(Block-Level)

The Tessent Scan insertion step in the SSN flow is similar to the scan chain insertion step in the
Tessent Shell Flow for hierarchical designs.

You can perform this step in the following directories of the Reference Testcase:

The complete details for this step appear in the topic “Performing Scan Chain Insertion:
Wrapped Core” on page 154.

When SSN is present, the tool connects wrapper chains to the second, smaller EDT controller
added during the step “Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and
SSN” on page 357.

The following procedure shows how to modify the dofile from the topic “Performing Scan
Chain Insertion: Wrapped Core” when you are using SSN.

Tessent™ Shell User’s Manual, v2021.3368

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

1. Remove the commands that exclude the *_edt_channels_* from wrapper analysis. For
example, remove:

set_wrapper_analysis_options \
-exclude_ports [get_ports {*_edt_channels_*}]

In the SSN flow, the EDT channels connect directly to the ScanHost node instead of
being brought to the boundary of the block.

2. Add the following code to find each EDT and assign it to its intended scan mode:

foreach_in_collection edt $edt_instance {
 if {[regexp {.*int.*} [get_single_name $edt] int_edt_instance]}{
 puts "Found instance $int_edt_instance. \
 Will use this for internal scan_mode."
 } elseif {[regexp {.*ext.*} [get_single_name $edt] \
 ext_edt_instance]} {
 puts "Found instance $ext_edt_instance. \
 Will use this for external scan_mode."
 }
}

During the second DFT insertion pass, the tool gave each added EDT controller a name
according to how it was intended to be used (internal mode EDT is “c1_int” and external
mode EDT is “c1_ext”).

3. Add the following commands to assign each EDT to the intended scan mode. In this
example, the scan mode is named using the name of the DFT signal that activates that
mode:

add_scan_mode int_edt_mode -edt_instances $int_edt_instance
add_scan_mode ext_edt_mode -edt_instances $ext_edt_instance

If you wanted to use different scan mode names, you would need to use the
-dft_signal_name switch of the add_scan_mode command to associate the correct DFT
signal to that mode.

4. After you implement all the scan modes using the insert_test_logic command, run the
code block highlighted in gold at the end of the following example dofile to perform
DRC on each scan mode and extract the graybox model for the external mode.

5. Create the gate-level IJTAG graybox view by changing the context to patterns -ijtag and
then running the “analyze_graybox -ijtag” command followed by the “write_design
-tsdb -graybox” command.

Examples

The following is an example dofile for the scan insertion step:

Set context to perform scan insertion and stitching
set_context dft -scan

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 369

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Open the previous TSDB directories if not in the current working
directory
set_tsdb_output_directory ../tsdb_outdir

Read Tessent Library
read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib

Read the synthesized netlist
read_verilog ../3.synthesize_rtl/processor_core_synthesized.vg

Read the design data for the second RTL insertion pass
read_design processor_core -design_identifier rtl2 -no_hdl -verbose
set_current_design processor_core
add_black_boxes -modules { \
 SYNC_1RW_8Kx16 \
 }
check_design_rules
report_clocks

To force insertion of dedicated wrapper cell use the
set_dedicated_wrapper_cell_options command
set_dedicated_wrapper_cell_options on -ports {.... }
Perform and Report wrapper cell analysis
analyze_wrapper_cells
report_wrapper_cells -Verbose

Specify different modes (int/ext) how the chains need to be stitched
The type internal/external and enable_dft_signal are inferred from
registered DFT Signals(int_edt_mode and ext_edt_mode)
set edt_instance [get_instances -of_icl_instances [get_icl_instances -
filter tessent_instrument_type==mentor::edt]]
foreach_in_collection edt $edt_instance {
 if {[regexp {.*int.*} [get_single_name $edt] int_edt_instance]} {
 puts "Found EDT instance $int_edt_instance. Will use for int scan_mode."
 } elseif {[regexp {.*ext.*} [get_single_name $edt] ext_edt_instance]} {
 puts "Found EDT instance $ext_edt_instance. Will use for ext scan_mode"
 }
}
add_scan_mode int_edt_mode -edt_instances $int_edt_instance
add_scan_mode ext_edt_mode -edt_instances $ext_edt_instance

Analyze the scan chains and review the different scan modes and chains
before stitching the chains
analyze_scan_chains
report_scan_chains

Tessent™ Shell User’s Manual, v2021.3370

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Insert scan chains and write the scan-inserted design into tsdb_outdir
insert_test_logic
report_scan_chains
report_scan_cells > scan_cells.list

DRC check the scan chains in each mode and create graybox for
external mode

set_context pattern -scan

foreach_in_collection mode_wrapper [get_config_elements \
 Core(processor_core)/Scan/Mode -part tcd -silent] {
 set mode_name [get_config_value $mode_wrapper -id <0>]
 set mode_type [get_config_value type -in $mode_wrapper]
 import_scan_mode $mode_name
 #In setup mode
 report_clocks
 check_design_rules
 #In Analysis mode
 if {$mode_type eq "external"} {
 report_scan_cells
 analyze_graybox -scan
 write_design -tsdb -graybox -verbose
 }
 set_system_mode setup
}

Create the IJTAG graybox

set_context patterns -ijtag
set_system_mode analysis
analyze_graybox -ijtag
write_design -tsdb -graybox -verbose

exit

Verifying the ICL-Based Patterns After Synthesis (Block-
Level)

Resimulating the MemoryBIST and ICL verification patterns after synthesis ensures the ICL
network is fully functional and able to be reliably used during ATPG and Scan retargeting
setup.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 371

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directories of the Reference Testcase:

Notes About This Procedure

Verifying the ICL-based patterns after synthesis is especially critical when using SSN because
the bulk of the test_setup relies on IJTAG. Your MemoryBIST simulations are also redone in
this step. For the complete details of this step, see “Verifying the ICL Model” on page 157.

When you use SSN, it is important to also reverify the SSN continuity after synthesis before you
try to use it for ATPG and scan retargeting.

The following procedure and example dofile show how to verify an ICL model including SSN.

Procedure

1. The top part of the dofile is identical to the normal flow. You can examine the
PatternsSpecification generated by the create_patterns_specification command to see
how it uses the IJTAG graybox view that you created in the previous step to simulate the
ICLVerify patterns and the SSN continuity patterns.

2. As discussed earlier in this flow, you are responsible for configuring the SSN datapath
you want to verify the continuity for by using iProcs containing iCall commands to the
Tessent-generated pdl to write to the Multiplexer nodes when present. You must
complete simulating both the ICLNetwork pattern and SSN continuity pattern before
moving to the next step of the DFT flow.

Note
You can also create the SSN continuity pattern with the low-level
create_ssn_continuity_patterns command, as shown at the bottom of the example

dofile found at the end of this section.

Examples

This example dofile shows how to verify the ICL model for SSN.

The create_patterns_specification command creates a pattern specification for the SSN
continuity pattern and the ICL network that includes the IJTAG logic, SSN logic, and the
MemoryBIST logic, if present.

Tessent™ Shell User’s Manual, v2021.3372

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This example contains no Multiplexer node to configure. If you have such nodes at the block
level, see how they are handled at the bottom of the dofile example in the section “Second DFT
Insertion Pass: Inserting Top-Level EDT, OCC, and SSN” on page 385.

Set context to patterns
set_context patterns

Open the previous TSDB directories if it is not in the current

working directory
set_tsdb_output_directory ../tsdb_outdir

Read Tessent Library
read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib
read_verilog ../../../library/memories/SYNC_1RW_8Kx16.v -interface_only

Read the design files from the scan insertion pass
read_design processor_core -design_identifier gate -verbose
set_current_design processor_core

Generate patterns to verify the inserted DFT logic
set spec [create_patterns_specification]
report_config_data $spec
process_patterns_specification

Point to the libraries and run the simulation
set_simulation_library_sources -v ../../../library/standard_cells/ \

verilog/adk.v -v ../../../library/memories/*.v
run_testbench_simulations
check_testbench_simulations -report_status

exit

The following is an alternate way to create the SSN continuity pattern. Refer to Step 2 in the
Procedure section of this topic for an explanation of how to create the SSN continuity pattern.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 373

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#
Create the continuity pattern
#
Define SSN bus clock. If you are using time multiplexing
you must specify the -freq_multiplier switch
add_clocks ssn_bus_clock

check design rules and transition to analysis mode
check_design_rules

set ijtag period
set_ijtag_retargeting_options -tck_period 10

set ssn bus clock period
set_load_unload_timing_options -usage ssn -ssn_bus_clock_period 5

Create the SSN continuity pattern
open_pattern_set ssn_continuity -usage ssn
 create_ssn_continuity_patterns
close_pattern_set
Write simulation testbench
write_patterns patterns/ssn_continuity.v -verilog -replace \
 -parameter_list {SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1}

Generating Block-Level ATPG Patterns
The process for generating ATPG patterns in the SSN flow is similar to the process used
without SSN.

You can perform this step in the following directories of the Reference Testcase:

Notes About This Procedure

The complete details for this step appear in the “Performing ATPG Pattern Generation:
Wrapped Core” on page 158. The SSN flow generates the scan graybox model as part of the
“Performing Scan Chain Insertion With Tessent Scan (Block-Level)” step. Therefore, this step
follows most of the standard flow, skipping the graybox generation because the insertion step
has already completed that part. If you are performing scan insertion as part of synthesis, you
create the graybox as part of creating ATPG patterns for the external mode, as shown in the

Tessent™ Shell User’s Manual, v2021.3374

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Sample Dofile in this section and illustrated in the 0opt.run_scan_graybox_generation script in
the reference testcase directories mentioned previously.

When SSN is present, the tool automatically generates all load and unload procedures and their
timing based on the timing specified with the set_load_unload_timing_options,
set_ijtag_retargeting_options, and set_capture_timing_options commands. The default
bus_clock frequency and shift_clock frequency are 400 MHz and 100 MHz, respectively.
Furthermore, you can improve the setup and hold timing around the edges of the scan_en and
edt_updated signals. Use the -scan_en_*_extra_cycles and -edt_update_*_extra_cycles
arguments to the set_load_unload_timing_options command to add extra cycles around the
edges of scan_en and edt_update, respectively. If at any time during scan pattern retargeting or
top-level ATPG you need to change the timing of a physical block, use the
set_current_physical_block command to set the scope of all subsequent load/unload and capture
timing settings. The reference page for the set_load_unload_timing_options command contains
an explanation on how to use a single file that you source in both Tessent and the synthesis tool
to configure the pattern generation and SDC consistently. The 1.run_internal_stuck and
2.run_internal_transition scripts in the reference testcase directories mentioned previously
provide clear illustrations of this process. The <module_name>.timing_options file configures
the SDC during synthesis, and you reuse it later to configure the patterns so that they are
generated consistently.

If you did not use Tessent Scan, you cannot use the import_scan_mode command, and you use
the add_core_instances command to select your active OCC and EDT controllers. You never
need to use the add_core_instances command on the ScanHost instance. The tool automatically
adds ScanHost core instances during the transition to analysis mode. When the tool performs
the check_design_rules command, it automatically adds the ScanHost instance to which a scan
chain or an active EDT traced. The 0opt.run_scan_graybox_generation script in the reference
testcase mentioned previously provides a clear illustration of this process.

After you run create_patterns, the tool maps the SSN data stream to the SSN bus. It calculates
SSH parameters when you write patterns with the write_patterns command. To see the final
calculated parameters of the SSH, use the report_core_instance_parameters command after
having called the write_patterns command.

Use the SSH loopback pattern to verify that the SSN network can successfully deliver
packetized data to each active SSH. During the SSH loopback pattern, the ScanHost node does
not send scan data out to the scan chains and EDT but instead loops it back internally.

• SSN patterns written in the serial test bench format deliver packetized scan data over the
SSN data bus to each active SSH. Each active SSH transfers scan data to the scan chains
and EDT and locally generates the scan signals. The scan out compares are mapped to
the SSN bus_out.

• SSN patterns written in the parallel test bench format apply scan data similarly to a non-
SSN parallel test bench. The tool adds cut points to the boundary of the SSH to drive the
scan signals.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 375

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During Streaming-Through-IJTAG, the tool replaces the parallel SSN bus by the serial JTAG
interface. Select the serial JTAG interface as the streaming interface with the set_ssn_options
command. The tool delivers packetized scan data synchronously through the TDI port using
TCK as the clock. You can stream any SSN pattern set through the serial JTAG interface
without modification. For more information about Streaming-Through-IJTAG, refer to
“Streaming-Through-IJTAG Scan Data” on page 405.

You can create SSN patterns using a scaled-down SSN bus width. Scale the SSN bus width with
the set_ssn_datapath_options command. You can reapply any SSN pattern using a scaled-down
SSN bus.

When simulating patterns at the core level, the SSN bus clock typically runs slower because it is
limited by shift clock frequency. To run the bus clock at maximum frequency, set the
“SIM_SSN_MAXIMUM_BUS_SPEED 1” parameter value pair with the “write_patterns
-parameter_list” command and switch to add padding to the packet.

SSN supports only the .patdb file format for scan pattern retargeting.

Prerequisites

• Running ATPG with SSN requires a validated ICL model of the current design.

Procedure

1. Run ATPG in internal mode on the wrapped core.

This step in the SSN flow is similar to the step “Run ATPG on the internal mode of the
wrapped core” in the topic “Performing ATPG Pattern Generation: Wrapped Core” on
page 158, in the hierarchical flow section of this manual. Refer to this section for a
detailed description of this step.

Use the following steps to update the dofile from the hierarchical flow procedure
referenced previously:

a. Set the ijtag_tck period for this core to the required frequency using the
set_ijtag_retargeting_options command. This should be the ijtag_tck clock
frequency you closed timing at.

b. Define the SSN bus_clock and shift_clock periods for the core using the
set_load_unload_timing_options command. The bus_clock period should be the
maximum bus_clock frequency you plan to use for the chip. If you specify a slower
frequency, it will limit the bus clock frequency of the entire datapath when this
ATPG pattern is retargeted. The default bus_clock period is 2.5 ns, and the default
shift_clock is 10 ns. The 1.run_internal_stuck and 2.run_internal_transition scripts
in the reference testcase directories mentioned previously show you how to do this
with the synthesis process used.

c. Define the clock frequency used during the capture process. The SSH is capable of
having a different frequency for the shift_capture_clock during the shift and the

Tessent™ Shell User’s Manual, v2021.3376

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

capture cycles. The default slow capture clock frequency is 40 MHz to enable
reliable capture staggering.

d. Report core instances after you run check_design_rules. As part of
check_design_rules, the tool automatically adds the SSH core instance that was
traced to from the active scan chains and EDT controllers.

e. Write the SSH loopback pattern. Simulate this pattern to confirm that the SSN
network can successfully deliver packetized data to the SSH. Start by simulating the
parallel load scan patterns. Once those are clean, simulate the serial SSH loopback
pattern, followed by one Serial Chain pattern and one Serial Scan pattern.

The sample dofile in the following Examples section also creates the on-chip
comparator self-test pattern. This pattern set is only relevant for blocks having a
ScanHost that supports the on-chip compare mode. This pattern set is not required
for sign-off simulation but is critical during manufacturing test to ensure that no fault
within the comparator logic can be present, which could mask faults within the
scanned logic to be detected. Refer to the section “On-Chip Compare With SSN” on
page 408 for more information about this pattern set.

f. Run the “set_chain_test -type nomask” command. This enables writing the chain test
patterns without masking. Simulating all chain test patterns is not practical for most
designs. When you write the chain test patterns with the “-end 0” option, the tool
writes one chain test pattern that simulates all the chains more efficiently.

g. Write a single serial scan pattern. One serial scan pattern combined with a full set of
parallel patterns provides sufficient coverage of the SSN and the scan chains.

Refer to the Examples section for a sample dofile updated using these steps. Also, see
the 1.run_internal_stuck and 2.run_internal_transition scripts in the reference testcase
directories mentioned previously.

2. Run ATPG in external mode on the wrapped core.

This step in the SSN flow is similar to the step “Run ATPG on the external mode of the
wrapped core” in the topic “Performing ATPG Pattern Generation: Wrapped Core” on
page 158, in the hierarchical flow section of this manual. During the external mode run,
the core-level SSH sources the scan signals to the small wrapper chain EDT.

Note
This ATPG pattern is used only to verify the proper behavior of the wrapper chains.
It cannot be reused from the chip level.

The procedure for modifying the dofile presented in the hierarchical flow section is the
same as the procedure for modifying the internal mode dofile. Refer to Substeps “a”
through “g” in Step 1 for the instructions on updating your dofile. See the Examples
section for a sample dofile updated using these steps.

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 377

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Sample Dofile

The following dofile shows the result of following the instructions for internal and external
mode ATPG. Because the dofile for the two modes are very similar, the following dofile shows
the full internal mode dofile. The differences for an external mode dofile appear as comments in
green text marked “EXTERNAL MODE:”.

All changes from the base hierarchical flow for SSN appear in gold text.

set_context patterns -scan

Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_outdir

Read Tessent Library
read_cell_library ../../../library/standard_cells/tessent/adk.tcelllib

Read in the scan inserted netlist/design
read_design processor_core -design_id gate -verbose

set_current_design processor_core

Specify the current mode using a unique name (different from
add_scan_mode).
Then bring in required scan mode configuration
set_current_mode int_edt_mode_stuck -type internal
import_scan_mode int_edt_mode -fast_capture off
EXTERNAL MODE:
set_current_mode ext_edt_mode_stuck -type external
import_scan_mode ext_edt_mode -fast_capture off

Define the tck period and ijtag retargeting options
set_ijtag_retargeting_options -tck_period 10

Define the shift and bus clock timing
set_load_unload_timing_options -usage ssn \

-shift_clock_period 10ns \
-ssn_bus_clock_period 5ns

Define the slow clock capture timing
set_capture_timing_options -usage internal \

-capture_clock_period 40ns

Report core instances that were added as part of importing scan mode
report_core_instances

set_core_instance_parameters -instrument_type occ -parameter_values \
{capture_window_size 3}

report_dft_signals
report_core_instances
report_static_dft_signal_settings

check_design_rules

Tessent™ Shell User’s Manual, v2021.3378

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

EXTERNAL MODE:
If you inserted your scan chains during synthesis, extract the graybox
model here.
analyze_graybox
write_design -graybox -tsdb -verbose

report_clocks
report_core_instances

Confirm the SSN core instance was added
report_core_instance_parameters
set_fault_type stuck

add_fault -all
report_statistics -detail

Generate patterns
create_patterns
report_statistics -detail

Store TCD, flat_model, fault list and patDB format files in the TSDB
directory
write_tsdb_data -replace

Streaming Scan Network (SSN)
Block-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 379

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Write Verilog patterns for simulation
Write parallel load testbench
write_patterns patterns/processor_core_int_edt_mode_stuck_parallel.v \

-verilog -replace -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set scan

Write SSH loopback pattern
write_patterns patterns/processor_core_int_edt_mode_stuck_loopback.v \

-verilog -serial -replace -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set ssh_loopback

Use this option for signoff simulations to verify all chains with a
single chain pattern
set_chain_test -type nomask
write_patterns patterns/processor_core_int_edt_mode_stuck_serial_chain.v\

-verilog -serial -replace -end 0 -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set chain

write_patterns patterns/processor_core_int_edt_mode_stuck_serial_scan.v \
-verilog -serial -replace -end 0 -parameter_list \
{SIM_COMPARE_SUMMARY 1 ALL_EXCLUDE_UNUSED 0 SIM_KEEP_PATH 1} \
-pattern_set scan

EXTERNAL MODE:
write_patterns patterns/processor_core_ext_edt_mode_stuck_parallel.v \
-verilog -replace -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set scan

write_patterns patterns/processor_core_ext_edt_mode_stuck_loopback.v \
-verilog -serial -replace -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set ssn_loopback

Use this option for signoff simulations to verify all chains with a
single chain pattern
set_chain_test -type nomask
write_patterns patterns/processor_core_ext_edt_mode_stuck_serial_chain.v \
-verilog -serial -replace -end 0 -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set chain
write_patterns patterns/processor_core_ext_edt_mode_stuck_serial_scan.v \
-verilog -serial -replace -end 0 -parameter_list \
{SIM_COMPARE_SUMMARY 1 ALL_EXCLUDE_UNUSED 0 SIM_KEEP_PATH 1} \
-pattern_set scan

Write SSH on-chip comparator self test patterns
write_patterns patterns/processor_core_int_ssh_occomp_self_test.v \

-verilog -serial -replace -end 8 -parameter_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set \
ssh_on_chip_compare

report fault coverage
report_statistics -detail

exit

Tessent™ Shell User’s Manual, v2021.3380

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level SSN Insertion and Verification
During top-level SSN insertion, the tool inserts other logic test elements into the design. This
DFT insertion flow is similar to the one where SSN is not present.

This section explains the differences in the dofiles relative to the standard hierarchical flow
(described in the section “RTL and Scan DFT Insertion Flow for the Top Chip” on page 165).
These differences include modifications that specific dofiles require.

Note
This procedure assumes your design meets the prerequisites of the hierarchical flow, as
described in “DFT Architecture Guidelines for Hierarchical Designs”. Additionally, each

physical block must have a full OCC with a shift clock injection mux and shift_only_mode.

Figure 8-3 shows the same top-level workflow you follow when not using SSN. It has been
updated to indicate that you insert SSN into the design during the second DFT insertion pass.
This step adds a single EDT if there is top-level logic. You can also add the boundary scan
chains to this top-level EDT using the BoundaryScan/max_segment_length_for_logictest
property. Unlike at the core-level SSN insertion flow, this process does not add a second,
smaller EDT, because the top-level boundary scan chains can provide isolation for the top level
during top-level ATPG. Click the boxes in the flow diagram to see the section describing each
step. The steps described in this section are implemented in the “top” directory of the Reference
Testcase.

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 381

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-3. SSN Top-Level Workflow

First DFT Insertion Pass: Performing Top-Level MemoryBIST 382

Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN 385

Synthesis for Top-Level Insertion . 393

Creating the Post-Synthesis TSDB View (Top-Level) . 394

Performing Scan Chain Insertion With Tessent Scan (Top-Level) 394

Verifying the ICL-Based Patterns After Synthesis (Top-Level) 395

Tessent™ Shell User’s Manual, v2021.3382

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating Top-Level ATPG Patterns . 395

Retargeting ATPG Patterns . 397

Performing Reverse Failure Mapping for SSN Pattern Diagnosis 400

First DFT Insertion Pass: Performing Top-Level
MemoryBIST

The first DFT insertion pass at the top level adds non-scan DFT elements to the design. This
step is similar to the first DFT insertion pass of the standard hierarchical flow. However, it uses
the auxiliary input and output pins to connect the SSN bus and the bus_clock instead of using
them for the EDT channels.

You can perform this step in the following directory of the Reference Testcase:

Notes About This Procedure

• For a complete description of this step in the standard hierarchical flow, refer to the
section “First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary
Scan” on page 168. To define the auxiliary logic pins for connecting the SSN bus and
bus_clock, modify the dofile described in this referenced procedure.

• Identify the top-level input and output ports in your design that you plan to use for the
SSN bus and bus_clock. The bus should have the same number of input and output ports
(for example, 16 inputs and 16 outputs).

• The “set_dft_specification_requirements -memory_test” switch in the reference testcase
is set to “On” even though this testcase has no memories in the top level. This requests
that the memory clocks at the boundary of the child blocks receive design rule checks
(DRCs) all the way to the top. Although issues would be detected during the extract_icl
process, but it would require you to redo the DFT insertion to fix any detected issues. By
performing the DRC before DFT, you can detect and correct those issues sooner.

Prerequisites

• SSN requires that the top-level design has an IEEE 1149.1 interface available during
logic test.

• The lower-level physical blocks should have SSN inserted prior to inserting SSN into
the top-level design. If the SSN is incomplete for any lower-level physical blocks, use
the ijtag_greybox view to model the SSN datapath through the physical block during
top-level SSN insertion. Alternatively, use an SSN multiplexer to force the SSN
datapath around the incomplete physical block.

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 383

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

Modify the auxiliary_input_ports and auxiliary_output_ports wrappers with the top-level ports
you plan to use for the SSN bus and bus_clock:

Add auxiliary mux on the inputs and outputs used for SSN bus and
bus_clock
bus_in {GPIO3_0 GPIO3_1} bus_out {GPIO4_0 GPIO4_1} bus_clock
{GPIO3_2}
read_config_data -in ${spec}/BoundaryScan -from_string {
 AuxiliaryInputOutputPorts {
 auxiliary_input_ports : GPIO3_0, GPIO3_1, GPIO3_2;
 auxiliary_output_ports : GPIO4_0, GPIO4_1;
 }
}

Examples

The following dofile is for the first DFT insertion pass. It contains changes to support SSN.
These changes appear in gold text.

Set the context to insert DFT into top-level design
set_context dft -rtl -design_id rtl1

Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_outdir

Open the TSDB of all the child cores
open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir

Read the tessent cell library
read_cell_library ../../library/standard_cells/tessent/adk.tcelllib

Read the design
read_verilog ../rtl/noncore_blocks/pll.v -blackbox

set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad_sel.v
read_verilog ../rtl/chip_top.v
read_verilog ../rtl/rds_process.v
set_current_design chip_top

set_design_level chip

Define set_dft_specification_requirements to insert boundary scan at
chip level
set_dft_specification_requirements -boundary_scan on -memory_Ttest on

Specify the TAP pins using set_attribute_value
set_attribute_value TCK -name function -value tck
set_attribute_value TDI -name function -value tdi
set_attribute_value TMS -name function -value tms
set_attribute_value TRST -name function -value trst
set_attribute_value TDO -name function -value tdo

Tessent™ Shell User’s Manual, v2021.3384

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specify all clocks so that the proper BSCAN cells gets inserted
automatically for them

add_clocks PLL_1/pll_clock_0 -reference REF_CLK -freq_multiplier 16
add_clock REF_CLK -period 48ns
add_clock INCLK -period 10ns

check_design_rules

Create and report a DFT Specification
set spec [create_dft_specification]

report_config_data $spec

Segment the boundary scan to be used during logic test
set_config_value $spec/BoundaryScan/max_segment_length_for_logictest 80

Add auxiliary mux on the inputs and outputs used for SSN bus and
bus_clock
bus_in {GPIO3_0 GPIO3_1} bus_out {GPIO4_0 GPIO4_1} bus_clock {GPIO3_2}
read_config_data -in ${spec}/BoundaryScan -from_string {
 AuxiliaryInputOutputPorts {
 auxiliary_input_ports : GPIO3_0, GPIO3_1, GPIO3_2;
 auxiliary_output_ports : GPIO4_0, GPIO4_1 ;
 }
}

report_config_data $spec

Generate and insert the hardware
process_dft_specification -transcript_insertion_commands

Extract IJTAG network and create ICL file for the design
extract_icl

Create patterns(testbenches) to verify the inserted DFT logic
set spec [create_patterns_specification]
process_patterns_specification

Point to the libraries and run simulation
set_simulation_library_sources -v ../../library/standard_cells/verilog/*.v \
 -v ../rtl/noncore_blocks/pll.v \
 -v ../rtl/noncore_blocks/iopad_sel.v \
 -v ../../library/memories/SYNC_1RW_8Kx16.v

run_testbench_simulations

exit

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 385

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Second DFT Insertion Pass: Inserting Top-Level EDT,
OCC, and SSN

In the second DFT insertion pass at the top level, you insert any EDT, OCC, and SSN elements
that exist at the top level. In addition, you use the DftSpecification to specify the physical order
of lower-level cores from the SSN bus_in to SSN bus_out.

Specify this physical order using the following elements. SSN nodes that appear at the top of the
DftSpecification are closest to SSN data_out.

• DesignInstance wrapper

• Any of the following SSN nodes along the datapath:

o Pipeline

o Receiver1xPipeline

o OutputPipeline

o Multiplexer

o BusFrequencyDivider

o BusFrequencyMultiplier

This section explains the slight modifications that you do to the standard flow when you insert
the SSN, EDT, and OCC at the top level. For a complete description of this step in the standard
flow, refer to “Second DFT Insertion Pass: Inserting Block-Level EDT and OCC” on page 149.

Reference Testcase Step

You can perform this step in the following directory of the Reference Testcase:

Notes About This Procedure

• Similar to the logic test insertion passes at the block level, the tool creates the SSN
hardware based on the SSN wrapper of the DftSpecification. For a description of the
SSN wrapper, see the “SSN” wrapper description in the Tessent Shell Reference
Manual.

• When the tool creates the SSH, EDT, and OCC elements at the same time with a single
process_dft_specification command, the tool automates the connections between the
SSH, EDT, and OCC instances.

Tessent™ Shell User’s Manual, v2021.3386

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• You must complete an ICL-based verification step at the end of the second DFT
insertion pass in order to verify the DFT elements you just added to the IJTAG network.
The ICL-based patterns are created as part of running the create_patterns_specification
and process_patterns_specification commands, and you simulate them using the
run_testbench_simulations command. The following are the ICL-based pattern
verifications:

o ICLNetwork Pattern — Verifies IJTAG access to all new DFT elements added to
the IJTAG network and to the child blocks.

o SSN Continuity Pattern — Verifies you have correctly integrated the SSN datapath
into your design and detects potential problems along the datapath. If your datapath
includes SSN multiplexers, you must configure the multiplexer select to test each leg
of the multiplexer, as demonstrated in step 5 and at the bottom of the
1.run_ssh_edt_occ_insertion script in the directory of the reference testcase
mentioned previously.

Note
You can also create the SSN continuity pattern with the low-level
create_ssn_continuity_patterns command, as shown at the bottom of the

example dofile found at the end of this section.

• To use a third-party OCC with SSN, refer to the topic “Third-Party OCCs With SSN” on
page 484 in the “Tessent SSN Examples and Solutions” section.

To insert the logic test elements with SSN, use the following procedure to modify the dofile
described in “Second DFT Insertion Pass: Inserting Block-Level EDT and OCC” on page 149.

Prerequisites

• SSN requires that each physical block have a full OCC with a clock injection
multiplexer and support of the shift_only_mode feature.

• It is recommended that you have terminated the wrapper chains of the child blocks on a
local small EDT and that EDT is driven by the ScanHost node local to the block, as it
was done in the flow description found in the section “Second DFT Insertion Pass:
Inserting Block-Level EDT, OCC, and SSN” on page 357.

Procedure

1. Remove the add_dft_signals commands for the scan and retargeting signals edt_clock,
edt_update, shift_capture_clock, test_clock, retargeting1_mode, retargeting2_mode,
retargeting3_mode, and retargeting4_mode.

The scan signals (edt_clock, edt_update, shift_capture_clock, and test_clock) are not
needed because they are sourced by the SSH located in the top level. The scan signals to
the lower-level EDT and wrapper chain are sourced by the SSH inside the lower-level
child core. When the lower-level child cores are in external test mode, the internal mode
EDT is inactive.

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 387

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The retargeting signals (retargeting<n>_mode) are not needed because each core-level
EDT is accessible through the ScanHost node, effectively decoupling the dependency
between core-level EDT channels and top-level I/O. With SSN, you can retarget each
core to the top level individually or concurrently with any combination of the other
cores.

To remove these commands, delete these lines:

add_dft_signals test_clock edt_update -source_nodes \
{TEST_CLOCK_top EDT_UPDATE_top}

add_dft_signals shift_capture_clock edt_clock \
-create_from_other_signals

add_dft_signals retargeting1_mode retargeting2_mode \
retargeting3_mode retargeting4_mode

2. Add the ssn_en DFT signal:

DFT Signal used for logic test
add_dft_signals ltest_en ssn_en

3. Remove all of the add_dft_modal_connections commands that add multiplexer logic to
support scan pattern retargeting.

4. Add the SSN wrapper to the DftSpecification, as shown later in this step. The Datapath
connections point to the top-level ports that the previous step equipped with auxiliary
input and output logic during Boundary Scan. The tool automatically maps the specified
port connections to the corresponding auxiliary data pins and automatically connects the
auxiliary en pins to the ssn_en DFT signal.

A Multiplexer node wraps the two DesignInstance wrappers associated with the GPS
instances. You may need to create a similar setup in your design if the datapath through
the those two cores can be powered down. One way to avoid those multiplexers is to
make sure the SSN datapath remains in the always on domain. In this example, it is used
to illustrate the way you create an iProc to setup the datapath so that you can use it
during SSN continuity and Scan retargeting.

Tessent™ Shell User’s Manual, v2021.3388

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

read_config_data -in_wrapper $spec -from_string {
 SSN {
 ijtag_host_interface : Sib(ssn);
 Datapath(1) {
 output_bus_width : 2;
 Connections {
 bus_clock_in : GPIO3_2;
 bus_data_in : GPIO3_%d;
 bus_data_out : GPIO4_%d;
 }
 OutputPipeline(1) {
 }
 ScanHost(1) {
 }
 DesignInstance(PROCESSOR_1) {
 }
 Multiplexer(gps_byp) {
 DesignInstance(GPS_2) {
 }
 DesignInstance(GPS_1) {
 }
 }
 Receiver1xPipeline(1) {
 }
 }
 }

5. Create the SSN continuity pattern to test the primary and secondary paths through the
SSN multiplexer.

a. Identify the different paths from SSN bus_in to bus_out through each leg of the SSN
multiplexers. In the example in substep b, a single multiplexer is in the datapath.
Some complex datapaths may contain multiple SSN multiplexers.

b. Create an iProc to program the secondary datapath through the multiplexer. Reuse
the iProc during ATPG pattern generation to ensure that the datapath during ATPG
has been checked. Some complex datapaths may have multiple iProc procedures to
program the different multiplexer combinations.

#
PDL for configuring top-level mux.
When mux select=1'b1, gps_baseband physical blocks are included
#
iProcsForModule chip_top
iProc include_gps_blocks_in_ssn_datapath {} {
 iCall chip_top_rtl2_tessent_ssn_mux_gps_byp_inst.setup \
 select_secondary_bus 0b1
}

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 389

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-4. Multiplexer Node for Bypassing the gps_baseband Blocks

c. For each configuration of the multiplexers, use the ProcedureStep wrapper to create
the continuity pattern.

Add path through gps_baseband physical blocks to continuity pattern.
read_config_data -last -in_wrapper $spec/Patterns(SSN) -from_string {
 ProcedureStep(cfg_datapath) {
 iCall(include_gps_blocks_in_ssn_datapath) {
 }
 }
 SSNContinuityVerify(include_gps_baseband) {
 }
}

6. Add the “-create_ijtag_graybox on” switch to the extract_icl command. The ICL-based
patterns verification step also makes use of the IJTAG graybox views of the top and
child levels to optimize the simulations.

Examples

The following is a dofile for the second DFT pass.

Set the context to insert DFT
set_context dft -rtl -design_id rtl2

Use dft_cell_selection that is part of the library
read_cell_library ../../library/standard_cells/tessent/adk.tcelllib

Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_outdir

Open the TSDB of all the child cores
open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir

Read the tessent cell library
read_cell_library ../../library/standard_cells/tessent/adk.tcelllib

Read the verilog
read_verilog ../rtl/noncore_blocks/pll.v -blackbox
set_design_sources -format verilog -v ../rtl/noncore_blocks/iopad_sel.v

Read the synthesized netlist
read_design chip_top -design_id rtl1 -verbose
read_design processor_core -design_id gate -view graybox -verbose
read_design gps_baseband -design_id gate -view graybox -verbose

set_current_design chip_top

Tessent™ Shell User’s Manual, v2021.3390

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The design level is already specified in the first pass; no need to specify it
again

Add DFT Signals
DFT Signal used for BoundaryScan to be used with logic test without
contacting inputs
add_dft_signals int_ltest_en output_pad_disable
DFT Signals used for Scan Tested Network with Instruments like
memorybist/boundary scan
add_dft_signals tck_occ_en
DFT Signal used for logic test
add_dft_signals ltest_en
DFT Signal used by top-level EDT
add_dft_signals edt_mode ssn_en

Specify pre-DFT DRC rules
set_dft_specification_requirements -logic_test On

check_design_rules
report_dft_control_points

Create and report a DFT Specification
set spec [create_dft_specification -sri_sib_list {occ edt ssn}]
report_config_data $spec
Use report_config_syntax DftSpecification/edt|occ to see full syntax

The edt_clock and edt_update signals are automatically connected to EDT
instances
The EDT controller is built with Bypass
The shift_capture_clock is automatically connected to OCC instances
read_config_data -in_wrapper $spec -from_string {
 SSN {
 ijtag_host_interface : Sib(ssn);
 DataPath(1) {
 output_bus_width :2;
 Connections {
 bus_clock_in : GPIO3_2;
 bus_data_in : GPIO3_%d;
 bus_data_out : GPIO4_%d;
 }
 OutputPipeline(1) {
 }
 ScanHost(1) {
 }
 DesignInstance(PROCESSOR_1) {
 }
 Multiplexer(gps_byp) {
 DesignInstance(GPS_2) {
 }
 DesignInstance(GPS_1) {
 }
 }
 Receiver1xPipeline(1) {
 }
 }
 }

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 391

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 Occ {
 ijtag_host_interface : Sib(occ);
 include_clocks_in_icl_model : yes;
 Controller(pll_clock_0) {
 clock_intercept_node : PLL_1/pll_clock_0;
 }
 Controller(INCLK) {
 clock_intercept_node : INCLK;
 }
 }

 EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1) {
 longest_chain_range : 60, 100;
 scan_chain_count : 17;
 input_channel_count : 2;
 output_channel_count : 2;
 Connections {
 EdtChannelsIn(1) {
 }
 EdtChannelsOut(1) {
 }
 }
 }
 }
}

Generate and insert the hardware
process_dft_specification

Note the effective data and clock rate comments above each SSN node in the
following command
report_config_data $spec

Extract IJTAG network and create ICL file for the design
extract_icl -create_ijtag_graybox on

Creates a synthesis script of ALL the RTL (original and newly-created)
to be used in your synthesis tool in next Step
write_design_import_script -use_relative_path_to . for_dc_synthesis.tcl -replace

Generate patterns to verify the inserted DFT logic
set_defaults_value /PatternsSpecification/SignoffOptions/

simulate_instruments_in_lower_physical_instances on

Tessent™ Shell User’s Manual, v2021.3392

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generate patterns. Use the variable to update it if needed.
set spec [create_patterns_specification]
Add path through gps_baseband physical blocks to continuity pattern.
read_config_data -last -in_wrapper $spec/Patterns(SSN) -from_string {
 ProcedureStep(cfg_datapath) {
 iCall(include_gps_blocks_in_ssn_datapath) {
 }
 }
 SSNContinuityVerify(include_gps_baseband) {
 }
}

Validate pattern specification
process_patterns_specification

Point to the libraries and run the simulation
set_simulation_library_sources -v ../../library/standard_cells/verilog/*.v \
 -v ../rtl/noncore_blocks/pll.v \
 -v ../rtl/noncore_blocks/iopad_sel.v \
 -v ../../library/memories/SYNC_1RW_8Kx16.v

run_testbench_simulations -simulation_macro_definitions
TESSENT_DISABLE_CLOCK_MONITOR
check_testbench_simulations

exit

The following is an alternate way to create the SSN continuity pattern. Refer to Step 5 in the
Procedure section of this topic for an explanation of how to create the SSN continuity pattern.

#
Create the continuity pattern
#

Define SSN bus clock. If you are using time multiplexing
you must specify the -freq_multiplier switch.
add_clocks GPIO3_2

Check design rules and transition to analysis mode
check_design_rules

set ijtag period
set_ijtag_retargeting_options -tck_period 10

set ssn bus clock period.
set_load_unload_timing_options -usage ssn -ssn_bus_clock_period 5

chip level iProc to select secondary datapath through mux
source ../ssn_datapath_configuration.pdl

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 393

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Create the SSN continuity pattern
open_pattern_set ssn_continuity -usage ssn
 # This is the default datapath configuration
 create_ssn_continuity_patterns
 # Select secondary datapath side of MUX
 iCall include_gps_blocks_in_ssn_datapath
 create_ssn_continuity_patterns
close_pattern_set

Write simulation and STIL patterns
write_patterns patterns/ssn_continuity.v -verilog -replace -parameter_list \

{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1}
write_patterns patterns/ssn_continuity.stil -stil -replace

Synthesis for Top-Level Insertion
Use the following dofile changes to synthesize the DFT-inserted RTL at the top level.

You can perform this step in the following directory of the Reference Testcase:

In the dofile of the section “Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and
SSN” on page 385, you used the write_design_import_script command to export a design load
script for use in your synthesis tool.

Refer to the section “Synthesis Guidelines for RTL Designs with Tessent Inserted DFT” on
page 779 for guidelines on how to perform the synthesis step. Also, see the section “Example
Scripts using Tessent Tool-Generated SDC” on page 760 for example scripts specific to various
synthesis tools.

When synthesis completes, it produces a file containing the concatenated netlist of the physical
block you just synthesized.

• If you performed scan insertion within the synthesis tool, continue with the steps
described in the section “Creating the Post-Synthesis TSDB View (Block-Level)” on
page 365.

• If you are inserting your scan chains within Tessent, continue with the steps described in
the section “Performing Scan Chain Insertion With Tessent Scan (Block-Level)” on
page 367.

Example

Example dofiles are available as the <module_name>.dc_synth_script files found in the
testcase directories shown in the “Referenced Testcase Step” section earlier in this topic. These

Tessent™ Shell User’s Manual, v2021.3394

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

files specify the TCK period and the set_load_unload_timing_options values using a separate
file called <design_name>.timing_options. When you source this file at this point, it configures
the SDC during synthesis. A step later in the flow also sources this file from ATPG dofiles to
configure the patterns with the exact timing options that the tool used during timing closure.

Creating the Post-Synthesis TSDB View (Top-Level)
When you are using third-party scan insertion, use the following procedure to create the post-
synthesis TSDB, separate from scan insertion. Creation of the post-synthesis TSDB occurs
automatically as part of scan insertion when you use Tessent Scan.

Reference Testcase Step

You can perform this step in the following directory of the Reference Testcase:

Procedure

Creating the post-synthesis TSDB view at the top level is identical to the equivalent step at the
block level. The only difference is that you also need to open the TSDB to the child blocks.
Refer to the section “Creating the Post-Synthesis TSDB View (Block-Level)” on page 365 for
the details. The create_post_synthesis_tsdb_view script in the directory shown previously in the
reference testcase also illustrates this process.

Performing Scan Chain Insertion With Tessent Scan (Top-
Level)

The Tessent Scan insertion step in the SSN flow is similar to the scan chain insertion step in the
Tessent Shell Flow for hierarchical designs.

Reference Testcase Step

You can perform this step in the following directories of the Reference Testcase:

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 395

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

When you are using SSN, the scan insertion step at the top level is very similar to the flow you
use at the block level. The only difference is that you do not need wrapper chains and, typically,
have a single scan mode. The boundary scan chains implemented in the section “First DFT
Insertion Pass: Performing Top-Level MemoryBIST” on page 382 were built so that the EDT
controller can control them during scan test, and they can serve as isolation from the outside.
Those chains were preconnected to the EDT ports and are left untouched during scan insertion.
Refer to the section“Performing Scan Chain Insertion With Tessent Scan (Block-Level)” on
page 367 for more details. It may also be helpful to look at the run_scan_insertion script in the
directory shown previously in the reference testcase.

Verifying the ICL-Based Patterns After Synthesis (Top-
Level)

Resimulating the MemoryBIST and ICL verification patterns after synthesis ensures the ICL
network is fully functional and able to be reliably used during ATPG and Scan retargeting
setup.

Reference Testcase Step

You can perform this step in the following directory of the Reference Testcase:

Procedure

The verification of the ICL-based patterns at the top level is identical to the procedure at the
block level. The only difference in the script is that you must open the TSDB for the child
blocks. See the section “Verifying the ICL-Based Patterns After Synthesis (Block-Level)” on
page 370 for the full details. It may also be helpful to review the
1.create_post_synthesis_icl_verification_patterns script in the directory shown previously in
the reference testcase.

Generating Top-Level ATPG Patterns
The process for generating ATPG patterns in the SSN flow is similar to the process used
without SSN.

Reference Testcase Step

Tessent™ Shell User’s Manual, v2021.3396

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directories of the Reference Testcase:

Procedure

Generating the ATPG patterns at the top level is identical to generating the patterns at the block
level. The block levels are in external mode when you create top-level ATPG patterns, so you
only need to read in their scan graybox views using the “read_design -view scan_graybox”
command.

You also need to import the .timing_options file used for all blocks so that you create the
ATPG patterns to satisfy the maximum frequencies within all the blocks. The
1.run_tk_chip_stuck and 2.run_tk_chip_transition scripts in the directory shown
previously for the reference testcase illustrate the loading of the timing options. Use the
following Tcl code used to perform this import procedure:

Import timing options used during synthesis
set tck_period 0
foreach {physical_block path} {
 processor_core ../../wrapped_cores/processor_core/3.synthesize_rtl \
 gps_baseband ../../wrapped_cores/gps_baseband/2.synthesize_rtl \
 chip_top ../3.synthesize_rtl/} {

 set_current_physical_block -module $physical_block
 source ${path}/${physical_block}.timing_options
 if {[set ${physical_block}_tck_period] > $tck_period} {
 puts "Imported tck_period from $physical_block"
 set tck_period [set ${physical_block}_tck_period]
 }

}

Define the tck period and ijtag retargeting options
set_ijtag_retargeting_options -tck_period $tck_period

Refer to the section “Generating Block-Level ATPG Patterns” on page 373 for more
details about the content of the dofile, or examine the 1.run_tk_chip_stuck and
2.run_tk_chip_transition scripts in the directory shown previously for the reference
testcase. The file 3.run_sims in same directory shows how to perform the simulation. It
compiles the full view of the top level and the scan graybox view of the child blocks.

Similar to the block-level process, the parallel load scan patterns are simulated first,
followed by the serial SSH loopback patterns and then the one Serial Chain and one
Serial Scan patterns.

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 397

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Retargeting ATPG Patterns
The steps you use to retarget the ATPG scan patterns from the block to the top level are very
similar to the steps used when not using SSN. When SSN is present, the process is easier and
more flexible.

Reference Testcase Step

You can perform this step in the following directories of the Reference Testcase:

Notes About This Procedure

When you use SSN, the design does not have a scan_mode to set at the top level that configures
the channel access to the required blocks. Instead, you simply use the add_core_instances
command to specify which mode you want to retarget on a given set of block modules or
instances. During the DFT signoff process, you typically retarget one block at a time so that you
can speed up the simulation and use the IJTAG graybox views of all blocks other than the one
you are retargeting. This is the usage model that the reference testcase demonstrates. The
testcase retargets the stuck and transition patterns for process_core into a set of test benches
independently from the stuck and transition patterns for the gps_baseband block. The
3.run_retarget_processor_core_sims and 6.run_retarget_gps_baseband_sims scripts in the
reference testcase directory show how to compile the correct view for each simulation.

When you want to create the manufacturing patterns, you can retarget any number of blocks in
parallel. The flow is identical to the one in the dofile in the Examples section, except that you
use the add_core_instances command to specify all the blocks you want to include in the given
retargeting pattern set. The SSN procedure has the advantage that you do not hard code the
grouping of blocks at design time, so you can optimize them later, between power and test time.

The example dofile shows how you source the .timing_options files from each block again at
this time to ensure you create the SSN patterns consistently with how timing was closed within
each block.

Procedure

1. Load the design in Tessent Shell.

Regardless of which blocks you are retargeting, you always load the IJTAG graybox
view of all blocks when doing scan retargeting with SSN. The three “read_design -view
ijtag_graybox” commands used in the example dofile illustrate how to do this.

2. Import the timing options files for all blocks.

Tessent™ Shell User’s Manual, v2021.3398

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

As shown in the dofile in the Examples section and in the description of the previous
step, the tool automatically configures the SSN patterns to satisfy the requirements
specified with the set_load_unload_timing_options command. You use the same
command to configure the Tessent SSN SDC during timing closure. Specifying the
command in a distinct file for each block enables you to share the exact same
specification during timing closure and pattern generation to ensure they are always
consistent.

3. Configure the SSN Multiplexer node to provide access to all active SSH blocks.

The third section of highlighted code in the example dofile is commented out because
the iCall it contains configures the Multiplexer node when you want to include the
gps_baseband. However, this dofile only retargets the patterns for the processor_core
block. As illustrated in Figure 8-4 on page 389 in the section “Second DFT Insertion
Pass: Inserting Top-Level EDT, OCC, and SSN”, an inserted Multiplexer node enables
you to bypass the gps_baseband blocks. When you want to retarget the scan patterns of
the gps_baseband block, you must configure the Multiplexer to include them in the
active SSN datapath.

Examples

The following dofile example illustrates how to perform scan retargeting with SSN.

Set the Context to retarget ATPG Patterns from lower level child cores
set_context pattern -scan_retargeting

Point to the TSDB directory
set_tsdb_output_directory ../tsdb_outdir

Open all the TSDB of the child cores
open_tsdb ../../wrapped_cores/processor_core/tsdb_outdir
open_tsdb ../../wrapped_cores/gps_baseband/tsdb_outdir

Read the tessent cell library
read_cell_library ../../library/standard_cells/tessent/adk.tcelllib

Read the hard macros
read_verilog ../../library/plls/pll.v -interface_only
read_verilog ../../library/memories/SYNC_1RW_8Kx16.v -interface_only

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 399

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#For scan retargeting with SSN, only the ijtag_graybox view is needed.
read_design chip_top -design_id gate -view ijtag_graybox
read_design processor_core -design_id gate -view ijtag_graybox
read_design gps_baseband -design_id gate -view ijtag_graybox

set_current_design chip_top

Import timing options used during synthesis
set tck_period 0
foreach {physical_block path} {processor_core ../../wrapped_cores/
processor_core/3.synthesize_rtl \
 gps_baseband ../../wrapped_cores/
gps_baseband/2.synthesize_rtl \
 chip_top ../3.synthesize_rtl/} {
 set_current_physical_block -module $physical_block
 source ${path}/${physical_block}.timing_options
 if {[set ${physical_block}_tck_period] > $tck_period} {
 puts "Imported tck_period from $physical_block"
 set tck_period [set ${physical_block}_tck_period]
 }
}

Define the tck period and ijtag retargeting options
set_ijtag_retargeting_options -tck_period $tck_period

Define the slow clock capture timing
set_capture_timing_options -usage internal \
 -capture_clock_period 40ns

Retarget Stuck-at patterns from processor_core
set_current_mode retarget1_processor_stuck

add_core_instances -instances {PROCESSOR_1} -core processor_core -mode
int_edt_mode_stuck
import_clocks

Configure SSN datapath to include all SSH
This is not needed for the processor_core as it is always part of
the active SSN datapath

source ../ssn_datapath_configuration.pdl
set_test_setup_icall include_gps_blocks_in_ssn_datapath -append

check_design_rules

Write the TCD for the chip-level in the TSDB directory
write_tsdb_data -replace

Read the patterns to be retargeted. The mode is specified with the
add_core_instances command.
read_patterns -module processor_core -fault_type stuck

Tessent™ Shell User’s Manual, v2021.3400

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Write Verilog patterns for simulation
Write parallel load testbench
write_patterns patterns/top_retarget_processor_core_stuck_parallel_scan.v \
 -parallel -v -replace -param_list {SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} \
 -pattern_set scan

ssh loopback pattern
write_patterns patterns/top_retarget_processor_core_stuck_ssh_loopback.v \

-serial -v -replace -param_list {SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} \
-pattern_set ssh_loopback

ssh on-chip comparator self test when OCComp mode present
Not needed for Sign-off sims but critical as a manufacturing pattern
write_patterns patterns/top_retarget_gps_baseband_occomp_self_test.v \

-serial -v -replace -param_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set \
ssh_on_chip_compare

Write a single chain and single scan test pattern
write_patterns patterns/top_retarget_processor_core_stuck_serial_chain.v \

-serial -v -replace -end 0 -param_list \
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set chain

write_patterns patterns/top_retarget_processor_core_stuck_serial_scan.v \
-serial -v -replace -end 0 -param_list
{SIM_COMPARE_SUMMARY 1 SIM_KEEP_PATH 1} -pattern_set scan

exit

Performing Reverse Failure Mapping for SSN Pattern
Diagnosis

SSN patterns include core-level patterns retargeted to the top level to create chip-level tester
patterns. In this way, they are similar to retargeted patterns for a hierarchical DFT design.
Tessent Diagnosis requires a core-level design flat model as an input. This means that, to
diagnose failures, you must reverse-map the tester-reported failures at the top level to their
corresponding core level, which enables you to map the reported transactions at the SSN bus
level into transactions at the active SSH and EDT scan chain level. This failure mapping process
must include top-level ATPG. Tessent Diagnosis then uses the mapped failure file, design flat
model, and test pattern database (patdb) to perform the diagnosis.

The following figure shows a simplified Tessent Diagnosis flow as a two-step flow. In the first
step, you map tester-generated failures to core-level failures. Refer to the section “Reverse
Mapping Top-Level Failures to the Core” in the Tessent Diagnosis User’s Manual for more
details. In the second step, you run Tessent Diagnosis using the mapped failure files.

Note
This procedure validates that reverse mapping failures back to the core level is working
properly. It does not validate diagnosis.

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 401

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-5. Simplified Tessent Diagnosis Two-Step Flow

Note
When you write SSN patterns with the maxloads option and exclude one of the pattern files
from being applied to the DUT on the tester, you should also exclude that file from the

reverse failure mapping process from reading that pattern file.

Tessent tools support a flow for validating the reverse failure mapping process that leads into
the diagnosis flow in the preceding figure by enabling the Verilog test bench to log simulation
failure information in a format similar to a tester fail file. To generate those failures, you must
inject a fault on a design primitive instance (sequential or combinatorial logic). The simplest
way to do this is to force a design node to a fixed value during the entire simulation, as
illustrated in the testcase demonstration.

This demonstration injects a fault at one of the core scan cells during the event-driving
simulation using Questa Advanced Simulator or a third-party simulator. You use the fail file
generated during pattern test bench simulation to generate a core-level failure file; this does not
change the diagnosis flow. Then you use the failure file, design flat model, and pattern database
to perform the diagnosis and generate the list of suspects in an effort to find the root cause.

Reference Testcase Step

Tessent™ Shell User’s Manual, v2021.3402

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can perform this step in the following directory of the Reference Testcase:

Notes About This Procedure

• While the diagnosis flow requires post-layout design flat models and patterns, the
testcase uses the post-synthesis flat model and patterns for the sole purpose of
demonstrating the validation flow.

• This validation flow uses the Verilog test bench for serial patterns. You cannot use the
parallel Verilog test bench.

• The Verilog test bench and STIL patterns should come from the same session, which
means that the number of patterns written for Verilog simulation must match the STIL
patterns.

• The number of Verilog test bench patterns affects the simulation results during fault
injection. Choose a number that you can simulate in a reasonable amount of time while
still being able to detect the injected fault. This is typically ten patterns if you inject
faults on the D input of a scan flop.

• To demonstrate the flow, the testcase uses a Tessent-generated test bench of the serial
scan patterns to simulate and inject a fault at a given scan cell.

• Tessent uses the provided name as a prefix. This results in the following generated
filename:

<command-provided_filename_>__<core_module_name>__<scan_test_mode>

Prerequisites

• When you create the serial scan test bench, you must set the parameter
SIM_DIAG_FILE with a value of two to create the fail file during the fault-injected
simulation:

write_patterns <test_bench_filename> -serial -parameter_list {SIM_DIAG_FILE 2}

• You have injected a fault at any design cell. Do this by directly forcing any cell
instances pin in the design to a constant value to emulate a fault. The testcase does this
as part of the simulation invocation, as shown at the end of this prerequisite. The testcase
uses the following cells as a fault location:

o gps_baseband core — sw_rst_reg/D

o processor_core core — watchdog_0.wdt_reset_reg/D

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Tessent™ Shell User’s Manual, v2021.3 403

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example uses the Questa Advanced Simulator force command to inject a
fault on the data input of a design sequential cell:

vsim -c -voptargs="+acc"
chip_top_top_retarget_processor_core_stuck_serial_scan_v_ctl -l
logfiles/verilog.log_top_retarget_processor_core_stuck_serial_scan \
 -do " force sim:/
chip_top_top_retarget_processor_core_stuck_serial_scan_v_ctl/
chip_top_inst/PROCESSOR_1/PROCESSOR_1/watchdog_0/wdt_reset_reg/D 1 -f ; \
 if {0} {log -r /*};run -all"

Procedure

1. Perform reverse failure mapping:

a. Set the context for failure mapping.

set_context patterns -failure_mapping

b. Read in the retargeted pattern TCD file.

read_core_descriptions <pattern_tcd_file>.tcd.gz

c. Read in the retargeted STIL pattern.

read_patterns <pattern_stil_file>

d. Read in the fail file generated during pattern fault injection and simulation.

read_failures <fail_file>

e. Write out the failure file.

write_failures <fail_file> -replace

2. Perform failure diagnosis:

a. Set the context for scan diagnosis.

set_context patterns -scan_diagnosis

b. Read in the core-level design flattened model.

read_flat_model <flat_model_path>

The ATPG process for the targeted pattern creates this model. Typically, this is a
compressed file with a .gz extension.

c. Read in the core-level pattern database.

read_patterns <pattern_database_path>.patdb

d. Run diagnosis on the failure file to produce a list of suspects.

diagnose_failures <failure_mapped_file>

Tessent™ Shell User’s Manual, v2021.3404

Streaming Scan Network (SSN)
Top-Level SSN Insertion and Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Example 1

The following dofile is for the gps_baseband failure mapping. Find it in the run_script in the
testcase directories for this step.

Set the Context to pattern
set_context pattern -failure_mapping

read retargeted ATPG tcd file
read_core_descriptions ../tsdb_outdir/logic_test_cores/ \
 chip_top_gate.logic_test_core/ \
 chip_top.atpg_retargeting_mode_retarget1_gps_baseband_stuck/ \
 chip_top_retarget1_gps_baseband_stuck.tcd.gz

set the current design to the chip_top
set_current_design chip_top
set_system_mode analysis

read the STIL pattern
read_patterns ../7.retarget_atpg_patterns/patterns/ \
 top_retarget_gps_baseband_stuck_serial_scan.stil

read the fail file generated by the testbench
read_failures ../7.retarget_atpg_patterns/patterns/ \
 top_retarget_gps_baseband_stuck_serial_scan.v.fail

write failure file for the diagnosis tool
write_failures
top_retarget_gps_baseband_stuck_serial_scan.failure_diagnosis -replace

Example 2

The following dofile is for the gps_baseband failure diagnosis. Find it in the run_script in the
testcase directories for this step.

Set the Context to pattern
set_context pattern -scan_diagnosis

read flat model file
read_flat_model ../../wrapped_cores/gps_baseband/tsdb_outdir/ \
 logic_test_cores/gps_baseband_gate.logic_test_core/ \
 gps_baseband.atpg_mode_int_edt_mode_stuck/ \
 gps_baseband_int_edt_mode_stuck.flat.gz
read_patterns ../../wrapped_cores/gps_baseband/tsdb_outdir/ \
 logic_test_cores/gps_baseband_gate.logic_test_core/ \
 gps_baseband.atpg_mode_int_edt_mode_stuck/ \
 gps_baseband_int_edt_mode_stuck_stuck.patdb

Diagnose failures
diagnose_failures top_retarget_gps_baseband_stuck_serial_scan. \
 failure_diagnosis___GPS_2__gps_baseband__int_edt_mode_stuck

Streaming Scan Network (SSN)
Advanced Topics

Tessent™ Shell User’s Manual, v2021.3 405

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Advanced Topics
The following topics provide additional information about working with SSN. This information
can help you use other features and modes with SSN, configure your design for optimal use
with SSN, and understand the underlying structures of SSN.

Streaming-Through-IJTAG Scan Data . 405

On-Chip Compare With SSN . 408

Types of Clock Networks To Use With SSN . 417

Broadcast to Identical SSN Datapaths. 421

Yield Statistics on ATE With SSN . 422

Manufacturing Patterns With SSN . 427
Manufacturing Pattern Quick Reference . 428
SSN Pattern Structure . 429
How To Write Complete SSN Patterns . 430
How To Write ssn_setup and ssn_end Procedures to Separate Files 432
How To Write SSN On-Chip Compare Patterns . 435
How To Write Streaming-Through-IJTAG Patterns . 436
SSN Debug on the Tester . 438

Signoff Patterns With SSN . 444
Block-Level Signoff Patterns . 445
Top-Level Signoff Patterns. 449
Signoff Pattern Quick Reference . 452

SSN SDC Constraints in the Design Flow . 453
Overview of SSN-Related SDC Procs and Constraints . 454
SSN/SSH SDC Constraint Descriptions . 462

Streaming-Through-IJTAG Scan Data
The ScanHost node is designed to also enable streaming the SSN data through the IJTAG
network instead of through the SSN data bus. This feature is always available with no additional
overhead because the IJTAG network is already connected to each ScanHost node, and the
ScanHost nodes can be programmed to use a single-bit bus.

For details on enabling this mode during ATPG or scan pattern retargeting, see the
set_ssn_options command in the Tessent Shell Reference Manual.

When activated, the ijtag_si data reaching the ScanHost node is injected on bit 0 of the input
data register, and bit 0 of the output data register is fed back to the ijtag_so pin, as the blue lines
in Figure 8-6 show. TCK is also injected as the SSN bus clock within the ScanHost node.

Tessent™ Shell User’s Manual, v2021.3406

Streaming Scan Network (SSN)
Streaming-Through-IJTAG Scan Data

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-6. Streaming-Through-IJTAG Mode

Scan data delivery into the chip is significantly slower when using Streaming-Through-IJTAG
than with the SSN data bus. It is only one bit wide and limited to the maximum operating
frequency of TCK. However, the IJTAG network is very robust due to its two-edge timing and
is always accessible in the system through the IEEE 1149.1 JTAG TAP.

In silicon, if you find you have a timing problem in a section of the SSN datapath, the
Streaming-Through-IJTAG mode is available as an alternative method to deliver patterns to
bring up your initial parts. For this reason, the Streaming-Through-IJTAG mode is also referred
to as a fail-safe mechanism.

The Streaming-Through-IJTAG feature is also a more flexible replacement for LPCT-2. You
are no longer limited to being able to drive only a single EDT controller having a single channel
pair when using the IEEE 1149.1 protocol for delivering scan data.

If your IJTAG network architecture provides concurrent access to all ScanHost nodes you want
to access through IJTAG (as is possible when using SIBs), you can test any number of blocks in
parallel, with an unlimited number of channels. This can be useful in a 3D or 2.5D package if
IEEE 1838 compliance is a requirement.

Streaming Scan Network (SSN)
Streaming-Through-IJTAG Scan Data

Tessent™ Shell User’s Manual, v2021.3 407

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The IEEE 1838 standard mandates that you can perform the die interconnect test through the
IEEE 1149.1 JTAG TAP, using only TCK as the scan and capture clock. To do this, create a
scan mode within each die that collects the wrapper cells interacting with the pins of the die, and
create ATPG patterns using this scan mode to target the interconnect faults. Apply these
patterns through the normal SSN bus, which is effectively the FFP mode of the IEEE 1838
standard. Alternatively, retarget those ATPG patterns to apply through the IEEE 1149.1 TAP by
using the Streaming-Through-IJTAG mode that comes with SSN, and satisfy the IEEE 1838
requirements.

Consider the following while using Streaming-Through-IJTAG:

• All ScanHost nodes you want to include must be in the active IJTAG scan path.
Streaming-Through-IJTAG mode does not support IJTAG broadcast. Star network
configurations restrict the number of ScanHost nodes that can be active in parallel. The
IJTAG solver within the Tessent tool automatically opens up the IJTAG path if the
network allows it.

• The Streaming-Through-IJTAG mode supports both internal and external capture, and
all fault models are supported.

Tip
At the top level, make the boundary scan chains available to the top-level EDT
controller for best results. (See the max_segment_length_for_logictest property

description in the DftSpecification/BoundaryScan wrapper reference page for more
details.) Add the int_ltest_en DFT signal at the top level and set it to 1 using the
set_static_dft_signal_values command during ATPG.

This enables full coverage of the chip logic without the need to drive the primary inputs
and observe the primary outputs during ATPG.

• You can run any number of ScanHost nodes concurrently in this mode as long as your
IJTAG network allows placing all the ScanHost nodes along the active IJTAG scan
path.

• When a Streaming-Through-IJTAG session is complete, the binary states of all SIBs
along the active scan path are restored to their states that were present before streaming
began. This provides a predictable IJTAG network configuration between
Streaming-Through-IJTAG sessions.

All scan testable instruments on the IJTAG network must be isolated from the following IJTAG
interface signals:

• ijtag_select

• ijtag_se

Tessent™ Shell User’s Manual, v2021.3408

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Caution
If the state of these IJTAG interface signals is observable into scan cells, the enabling of the
IJTAG streaming feature may invalidate the patterns.

You can accomplish this isolation by gating the signals with the ltest_en DFT signal. All scan
tested instruments under the SIB STI are already isolated and do not require any hardware
changes. Refer to the figure “Sib(sti) With Scan Isolation Chain” in the Sib reference page for
mode details about the way scan tested instruments are isolated from the IJTAG network during
scan test when you use the recommended Sib structure that is automatically inferred within the
create_dft_specification command.

On-Chip Compare With SSN
The on-chip compare feature enables the ScanHost node to compare expected data against the
response of the scan chains within the node itself.

The following subsections describe in more detail how to get the most effective use of the on-
chip compare feature and the self-test patterns used to test faults with it:

• Common Usage Scenarios — Scenarios that the on-chip compare feature is designed to
address.

• On-Chip Compare Mode Operation — The methods used by the on-chip compare
feature and the packet format when the feature is enabled.

• Costs, Benefits, and Recommendations — Trade-offs between DFT area and test time
efficiency, and recommendations for when the on-chip compare feature is most
effective.

• On-Chip Compare Mode Setup — Instructions for building your ScanHost with the on-
chip compare feature and enabling the feature during ATPG and scan pattern
retargeting.

• Diagnosis Using On-Chip Compare — Instructions for enabling detailed diagnostics
when using the on-chip compare feature.

Common Usage Scenarios

Comparing expected data to scan chain response in hardware within the ScanHost can be
helpful in the following scenarios:

• You have one or more physical blocks that are instantiated multiple times within the
design. With on-chip compare, the packet includes the chain input values and also the
expected and mask values. The packet values are not altered by the ScanHost node
because the chain input values are not replaced by the chain output values and thus can
be reused by any number of instances of that physical block. The section “Costs,
Benefits, and Recommendations” on page 409 describes the number of instances of the

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Tessent™ Shell User’s Manual, v2021.3 409

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

physical block required for the on-chip compare feature to become beneficial for test
time and test data volume considerations.

• You want to quickly identify the failing cores on the ATE during manufacturing because
you have a Partial Good Die methodology that tolerates a subset of identical cores
failing. In such a case, the failing cores must be identified on the tester, and the test flow
must take actions to decommission them while testing the rest of the chip.

The on-chip compare mode provides a sticky status bit per ScanHost node that IJTAG
scans out at the end of the pattern set to directly identify the failing blocks. You can also
scan out a sticky status per channel output if you require. Refer to the
OnChipCompareMode/sticky_status_resolution property description in the ScanHost
reference page in the Tessent Shell Reference Manual for information about how to
request usage of this feature. Refer to the OnChipCompareMode/present property
description in the same topic for information about the the special annotations added to
the STIL file to quickly identify the comparisons that match the sticky status bits.

On-Chip Compare Mode Operation

When you add the on-chip compare mode (OCComp mode) to the ScanHost node, it can still
operate in the normal mode, in which the input time slots of the packet corresponding to the
channel input values are replaced by the channel output values. Then the ATE compares them at
the end of the SSN data bus when they come off the chip. The packet format in this normal
mode of operation is illustrated in the figure “SSN Packet Formats When Not Using On-Chip
Compare” in the ScanHost reference page in the Tessent Shell Reference Manual.

When you enable the on-chip compare mode of operation, the packet is modified to include the
channel input values followed by the expected values, the mask values, and the optional status
values. The packet format in on-chip compare mode is illustrated in the figure “SSN Packet
Formats When Using On-Chip Compare” in the ScanHost reference page in the Tessent Shell
Reference Manual. When building a ScanHost node with support for on-chip compare, you
should use as few output channels as possible to minimize the time slot count used to carry the
expected and mask data.

For more details about the packet format in both modes, refer to the section “SSN Packet
Formats” in the ScanHost reference page.

Costs, Benefits, and Recommendations

The Common Usage Scenarios section explains why it is beneficial to include the on-chip-
compare mode within your ScanHost node when you reuse the physical block that contains it
multiple times in the chip. Because the OCComp mode uses packet data time slots for the
channel inputs, for the expected, mask, and status values, and for the status time slot, it becomes
more efficient than the normal mode of operation when you have at least three identical
instances of the physical block. With fewer instances, the test time and data volume reduction
are negligible and do not justify the area overhead needed to implement the OCComp mode.

Tessent™ Shell User’s Manual, v2021.3410

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The typical area of a ScanHost node that does not support the OCComp mode is significantly
smaller than a typical EDT controller. When the ScanHost node supports the OCComp mode,
its area becomes comparable to a typical EDT controller. To minimize the area impact of
OCComp on the ScanHost node, you must minimize the number of output channels you use
with the EDT. In this case, you typically use a single output channel.

You can build the ScanHost node with the support of many status groups for diagnosis.
Building support for many status groups increases the area of the ScanHost node, and using
many status groups increases test time and data volumes. Refer to the section “Diagnosis Using
On-Chip Compare” on page 410 for more information when and how to use multiple status
groups.

On-Chip Compare Mode Setup

To set up OCComp mode, you need to equip the ScanHost hardware node with the logic for it
and then enable the mode once the node is set up for it. The following subsections describe how
to do this.

Equipping the ScanHost Hardware Node With On-Chip Compare Mode

The ScanHost node is not built with the on-chip compare mode by default. Building with
OCComp mode doubles the area of the controller. Enable the creation of the OCComp mode by
inserting the OnChipCompareMode wrapper within the ScanHost wrapper, typically when you
have one of the conditions described in the section “Common Usage Scenarios” on page 408.
Use the OnChipCompareMode/sticky_status_resolution property within the wrapper to specify
whether you want one sticky status per output channel or only a single one for the entire
ScanHost node.

Enabling On-Chip Compare Mode During ATPG and Scan Pattern Retargeting

By default, using the write_patterns command in the patterns -scan or patterns -scan_retargeting
context does not enable OCComp mode. Manually enable OCComp mode by using the
“set_core_instance_parameters -parameter_values {on_chip_compare_enable on}” command.
You can either specify a group of ScanHost instances by using the -instances switch or use the
“-instrument_type ssh” switch to enable on-chip compare on all ScanHost nodes that support it.

Diagnosis Using On-Chip Compare

As described in the figure “SSN Packet Formats When Not Using On-Chip Compare” and its
preceding text in the ScanHost reference page in the Tessent Shell Reference Manual, you can
program the ScanHost node to report per-cycle pass/fail information into special Status time
slots when using the OCComp mode. You can choose to have no status time slots and rely
purely on the Go/NoGo sticky status bit scanned out with IJTAG at the end of the session. This
sticky status provides failure resolution down to the failing EDT output channel when you have
specified OnChipCompareMode/sticky_status_resolution as “output_chain”, but it does not
provide diagnostic resolution down to the failing gate because there are no per-cycle compare
statuses.

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Tessent™ Shell User’s Manual, v2021.3 411

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When several ScanHost nodes are programmed to use the same status time slots, which is the
default behavior, diagnosis may require reapplication of the pattern set to collect all the data
needed to perform detailed diagnostics of every failing core. Consider a case where all identical
core instances are placed into a single status group, such that their per-cycle pass/fail
information aggregates into the same status time slots. If any of those bits indicate failures, you
have the cumulative per-pin, per-cycle fail data but may not be able to determine which core or
cores the failures came from. The sticky status bits unloaded at the end of the pattern set through
IJTAG indicate which cores failed at least once. If only one core in this group failed, then you
know the per-cycle pass/fail data came from this core alone; therefore, you have all the
information needed for diagnosis. However, if multiple cores fail, you must then separately test
and observe each failing core to get its individual fail data. If two cores fail, for example, then
you reapply the same test set twice, with patching applied to the
disable_on_chip_compare_contribution bit for all but one ScanHost node at a time. There is no
need to store separate patterns for diagnosis on the tester. Refer to the description of the
disable_on_chip_compare_contribution bit in the table “IJTAG Registers in ScanHost Nodes”
in the ScanHost reference page in the Tessent Shell Reference Manual for more information
about the special iWriteVar annotation that identifies the location of such patchable bits.

If identical core instances are split into multiple groups, this slightly increases the test time, but
decreases the probability of resorting to multiple test applications for collecting diagnosis data.
In the example shown in the figure “SSN Packet Formats When Using On-Chip Compare” in
the ScanHost reference page in the Tessent Shell Reference Manual, the six cores are split into
two groups. If you find cores A1 and A4 to have failed, there is no need for test reapplication,
because cores A1 through A3 accumulate their status bits separately from cores A4 through A6.
However, if cores A1 and A3 fail, you must reapply the tests with patching to acquire the
individual fail data. In an extreme case, you may choose to assign each core instance to its own
group to observe each core individually. This mode of operation may be better suited for silicon
debug than high-volume manufacturing.

To learn about the ATE failure log format, refer to the section “ATE Failure File Format
Requirements” in the Tessent Diagnosis User’s Manual.

To learn about how to map the failures at the chip boundary to the core level and to enable
performing detailed diagnostics, refer to the section “Reverse Mapping Top-Level Failures to
the Core” in the Tessent Diagnosis User’s Manual. The failure mapping steps described in this
section are required when using SSN, even for top-level ATPG patterns. This is unlike when
you are not using SSN, where they are only required for retargeted scan patterns.

On-Chip Comparator Self-Test Patterns

As described in this section, you can equip the SSN ScanHost node with On-Chip compare
logic. This logic is described in the “On-Chip Compare Logic” figure in the ScanHost reference
page. There are several possible faults in the comparator logic that could prevent the detection
of miscompares caused by defects in the scanned circuit. Figure 8-7 identifies those faults. The
opposite fault polarity would result in systematic miscompares, and you can detect them with
the normal On-Chip compare patterns. The faults listed in this figure would result in faults

Tessent™ Shell User’s Manual, v2021.3412

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

within the scan circuitry that can go undetected. You can generate a special pattern using the
ScanHost loopback mode with expected values set opposite to the scan-in values, to cause
miscompares and enable you to observe the effects on the SSN bus outputs. The logic shown in
blue in the following figure exists only when you have specified the ScanHost/
OnChipCompareMode/sticky_status_resolution property as “output_chain”.

Figure 8-7. Faults in Comparator Logic That Could Mask Real Faults

Structure of the On-Chip Comparator Patterns

Generate the on-chip comparator self-test pattern set using the “write_patterns -pattern_set
ssh_on_chip_compare” command in the patterns -scan or -scan_retargeting context. The tool
performs the on-chip comparator self-test pattern on all active SSHs in the current atpg or scan
retargeting session. Use the report_core_instances command to see the active SSHs

The self-test pattern programs the ScanHost node with the following register values, so that
each scan load comprises exactly five packets.

edt_update_falling_launch_word 0
edt_update_falling_transition_words 0
extra_shift_packets 0
force_suppress_capture 1
loop_back_en 1
on_chip_compare_enable 1
on_chip_compare_group 1
on_chip_compare_group_count 1
scan_en_launch_packet 0
scan_en_transition_packets 0
total_shift_cnt_minus_one 1

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Tessent™ Shell User’s Manual, v2021.3 413

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

With these settings, each scan load is exactly five packets long, and the packets have the
following labels: edt_update, shift0, shift1, post_shift0, and post_shift1. The values of the
from_scan_out_bits registers equal the number of output chains usable during on-chip compare
for each chain group; refer to the ScanHost reference page for more details in the description of
the output_chain_count_in_on_chip_compare_mode property. The values of the
to_scan_in_bits registers match the exact value of the from_scan_out_bits register for each
chain group. This ensures that there are exactly the same amount of scan-in values as there are
comparators to test. The format of the five packets is shown in the following output for an
example ScanHost having 3 comparators. The green values in the following output carry the
scan payload in and out. The tool compares the i0, i1, and i2 values provided in the shift0 and
shift1 packets against the e0, e1, and e2 values and masks them with the m0, m1, and m2 values
scanned in during the post_shift0, and post_shift1 packets. The tool scans out the comparator
statuses per output chain during the post_shift0 and post_shift1 packets.

 packet_id scanin exp mask status
----------- -------- -------- -------- --------
edt_update i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
shift0 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
shift1 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
post_shift0 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
post_shift1 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2

The following list describes three control bits whose time slots are identified in gold in the
preceding scan load description.

• select_sticky_status — This control bit is scanned in during the i0 time slot of the
edt_update packet. When the value is “1”, the select_sticky_status signal, shown in
Figure 8-7 on page 412, goes high at the end of the shift1 packet within the same scan
load.

As that figure illustrates, the logic injects the sticky status results into the status time
slots of the post_shift0 and post_shift1 within the same scan load. It also injects the
global sticky status into the status time slots of the shift0 packet (shown in magenta in
the preceding scan load description) of the next scan load. As previously described, the
select_sticky_status signal goes up or down at the end of the shift1 packet, which
explains why the global sticky status observed in the shift0 packet happens in the next
scan load.

• last_scan_load — This control bit scans in during the i0 time slot of the post_shift0
packet. It indicates to the ScanHost that the current scan load is the last one and to stop
performing any comparisons in the next scan loads that may continue to flow through
the datapath, which are to complete the testing of other ScanHosts with more
comparators to test.

• clear_sticky_status — This control bit is scanned in during the i0 time slot of the
post_shift1 packet. When the value is “1”, the clear_status signal, shown in Figure 8-7
on page 412, goes high during the shift1 packet within the next scan load. As mentioned
in the preceding “select_sticky_status” section, the tool observes the global sticky status

Tessent™ Shell User’s Manual, v2021.3414

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

during the shift0 packet, which is before the clear_sticky_status takes effect. Therefore,
it observes the effect of the clear_sticky_status in the next scan load, assuming no new
miscompares were injected during the post_shift0 and post_shift1 packet to cause the
global sticky status to go up again after it was cleared at the end of the shift1 packet.

The on-chip comparator self-test pattern set comprises six phases, described in the following
sections. Every compare in the pattern uses a unique label for identification, constructed as in
the following:

<ssh_icl_instance>.<phase_id>.<packet_id>.scanin# for the scan in values
<ssh_icl_instance>.<phase_id>.<packet_id>.exp# for the expected values
<ssh_icl_instance>.<phase_id>.<packet_id>.mask# for the mask values
<ssh_icl_instance>.<phase_id>.<packet_id>.status# for the status values

The output patterns file such has STIL will have one such bit_annotation for each output time
slot to help quickly identify the meaning of any miscompares. Refer to the section “Retargeted
Symbolic Variables” in the Tessent IJTAG User’s Manual for information about the bit
annotations.

The following describes the six phases of the on-chip compare self-test, with the faults from
Figure 8-7 on page 412 that they each cover.

Phase 1

This phase consists of a single scan load formed with one set of the five packets shown
previously. This scan load uses consistent scanin and expected values for both shift cycles so
that it generates no miscompares and the sticky statuses get initialized to 0. The phase_id is
“phase1”.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 0 0 0 0 0 0 0 0 0 L L L
shift0: 1 1 1 0 0 0 0 0 0 L L L
shift1: 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 0 0 0 0 0 0 0 0 0 L L L

Phase 2

This phase consists of N scan loads used to test that the N XOR gates in Figure 8-7 on page 412
are not stuck at 0 when the scanin value is 0 and the expected value is 1. The phase_id is
“phase2_X” when testing the Xth comparator. The following is the scan load used to test
comparator 0.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 0 0 0 0 0 0 0 0 0 L L L
shift0: 0 0 0 0 0 0 0 0 0 L L L
shift1: 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 0 0 0 0 0 H L L
post_shift1 0 0 0 0 0 0 0 0 0 L L L

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Tessent™ Shell User’s Manual, v2021.3 415

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Phase 3

This phase consists of N scan loads used to test that the N XOR gates in Figure 8-7 on page 412
are not stuck at 0 when the scanin value is 1 and the expected value is 0. The phase_id is
“phase3_X” when testing the Xth comparator. The following is the scan load used to test
comparator 0.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 0 0 0 0 0 0 0 0 0 L L L
shift0: 1 0 0 0 0 0 0 0 0 L L L
shift1: 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 0 0 0 0 0 0 H L L
post_shift1 0 0 0 0 0 0 0 0 0 L L L

Phase 4

This phase consists of two scan loads. It tests that the sticky statuses are able to hold. As shown
in Figure 8-7 on page 412, there is a global sticky status and optional sticky statuses per output
chain. The ScanHost/OnChipCompareMode/sticky_status_resolution property controls the
presence of the sticky statuses per output chains. The phase_id for those two scan loads are
“phase4_0” and “phase4_1”.

The effect of the select_sticky_status control bit takes effect at the end of the shift1 packet
within the same scan load. The effect of the clear_sticky_status happens at the end of the shift1
packet within the next scan load.

When only the global sticky status is present, the pattern looks like the following diagram. The
select_sticky_status takes effect at the end of the shift1 packet. The three red Hs in the second
scan load correspond to the global sticky status being observed during the status time slots of
the shift0 packet. The global sticky status remembers the faults injected during Phase2 and
Phase3 and clears at the end of the shift1 packet of the second scan load.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0: 1 1 1 0 0 0 0 0 0 L L L
shift1: 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 1 0 0 0 0 0 0 0 0 L L L // clear_sticky_status

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0: 1 1 1 0 0 0 0 0 0 H H H
shift1: 0 0 0 0 0 0 0 0 0 L L L // status cleared here
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 0 0 0 0 0 0 0 0 0 L L L

When the sticky statuses per output chain are present, the pattern looks like the following
diagram. The global sticky status observation is identical to what was described previously.
However, because the sticky statuses per output chain are present, the tool observes them during
the first scan load. The clear_sticky_status control requested during the first scan load takes
effect after the shift1 packet of the next scan load, which explains why the status values return
to being L during the second scan load.

Tessent™ Shell User’s Manual, v2021.3416

Streaming Scan Network (SSN)
On-Chip Compare With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0: 1 1 1 0 0 0 0 0 0 L L L
shift1: 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 H H H
post_shift1 1 0 0 0 0 0 0 0 0 H H H // clear_sticky_status

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L
shift0: 1 1 1 0 0 0 0 0 0 H H H // global sticky status
shift1: 0 0 0 0 0 0 0 0 0 L L L // status cleared here
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 0 0 0 0 0 0 0 0 0 L L L

Phase 5

This phase consists of N scan loads. It tests that all inputs of the wide OR gate feeding the global
sticky status register are not stuck at 0. The tool generates faults for each comparator in its
respective scan load by setting the shift0 value to 0 and expecting a H. It observes the global
sticky status in the status bits of the Shift0 packet of the next scan load. The phase_id for those
two scan loads is “phase5_x”.

The following diagram shows the first two scan loads with the sticky status per chain output
feature enabled. The failure appears during the post_shift1 packet, even though the tool detected
the fault in the post_shift0 packet because of the presence of the blue flip-flops in Figure 8-7 on
page 412:

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0 0 1 1 0 0 0 0 0 0 L L L // global sticky status
shift1 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 1 0 0 0 0 0 0 0 0 H L L // clear_sticky_status

edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0 1 0 1 0 0 0 0 0 0 H H H // global sticky status
shift1 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 L L L
post_shift1 1 0 0 0 0 0 0 0 0 L H L // clear_sticky_status

Streaming Scan Network (SSN)
Types of Clock Networks To Use With SSN

Tessent™ Shell User’s Manual, v2021.3 417

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following diagram shows the first two scan loads with the sticky status per chain output
feature turned off. The failure appears during the post_shift0 packet because of the absence of
the blue flip-flops in Figure 8-7:

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0 0 1 1 0 0 0 0 0 0 L L L // global sticky status
shift1 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 H L L
post_shift1 1 0 0 0 0 0 0 0 0 L L L // clear_sticky_status

edt_update: 1 0 0 0 0 0 0 0 0 L L L // select_sticky_status
shift0 1 0 1 0 0 0 0 0 0 H H H // global sticky status
shift1 0 0 0 0 0 0 0 0 0 L L L
post_shift0 0 0 0 1 1 1 0 0 0 L H L
post_shift1 1 0 0 0 0 0 0 0 0 L L L // clear_sticky_status

Phase 6

This phase consists of one scan load. It observes the last global sticky status result associated to
the last comparator that was triggered during the last scan load of Phase 5. During this phase,
the tool also fault-injects all comparators to set all sticky statuses per comparator and observes
them with an IJTAG scan load as a last step when the feature is present. The phase_id for this
scan load is “phase6”.

 i0 i1 i2 e0 e1 e2 m0 m1 m2 s0 s1 s2
edt_update: 0 0 0 0 0 0 0 0 0 L L L
shift0 0 0 0 0 0 0 0 0 0 H H H
shift1 0 0 0 0 0 0 0 0 0 L L L
post_shift0 1 0 0 1 1 1 0 0 0 H H H // last scan load
post_shift1 0 0 0 0 0 0 0 0 0 L L L

Types of Clock Networks To Use With SSN
The configuration of the clock network you use with SSN depends on the logic in your design.
Frequency multipliers and dividers, along with other nodes, can help you optimize your clock
network and avoid large a cumulative delay value.

The streaming scan network is a synchronous bus going from a set of inputs through several
stages of pipelining across many physical regions until it comes back out on a set of outputs.
The pipeline stages occur within the various node types along the datapath.

The SSN DftSpecification offers several node types to help with crossing clock domain
boundaries. The following sections explain various ways in which you can implement clock
trees to best meet your requirements.

Tessent™ Shell User’s Manual, v2021.3418

Streaming Scan Network (SSN)
Types of Clock Networks To Use With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hierarchical Clock Tree

The most common and straightforward clock scheme is to build a hierarchical clock tree for the
entire SSN datapath or for the SSN datapath within groups of physical blocks. Implementation
of one or more hierarchical clock trees requires space in the upper physical regions to place the
clock buffers around the child physical blocks. You may not want to or be able to build a
hierarchical clock tree that is common for all child physical blocks. Instead, you can create more
than one smaller Clock Tree Synthesis (CTS) regions. If you do this, you must use a pair of
BusFrequencyDivider and BusFrequencyMultiplier nodes to reliably transfer the data from one
clock domain to the next.

• To see how to insert the clock domain transfer node within the top physical regions,
refer to Example 1 of the BusFrequencyDivider topic.

• To see how to insert the clock domain transfer node such that the source and destination
clock domains remains localized to each physical block, refer to Example 2 of the
BusFrequencyDivider topic.

• To see how to insert the clock domain transfer node inside the receiving physical block
to keep the number of pins crossing the physical block boundary to a minimum, refer to
Example 3 of the BusFrequencyDivider topic. When you do this, you need an extra
miniature clock tree within the receiving physical block for the BusFrequencyDivider
node and must use a source synchronous timing interface between the sourcing and
receiving physical block. Refer to the next section for an explanation of such timing
interfaces.

Refer to the Using the BusFrequencyDivider to Cross CTS Regions section of the
BusFrequencyDivider topic in the Tessent Shell Reference Manual for an explanation on how
the BusFrequencyDivider and BusFrequencyMultiplier nodes work together to provide an
arbitrarily large tolerance of skew between the transmitting and receiving clock domains by
increasing the frequency_ratio value.

Source Synchronous Timing Interface

A source synchronous timing interface, also called a forward timing interface, relies on the fact
that the clock follows the data. The physical block sourcing the data to the receiving node also
sources the clock input at the same time. The delay of the datapath closely matches the delay of
the clock path. The data is launched on one edge of the clock at the source and is captured on the
opposite clock edge at the destination. As long as the delay on the datapath matches the delay of
the clock path within half a clock period, the transfer of data is synchronous and reliable.

Example 3 of the BusFrequencyDivider topic uses this technique. The transmitting physical
block ends with a Pipeline node, which launches the data on the positive edge of the clock. The
receiving BusFrequencyDivider is built with the input_retimed property set to “on” so that it is
equipped with a negative edge retiming flip-flop stage on its input data bus. The retiming stage
ensures that the receiving node strobes the data on the opposite edge of the clock relative to the
launch edge of the transmitter.

Streaming Scan Network (SSN)
Types of Clock Networks To Use With SSN

Tessent™ Shell User’s Manual, v2021.3 419

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The forward timing technique is used in Example 3 of the BusFrequencyDivider topic to hand
off data from one physical block to the next without requiring the balance clock tree of one
block to enter the other. It also uses the narrow data bus when crossing the physical block
boundaries. It is important to use this technique combined with a BusFrequencyDivider and
BusFrequncyMultiplier node pair so that you can return to using a hierarchical clock tree for the
other section of the datapath. Although it is possible to use a source synchronous interface
between each physical block, due to its easy implementation, this is not a recommended practice
in a large design, because this would accumulate a CTS insertion delay in each physical block.
The data output of the last physical block would become so delayed relative to the clock input
coming from the tester that it would be impossible to reliably sample the output data on the ATE
and find a strobe point that would work for best- and worst-case conditions.

The following sections explain how to use forward design timing between each node when the
datapath goes and comes back between each pair of physical blocks.

Combining Forward and Loop Timing for Tiling Layout Flows

When you are implementing a pure tiling layout flow, you do not have any logic between the
blocks. Everything is self-contained within the child physical blocks, which simply abut each
other. In such a case, it is not possible to use a hierarchical clock tree to synchronize a clock to
all child physical blocks. Instead, each block provides the clock to the next. As the clock goes
through several blocks, it accumulates a large delay because of the clock delay in each block.
By the time the clock reaches the Nth block, the delay is so large that it is no longer possible to
reliably strobe the data on the tester. To avoid accumulating delay in a tiling configuration, you
must implement the datapath through your physical block so that it goes and comes back
through the block as shown in Example 3 of the SSN topic. Use a forward timing interface to go
from one physical block to the next and a loop timing interface to get the returned data back
from the next block. Both the input and the output data are localized in the first block, so it is
easy to synchronize with the tester. Refer to the next section to see how to minimize the loop
timing between the chip and the tester to increase the SSN shift rate.

Figure 8-8 shows a block diagram of a chip where the SSN datapath starts from the center top of
the device and makes a loop going down the middle of the chip. The datapath also branches out
to both sides in mirrored groups of physical blocks called “Corea.” The GPIO are all localized
in the top center block, including the clock input. The timing with the tester is completely
localized into that physical block and is predictable before you complete the full chip layout. As
Example 3 of the SSN topic illustrates, the timing of the datapath is localized between each pair
of blocks and not affected by distant elements. In the example, there are three instances of corea
on top of each other. These correspond to three Corea instances in following figure, where the
bottom corea instance from the example is the Corea instance closest to the center in the figure.

Tessent™ Shell User’s Manual, v2021.3420

Streaming Scan Network (SSN)
Types of Clock Networks To Use With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-8. SSN Datapath in Tiling Architecture

Minimizing Loop Delay With the Tester

When a tester interacts with the SSN datapath of a chip, the critical timing path is always the
loop timing path that starts from the clock supplied by the tester and continues to the data
coming back from the chip. To be able to shift the SSN bus at 200 MHz, the worst case delay of
the clock coming into the chip and reaching the last stage of the pipelining, with the data
coming out of the chip, must be less than 4 ns. As described in the Using the
BusFrequencyDivider to Enable Faster Internal Bus Clock Frequency section of the
BusFrequencyDivider topic in the Tessent Shell Reference Manual, when the delay is 4 ns in the
worst case, it is about 1.5 ns in the best case. This leaves very little opening in which to place a
strobe point on the ATE that is reliable in both best- and worst-case conditions. To minimize the
internal bus width, it is easy to operate the SSN bus at 400 MHz, but you need to use a
BusFrequencyDivider node to bring the external data rate to 200 MHz so that the loop timing
delay is less than a clock period. If you used a hierarchical clock tree, a large portion of the loop
timing would be consumed in the clock tree delay itself. Figure 8-9 shows how to use an
OutputPipeline node placed on a miniature local clock tree to retime the data before it goes out
the chip. This eliminates the large CTS delay in the loop timing.

Streaming Scan Network (SSN)
Broadcast to Identical SSN Datapaths

Tessent™ Shell User’s Manual, v2021.3 421

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-9. Stepping Down the Clock Tree on the Last Pipeline Stage

Broadcast to Identical SSN Datapaths
When multiple identical SSN datapaths exist, it is beneficial to reuse the same copy of scan data
going to each datapath. When you broadcast scan data to identical datapaths, you must set up
observation for the outputs of each identical datapath independently.

You can use input broadcast for test when the physical implementation of the datapaths would
benefit from broadcasting to their inputs from the same source. When you use a copy of the
same data across multiple identical datapaths, this reduces scan data volume, because the same
copy of input data tests the datapaths. Furthermore, testing identical datapaths concurrently can
reduce test time.

However, not all designs with multiple datapaths benefit from input broadcast. For example,
multi-die designs with nonidentical datapaths do not benefit from broadcasting their inputs from
the same source, because nonidentical dies do not use the same scan payload. Instead, each
datapath requires its own payload. Similarly, designs with mux access to their datapaths would

Tessent™ Shell User’s Manual, v2021.3422

Streaming Scan Network (SSN)
Yield Statistics on ATE With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

not benefit from input broadcast, because the mux access to the different dies requires serial
testing.

“Identical” refers to both the physical specifications of the datapaths and the configuration of
the datapaths. For example, if one instance has on-chip compare enabled and a second otherwise
identical instance has on-chip compare disabled, these instances are not eligible for input
broadcast. The datapaths must be physically identical and their SSHs must be configured
identically. The only exception to this is that you can include extra pipelining or a disabled SSH
(which acts like pipeline stages) after the last active SSH.

Even when broadcasting to identical datapaths, top-level ATPG can still be run. This means that
broadcast to SSN datapaths has a broader use than retargeting. In this case, the lower-level
instances must load the same scan data, whether performing retargeting or top-level ATPG.

Independent observation of datapaths is required both during loading and unloading of the
datapath.

Yield Statistics on ATE With SSN
You may use per-pin fail limits to prevent a single core from filling up the fail buffer on the
tester during manufacturing. You may also perform partial good die testing and need to identify
failing cores live on the tester without performing full failure diagnosis. In these cases, you can
create SSN patterns with packet constraints to enable both partial good die testing and yield
statistics tabulation for failing cores while using per-pin fail limits. This feature is useful in
cases where the pass-fail sticky bit is unavailable for indicating the presence of a failure.

Note
Creating SSN patterns with packet constraints is useful for testing non-identical cores for
which the SSH is not implemented with the on-chip compare feature.

Use the “set_ssn_options -packet_constraints no_rotation” command to stop rotation of the
packet around the SSN bus, as shown in Figure 8-10. In this figure, the packet is nine bits wide
and contains five bits of Core A and four bis of Core B. The SSN bus is eight bits wide [7:0].
The packet rotates around the bus by one bit in bus_clock cycle 0 in the top half of the figure.
As the bus_clock cycles increase, the packet continues to rotate around the bus. When you stop
rotation of the packet with the set_ssn_options command, the tool pads the packet to make the
packet size a multiple of the bus width, as shown in the bottom half of the figure. In this
example, the packet increases to two bus_clock cycles wide (0 and 1), with seven bits of
padding added to time slots one through seven in Cycle 1.

Streaming Scan Network (SSN)
Yield Statistics on ATE With SSN

Tessent™ Shell User’s Manual, v2021.3 423

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-10. Packet Rotation on the SSN Bus

Regardless of the number of bus words the packet occupies, when you use the “set_ssn_options
-packet_constraints no_rotation” command, the tool adds padding to the packet to make the
packet a multiple of the bus width. This enables a predictable mapping from top-level data_out
ports to the active SSHs. Because the packet can be multiple bus words, the mapping is different
for each bus_clock cycle, as shown in the following example.

This example illustrates the annotations that the write_patterns command adds to the SSN STIL
or WGL pattern files to show the SSH to SSN data_out port mapping required when you use the
“set_ssn_options -packet_constraints no_rotation” command.

Tessent™ Shell User’s Manual, v2021.3424

Streaming Scan Network (SSN)
Yield Statistics on ATE With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 8-1. Annotations for SSN Mapping With Packet Rotation Disabled

Ann {* TESSENT_PRAGMA ssn_mapping –begin *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[3]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[4]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[5]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[0]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[1]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[2]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[3]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[4]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[5]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[0]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[1]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[2]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2" *}
Ann {* TESSENT_PRAGMA ssn_mapping –end *}

This mapping enables the ATE to set up a fail limit per pin × (shift_cycle % cycle_repetition),
where cycle_repetition is the number of bus words a packet occupies. In this way, you can
ensure that all cores can be observed and the ATE can enforce a per-pin limit for failure
messages.

If you need to map back to the specific from_scan_out bus of the SSH without dealing with the
complexities of bandwidth tuning, you can turn off data throttling, combined with deactivating
the packet rotation. This typically costs test efficiency, so it may not suit your overall run time
needs. Use the “set_ssn_options -packet_constraints no_rotation -throttling off” command to
disable data throttling and stop the rotation of the packet around the bus.

Streaming Scan Network (SSN)
Yield Statistics on ATE With SSN

Tessent™ Shell User’s Manual, v2021.3 425

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows annotations that the write_patterns command adds to the SSN
STIL or WGL pattern files to show the SSH to SSN data_out port mapping required when you
use the “set_ssn_options -packet_constraints no_rotation” command.

Example 8-2. Annotations for SSN Mapping With Packet Rotation and
Throttling Disabled

Ann {* TESSENT_PRAGMA ssn_mapping –begin *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[3]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3"
-ssh_chain_group 3 -ssh_chain_group_chain_index 2 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[4]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3"
-ssh_chain_group 3 -ssh_chain_group_chain_index 3 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[5]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 1 -ssh_chain_group_chain_index 0 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[0]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3"
-ssh_chain_group 2 -ssh_chain_group_chain_index 4 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[1]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3"
-ssh_chain_group 3 -ssh_chain_group_chain_index 0 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 0 -design_port "ssn_bus_data_out[2]" -ssh_icl_instance
xtea_3.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_3"
-ssh_chain_group 3 -ssh_chain_group_chain_index 1 *}

Tessent™ Shell User’s Manual, v2021.3426

Streaming Scan Network (SSN)
Yield Statistics on ATE With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[3]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 1 -ssh_chain_group_chain_index 4 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[4]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 2 -ssh_chain_group_chain_index 0 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[5]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 2 -ssh_chain_group_chain_index 1 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[0]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 1 -ssh_chain_group_chain_index 1 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[1]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 1 -ssh_chain_group_chain_index 2 *}
Ann {* TESSENT_PRAGMA ssn_mapping -datapath_id 1 -cycle_repetition 2
-cycle_mod 1 -design_port "ssn_bus_data_out[2]" -ssh_icl_instance
xtea_2.xtea_rtl_tessent_ssn_scan_host_1_inst –core_instance "xtea_2"
-ssh_chain_group 1 -ssh_chain_group_chain_index 3 *}
Ann {* TESSENT_PRAGMA ssn_mapping –end *}

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 427

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Manufacturing Patterns With SSN
When you use the streaming scan network (SSN), you create manufacturing patterns from a
netlist that has been through layout and timing closure. You should create these patterns without
any ATPG pattern limits to achieve maximum test coverage. Simulate these patterns using a
cycle-based simulator, backannotating SDF delays on the design. For larger designs, it may not
be practical to simulate all scan patterns.

Note
The process of creating manufacturing patterns is different from creating signoff patterns.
For a description of signoff patterns with SSN, refer to the section “Signoff Patterns With

SSN” on page 444.

Use the set_load_unload_timing_options command to set the timing of the SSN when creating
manufacturing patterns. If you share the SDC procedure set_load_unload_timing_options
between the Tessent tools and static timing analysis, it is only required for you to source the
shared file. Sharing the SDC procedure set_load_unload_timing ensures the timing of the
manufacturing patterns written from the Tessent tools precisely matches the timing of the
design.

Table 8-1 shows the patterns you should use to test your silicon with SSN. These patterns are
recommended for both first silicon test and production test. It is also recommended for both that
you start with the least complex patterns and incrementally verify the SSN with each pattern up
through the most complex patterns. The ICLNetwork Verify patterns are the least complex,
gradually leading to Retargeted SSN patterns and (where applicable) Top-Level ATPG SSN
patterns. For more detailed descriptions of the patterns in this table, refer to the section “Signoff
Patterns With SSN” on page 444.

Only designs that you have implemented with on-chip compare require the OCComp Self-Test
Pattern shown in this table. This patterns verifies the SSN on-chip compare logic is free of any
stuck-at faults. For more information about SSN on-chip compare patterns, refer to the section
“How To Write SSN On-Chip Compare Patterns” on page 435.

Table 8-1. SSN Manufacturing Pattern Summary

Order of Priority → → → → Order of Priority

ICLNetwork

Verify

Patterns1

1. Includes verification of streaming-through-IJTAG

Continuity

Pattern

OCComp Self-

Test Pattern2
Loopback

Pattern

Retargeted

SSN Patterns

Top-Level

ATPG SSN

Patterns

First silicon
test

X X X X X (chain test) X (chain test)

X (scan test) X (scan test)

Production
test

3 3 X 3 X (chain test) X (chain test)

X (scan test) X (scan test)

Tessent™ Shell User’s Manual, v2021.3428

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Manufacturing patterns achieve maximum test coverage of the device under test and do not
have any pattern limits when created.

The following topics describe the SSN patterns and, because you can write the procedures that
make up SSN patterns to separate files, they also describe the strict order you must follow when
applying the manufacturing patterns to the tester when you have written the different procedures
of the SSN pattern to separate files:

Manufacturing Pattern Quick Reference . 428

SSN Pattern Structure. 429

How To Write Complete SSN Patterns . 430

How To Write ssn_setup and ssn_end Procedures to Separate Files 432

How To Write SSN On-Chip Compare Patterns . 435

How To Write Streaming-Through-IJTAG Patterns. 436

SSN Debug on the Tester. 438

Manufacturing Pattern Quick Reference
The table in this topic summarizes the signoff patterns for use at first silicon test and production
test. You should simulate the Verilog pattern equivalent of these patterns without error before
releasing them to be used on the tester.

2. Requiredonly
when the SSH is equipped with on-chip compare
3. Optional pattern that can be used to identify cause of failure

Table 8-2. Manufacturing Pattern Quick Reference

Pattern Type Limits Description

ICLNetwork
verify

None Verifies ICL instruments (tool and user) are readable and writable
along the IJTAG serial path.

Verifies the full scope of the IJTAG network, including streaming-
through-IJTAG path.

Runs at TCK period.

Continuity None Verifies SSN bus integrity between bus data_in and data_out.

Runs at bus_clock period.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 429

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN Pattern Structure
This section describes the basic structure of the SSN pattern as the write_patterns command
writes it.

When you use the streaming scan network (SSN), there are additional procedures that are part
of every SSN pattern: ssn_setup and ssn_end. Furthermore, SSN delivers the scan test data as a
stream of data over the SSN bus. The ssn_setup and ssn_end procedures combine with the
existing test_setup and test_end procedures to create an SSN pattern.

The ssn_setup and ssn_end procedures configure the SSN nodes before and after you apply the
test_payload to the network. The test_payload is packetized scan data that streams over the SSN
bus, which delivers it to the streaming scan hosts (SSH) and scan chains. The ssn_setup
procedure includes information to program the SSH nodes, and the ssn_end procedure resets all
the active SSH nodes without resetting the SSH configuration. The ssn_end procedures also
unload the sticky bits when on-chip compare is active.

Parallel scan None Verifies each scan register can reliably capture.

Capture clock and scan signals are cut points on SSH that test bench
pulses.

For retargeted scan patterns, can verify top-level clocking to lower-
level cores.

OCCompare
self-test

None Verifies no stuck-at faults exist in SSH on-chip compare logic.

SSH loopback None Verifies SSN network can reliably deliver packetized data (excluding
path to EDT).

All SSN nodes are programmed with ssn_setup procedure as though
full pattern is to be run.

Runs at bus_clock period.

Serial chain None Delivers packetized data to all SSH and verifies all chains shift
without error. Saves only nonmasking patterns.

bus_clock in the SSH generates scan signals.

Runs off bus_clock.

Serial scan None Delivers packetized data to all SSH and verifies all chains shift and
capture without error. SSN end-to-end test.

bus_clock in the SSH generates scan signals.

Runs off bus_clock.

Table 8-2. Manufacturing Pattern Quick Reference (cont.)

Pattern Type Limits Description

Tessent™ Shell User’s Manual, v2021.3430

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-11. Procedure and Data Structure of an SSN Pattern

How To Write Complete SSN Patterns
You can write SSN patterns to a single pattern file or to multiple files containing a set maximum
number of scan loads and all of the required procedures.

To produce the simplest SSN scan pattern, run the write_patterns command using only a format
and the -replace switch. The following example and figure show an SSN pattern with the SSN-
specific procedures along with the test_setup and test_end procedures. The SSN procedures
ssn_setup and ssn_end occur directly before and after the test_payload, respectively.

Example 8-3. Writing a Complete SSN Scan Pattern

write_patterns chip.stil -stil -replace

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 431

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-12. SSN Procedures With test_setup and test_end in Pattern Order

When you write SSN patterns using the -maxloads option, as in the following example, the
write_patterns command duplicates the test_setup, ssn_setup, test_payload, ssn_end, and
test_end procedures across all files, as the figure illustrates.

Example 8-4. Writing SSN Patterns With the -maxloads 50 Option

write_patterns chip.stil -stil -maxloads 50 -replace

Tessent™ Shell User’s Manual, v2021.3432

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-13. SSN Patterns With the -maxloads 50 Option

How To Write ssn_setup and ssn_end Procedures to
Separate Files

Duplicating setup procedures for large manufacturing counts may result in the setup procedures
dominating test time that should be allocated to applying the test_payload. To avoid this, you
can write procedures for the SSN patterns to separate files in a similar fashion to how you can
write test_setup and test_end procedures to separate files for non-SSN patterns. This enables
more tester time to be spent applying test_payload patterns.

Caution
When you write out the test_setup, ssn_setup, ssn_end, test_end, and test_payload
separately, you are responsible to ensure that the patterns are applied to the tester in the

correct order. If they are not, you will observe mismatches on the SSN bus output.

Follow these rules when you write the procedures of SSN patterns to separate files:

• Each write_patterns command must use the same pattern parameters (such as -begin/
-end and -pattern_sets).

• The individual procedures must be applied in the correct order on the tester.

• No additional clock cycles (including TCK) or pin constraints should be applied to the
DUT before or after applying the different pattern files.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 433

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tip
SSN patterns are natively written to a single pattern file. Use write_patterns command
options to control whether it excludes a procedure when it writes the pattern files

Tip
When you write the SSN payload out separately and use the -maxloads option, ensure the
number of loads is greater than the number of cycles of ssn_setup and ssn_end.

Example 8-5 shows how to optionally write some of the procedures of the SSN pattern to
separate pattern files. It writes the test_setup, ssn_setup, and test_end procedures separately
from the SSH loopback and payload patterns. By writing out test_setup, ssn_setup, and test_end
separately, you can apply numerous payload patterns without the penalty of applying slow TCK
procedures more than once.

Example 8-5. SSN Patterns With Separate test_setup and ssn_setup

write_patterns test_setup.stil -test_setup only -stil -replace
write_patterns ssn_setup.stil -ssn_setup only -stil -replace
write_patterns payload.stil -test_setup off -ssn_setup off \
 -test_end off -stil -maxloads 500 -replace
write_patterns test_end.stil -test_end only -stil -replace

The patterns the commands in this example write must be applied on the tester in the correct
order to avoid mismatches on the SSN bus output. The SSN data stream is dependent on the
order of how the patterns are applied on the tester. Figure 8-14 illustrates the correct order in
which to apply the patterns.

The test_setup procedure depends on your design and your custom chip configuration. The
ssn_setup procedure prepares the SSN network by configuring each SSH node. The payload
patterns must be applied in the correct order to maintain the expected streaming data to the SSH.
The ssn_end procedure, which is part of the payload pattern, is applied as part of the payload
and prepares the network for the next pattern file. Finally, after the last payload pattern is
applied, the test_end procedure is applied, reconfiguring the IJTAG network to a state that is
equivalent to the state after iReset.

Note
The figure illustrates the correct order in which to apply the patterns.

Tessent™ Shell User’s Manual, v2021.3434

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-14. SSN Pattern Files With Order for Application on Tester

Using -all_* Options To Minimize File Count

You can group the test_setup and ssn_setup procedures into a single file by specifying the
-all_setup_only switch, as in the following example.

Example 8-6. SSN Pattern Files With Combined Single test_setup and
ssn_setup

write_patterns setup.stil -all_setup_only -stil -replace
write_patterns payload.stil -test_setup off -ssn_setup off \
 -test_end off -stil -maxloads 500 -replace
write_patterns test_end.stil -test_end only -stil -replace

When you write SSN patterns with the -all_setup_only switch, it produces a combined setup
STIL file that is separate from the test_payload and end procedures, as in the following figure.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 435

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-15. SSN Pattern Files With Combined Setup Showing Tester Order

You can similarly combine the end procedures, ssn_end and test_end, into a single pattern file
using the “write_patterns -all_end_only” switch.

Note
You cannot combine the -all_end_only switch with the maxloads option, because the
ssn_end procedure must be applied after each payload pattern file, as shown in Figure 8-14

on page 434 and Figure 8-15.

How To Write SSN On-Chip Compare Patterns
The on-chip compare feature of SSN is one of the primary features to make your test process
more efficient. It is common to use it when you have identical core instances or you are
performing partial good die testing. When present, the on-chip compare hardware in the SSH
compares expected and measured scan responses. You must test and verify that the on-chip
compare hardware and the sticky bit status registers in each SSH are free of any stuck-at faults.

The following example shows how to write the on-chip compare self-test pattern alongside the
other SSN patterns. It also uses the option to write the test_end procedure to a separate file. Use
these commands as a guide for using on-chip compare with your design.

Example 8-7. Writing Each Procedure of the SSN Pattern to Individual Files

write_patterns test_setup.stil -test_setup only -stil -replace

write_patterns occompself_test.stil -test_payload -stil -pattern_set ssh_on_chip_compare \

 -replace

write_patterns ssn_setup.stil -ssn_setup only -stil -replace

write_patterns payload.stil -test_payload -stil -maxloads 500 –replace

write_patterns ssn_end.stil -ssn_end only -stil -replace

write_patterns test_end.stil -test_end only -stil -replace

Tessent™ Shell User’s Manual, v2021.3436

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The patterns in this example must be applied on the tester in the correct order to avoid
mismatches on the SSN bus output. The SSN data stream depends on the order of how the
patterns are applied on the tester.

This example extends the idea of the example in the section “How To Write ssn_setup and
ssn_end Procedures to Separate Files” on page 432 by writing the on-chip compare self-test and
the separate test_end procedure. As described previously, the on-chip compare self-test verifies
the on-chip compare logic in the SSH. The on-chip compare self-test should be applied before
any payload patterns when you have enabled on-chip compare.

Figure 8-16. SSN Pattern Files With On-Chip Compare Self-Test

How To Write Streaming-Through-IJTAG Patterns
Streaming-Through-IJTAG patterns are SSN patterns delivered to the active SSHs through TDI
and measured on TDO with TCK as the synchronous clock source.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 437

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Streaming-Through-IJTAG patterns can only be applied when you have selected the
streaming interface using the set_ssn_options command.

While Streaming-Through-IJTAG patterns are being applied, the TAP finite-state machine is
put into the Shift-DR state while data is being delivered to the network through TDI. The SSH
functional behavior during Streaming-Through-IJTAG is the same as when you use the parallel
bus. The only difference is the delivery of streaming scan data to the network as a single bit
through TDI.

Note
Any SSN pattern created using the parallel bus can be retargeted through the top-level TAP
controller and converted to a Streaming-Through-IJTAG pattern.

Note
Writing the on-chip compare hardware self-test pattern is not compatible with Streaming-
Thorough-IJTAG mode.

Example 8-8. Writing Streaming-Through-IJTAG Patterns

set_ssn_options –streaming_interface ijtag
…
write_patterns test_setup.stil -test_setup only -stil -replace
write_patterns ssn_setup.stil -ssn_setup only -stil -replace
write_patterns ssn_end.stil -ssn_end only -stil -replace
write_patterns payload.stil -test_payload -stil -maxloads 500 –replace
write_patterns test_end.stil -test_end only -stil -replace

Tessent™ Shell User’s Manual, v2021.3438

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-17. Tester Application Order for Streaming-Through-IJTAG

SSN Debug on the Tester
Use a combination of patterns to help narrow down the source of the failure when SSN patterns
fail on the tester. It is important to apply SSN patterns to the tester in the correct order.

During silicon debug, you can reuse the verification patterns used during insertion and
integration of the SSN. Use the following patterns to narrow the scope of the potential source of
the failure when applied in the correct order, incrementally verifying the functional behavior of
the SSN:

• ICLNetwork Verify Patterns — Confirms the IJTAG registers of the SSN can be
accessed.

• Continuity Patterns — Confirms the parallel bus is connected to each SSN node and
each branch of SSN multiplexer is accessible from bus_in to bus_out.

• SSH Loopback Pattern — Confirms the network can reliably deliver packetized data
to the active SSHs without involving the EDT/scan chains.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 439

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• On-Chip Compare Self-Test Pattern — Confirms there are no stuck-at faults in the
on-chip compare logic, including the sticky bit status registers.

The examples in the following sections show how to create and apply these patterns on the
tester. This flow diagram indicates the order in which to apply them and incrementally verify
the functional behavior of the SSN:

Figure 8-18. Order To Apply Patterns for SSN Pattern Failure Debugging

ICLNetwork Verify Patterns

The following example shows the commands to write ICLNetwork verify patterns that you can
apply on the tester. These patterns verify that the IJTAG registers in the SSN are accessible and
that they can be read and written without any errors. Passing ICLNetwork verify patterns
indicates the SSN network is properly configured, including the SSH nodes that are
programmed as part of the ssn_setup procedure. To see the order of application for ICLNetwork
verify patterns, refer to Figure 8-19.

Example 8-9. Writing ICLNetwork Verify Patterns in STIL Format

set_context patterns -ijtag
…
open_pattern_set icl_network
 create_icl_verification_patterns
close_pattern_set
write_patterns ICLNetwork_verify.stil -stil –replace

Tessent™ Shell User’s Manual, v2021.3440

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-19. Order To Apply ICLNetwork Verify Patterns to the Tester

Continuity Patterns

The following example shows the commands to write SSN continuity patterns for application
on the tester. These patterns verify that the parallel bus is connected to each SSN node and that
each branch of an SSN multiplexer is accessible from bus_in to bus_out. A passing SSN
continuity pattern indicates the parallel bus in the design has no opens or gaps. To see the order
of application for SSN continuity patterns, refer to Figure 8-20.

Note
Each of the SSN multiplexers along the parallel bus is configured individually with an
IJTAG iProc followed by an iCall to that procedure. Refer to the script in the section

“Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN” on page 385 for a
working example of how the iCall reconfigures the SSN multiplexers.

Example 8-10. Writing SSN Continuity Patterns in STIL Format

set_context patterns –ijtag
…
open_pattern_set ssn_continuity -usage ssn
 create_ssn_continuity_patterns
close_pattern_set
write_patterns ssn_continuity.stil -stil -replace

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 441

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-20. Order To Apply SSN Continuity Patterns to the Tester

On-Chip Compare Self-Test Patterns

The SSH on-chip compare self-test is only necessary when one or more SSHs are equipped with
on-chip compare hardware. The following example shows the commands to write the SSH on-
chip compare self-test patterns for application on the tester. A passing on-chip compare self-test
indicates the on-chip compare hardware and sticky bit status registers are free of any stuck-at
faults. To see the order of application for on-chip compare self-test patterns, refer to
Figure 8-21.

Example 8-11. Writing SSH On-Chip Compare Self-Test Patterns

write_patterns test_setup.stil -test_setup only -stil -replace
write_patterns occompself_test.stil -test_payload -stil \
 -pattern_set ssh_on_chip_compare -replace

Figure 8-21. Order To Apply SSN On-Chip Compare Self-Test Patterns

SSH Loopback Patterns

The SSH loopback pattern is the culmination of the first two test patterns: ICLNetwork verify
and SSN continuity patters. Use this pattern with any configuration of active cores during
ATPG and scan pattern retargeting. The following example shows commands to write the SSH
loopback patterns for application on the tester.

Tessent™ Shell User’s Manual, v2021.3442

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 8-12. Writing SSH Loopback Patterns in STIL Format

write_patterns test_setup.stil -test_setup only -stil -replace

write_patterns ssn_setup.stil -ssn_setup only -stil -replace

write_patterns loopback.stil -test_payload -stil -pattern_set ssh_loopback -replace

write_patterns ssn_end.stil -ssn_end only -stil -replace

write_patterns test_end.stil -test_end only -stil -replace

In this example, the SSH loopback patterns test the SSH without involving the EDT and scan
chains. The SSH loopback pattern uses the ssn_setup procedure to configure the SSH based on
the payload of the active cores. During the SSH loopback pattern, the streaming interface (bus
or IJTAG) delivers packetized data to each active SSH that is programmed to match the
payload. The ssn_end procedure is applied to the network after the SSH loopback pattern. When
you combine SSH loopback patterns and payload patterns, you must place the SSH loopback
patterns before the payload patterns, because the SSH loopback patterns confirm that the
network can reliably deliver packetized data, as described previously. A passing SSH loopback
pattern indicates the SSN can reliably deliver packetized data to the current configuration of
active cores. To see the order of application for SSH loopback patterns, refer to the following
figure.

Figure 8-22. Order To Apply SSH Loopback Patterns

The following example shows the commands to write the chain and scan patterns with the
loopback pattern for application on the tester. By extending the previous example to include the
chain and scan patterns, you can further narrow the scope of failing patterns on silicon. To see
the order of application for SSH loopback, chain, and scan patterns on the tester, refer to
Figure 8-23.

Streaming Scan Network (SSN)
Manufacturing Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 443

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 8-13. Writing SSH Loopback, Chain, and Scan Patterns to Individual
Files

write_patterns test_setup.stil -test_setup only -stil -replace

write_patterns ssn_setup.stil -ssn_setup only -stil -replace

write_patterns loopback.stil -test_payload -stil -pattern_set ssh_loopback -replace

write_patterns chain.stil -test_payload -stil -pattern_set chain -replace

write_patterns scan.stil -test_payload -stil -pattern_set scan -replace

write_patterns ssn_end.stil -ssn_end only -stil -replace

write_patterns test_end.stil -test_end only -stil -replace

Figure 8-23. Order To Apply SSH Loopback, Chain, and Scan Patterns

Tessent™ Shell User’s Manual, v2021.3444

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Signoff Patterns With SSN
This section describes the list of signoff patterns you should simulate at the block level, during
top-level ATPG, and during scan retargeting. Signoff patterns are the minimum set of patterns
you should simulate to verify your design with the DFT-inserted structures before releasing the
design to layout. Use this signoff process to find potential problems in your design with a
minimum set of patterns that provides a maximum amount of simulation coverage.

Note
The process of creating signoff patterns is different from creating manufacturing patterns.
For a description of manufacturing patterns with SSN, refer to the section “Manufacturing

Patterns With SSN” on page 427.

The following sections describe the unique behavior of each type of signoff pattern when
written with SSN present. The signoff pattern guidelines in these sections minimizes the risk of
problems occurring in your post-layout netlists. For each test, the section does the following:

• Identifies the synchronous source of the SSN.

• Explains the purpose of the test.

• Describes the behavior of the SSH when writing patterns at the block level, during top-
level ATPG, and during pattern retargeting.

You should create signoff patterns without any ATPG pattern limits (for example, by specifying
“set_atpg_limits -pattern_count off”). The methods for writing the patterns are described in the
following sections. For more examples of writing patterns, refer to “Tessent SSN Workflows”
on page 352. Create patterns using both the stuck-at and transition fault models. Simulate the
patterns in the following order, which incrementally verifies the SSN network:

1. Parallel Scan

2. SSH Loopback

3. Serial Chain

4. Serial Scan

Each pattern uses the previously validated step. You should create and simulate these patterns
until they are error-free before signoff, regardless of whether you choose parallel bus or IJTAG
streaming for SSN.

Note
You should create signoff patterns only after you have successfully simulated the ICL
Network Verify and SSN Continuity patterns without any errors.

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 445

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Verification of the SSN at intermediate levels of hierarchy in your design is necessary prior
to top-level ATPG or pattern retargeting when you have assembled the datapath by hand or

using a script.

Block-Level Signoff Patterns . 445

Top-Level Signoff Patterns . 449

Signoff Pattern Quick Reference . 452

Block-Level Signoff Patterns
You should simulate the block-level patterns without error before signoff. Block-level patterns
include parallel scan patterns, SSH loopback patterns, serial chain patterns, and serial scan
patterns. Each of these pattern types has its own set of prerequisites.

Parallel Scan Patterns

Prerequisites:

• ICL network verify patterns pass

• SSN continuity patterns pass

During parallel pattern simulation with SSN, only scan pins of synchronous elements are active
during scan shift and capture procedures, as in testing without SSN. These patterns’ purpose is
to validate the capture procedure for a large volume of scan patterns by simulating them in a
reasonable amount of time.

While you simulate these patterns, the synchronous clock source to the SSN is not active, and
the data delivered to the scan cells is not packetized data. The SSH is not actively transferring
data between the SSN bus and the EDT/scan chains, and the scan signals generated by the SSH
in the serial patterns are replaced by cut points that the tool automatically creates. The
transitioning of the scan signals precisely models the protocol of the scan pattern. The
shift_capture_clock and capture clock run at their default clock periods unless you use the
set_load_unload_timing_options and set_capture_timing_options commands to specify
otherwise.

The following is an example of writing SSN parallel patterns:

write_patterns parallel.v -verilog -pattern_set scan -replace

This should be the first pattern you simulate before signoff.

Tessent™ Shell User’s Manual, v2021.3446

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSH Loopback Patterns

Prerequisites:

• Parallel scan patterns pass

During SSH loopback pattern simulation, the tool delivers random packetized data to the SSH.
These patterns’ purpose is to verify that SSN can correctly process packetized data without
error. The SSH loopback pattern tests exclude the EDT/scan chains from the test and include the
SSH and other SSN nodes between bus_in and bus_out.

During simulation of this pattern, the SSN bus_clock is the clock source, and packetized data
synchronously streams over the SSN. The SSH extracts the correct bits from the packet based
on the ssn_setup procedure. The data loops back into the SSH, skipping the EDT/scan chains.
After the data loops back into the SSH, it returns to the packet in the same time slot as the input
data. As the packet synchronously streams through the network, the expected values are strobed
on bus_out. During simulation of this pattern, only the bus_clock runs, and the scan signals
from the SSH do not toggle and are constrained to zero.

The following is an example of writing SSH loopback patterns:

write_patterns ssh_loopback.v -verilog -serial -pattern_set ssh_loopback -replace

Serial Chain Patterns

Prerequisites:

• SSH loopback patterns pass

During serial chain pattern simulation, the tool delivers packetized scan shift data to the EDT/
scan chains through SSH. These patterns’ purpose is to verify that the scan chains can reliably
shift scan data without error.

During simulation of these patterns, the SSN bus_clock is the clock source, and packetized data
synchronously streams over the SSN. The SSH extracts the correct number of bits from the
packet and transfers them to the EDT/scan chains. The scan signals are synchronously created
within the SSH and clock the scan circuit and transition it between shift and capture states. Just
as in non-SSN chain test patterns, the capture clock is suppressed. During unloading of the scan
chains, the SSH puts the scan unload data back into the packet. When on-chip compare is off,
the scan unload data is added back into the packet in the same time slots as the input data. When
on-chip compare is enabled, the data is added back into the packet but does not overwrite the
input data. It is added to the packet in a location determined by the number of status groups.

The shift_capture_clock runs at the default clock period unless you use the
set_load_unload_timing_options command to specify otherwise.

Typically, the SSN bus_clock runs at a slower frequency than specified with the
set_load_unload_timing_options command at the block level. The bus clock period is governed

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 447

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

by the packet size relative to the bus width. When the packet size is less than two bus_clock
cycles, the SSN bus_clock is reduced to the shift_capture_clock frequency. To increase the
bus_clock frequency to the default or to the maximum frequency you specified using the
set_load_unload_timing_options command, use the SIM_SSN_MAXIMUM_BUS_SPEED test
bench parameter. When you write the test bench with this parameter set to one, the tool
increases the size of the packet so that the bus_clock runs at its maximum frequency in a
Verilog test bench.

It can be difficult to debug mismatches in a serial SSN simulation, because the SSH obfuscates
the EDT channels/scan chains. Furthermore, there may be any number of pipeline stages along
the SSN bus, further complicating the analysis of the root cause to the failure. To debug serial
SSN simulations, use the SIM_PARALLEL_MONITOR test bench parameter. When you set
this parameter to one, the test bench monitors the load and unload values of each memory
element and echoes the instance name to the log file for easier analysis of any failure.

For large designs, simulating all chain test patterns can be time-consuming and impractical. Use
the “set_chain_test -type nomask” command to enable you to efficiently simulate the shift path
of all your scan chains without testing the magic logic of the EDT decoder. Combine the
“set_chain_test -type nomask” command with the “write_patterns -end 0” command to write a
single chain test pattern that tests the shift paths of all the scan chains. A single chain test pattern
that simulates all scan chains is all you require.

The following example commands write a single serial chain test pattern that excludes testing
any of the EDT decode logic:

set_chain_test -type nomask
write_patterns chain_test.v -verilog -serial -end 0 -pattern_set chain -replace

Serial Scan Patterns

Prerequisites:

• SSN serial chain patterns pass

During serial scan pattern simulation, the tool delivers packetized scan shift data to the EDT/
scan chains through SSH. These patterns’ purpose is to verify that the scan chains can reliably
shift and capture without error.

When simulating this pattern, the SSN network operates exactly as described in the preceding
subsection, Serial Chain Patterns, with the addition that capture cycles are included in this
pattern. The correct number of capture pulses comes through the OCC clock control bits.
During stuck-at fault testing, the SSH synchronously creates the capture clock from the SSN
bus_clock. The SSH capture clock frequency comes from the default clock period unless you
use the set_capture_timing_options command to specify otherwise. During transition fault
testing, the functional clock is the capture clock. This pattern is an SSN end-to-end test.

Tessent™ Shell User’s Manual, v2021.3448

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For large designs, simulating all serial scan patterns can be time-consuming and impractical.
Use the “write_patterns -end 0” command to write a single end-to-end scan test pattern that is
sufficient to test the SSN along with the previously specified patterns.

You can use the SIM_SSN_MAXIMUM_BUS_SPEED test bench parameter, as described in
the Serial Chain Patterns section, to simulate the serial scan patters at the maximum SSN bus
frequency.

You can use the SIM_PARALLEL_MONITOR test bench parameter, as described in the Serial
Chain Patterns section, to debug the serial scan patterns.

The following example command writes a single serial scan test pattern:

write_patterns scan_test.v -verilog -serial -end 0 -pattern_set scan -replace

Block-Level Signoff Pattern Summary

The following table summarizes the block-level patterns used for verification from integration
to pattern creation of the SSN. You should run the pattern verification from least complex to
most complex. When you follow this order, it verifies the SSN incrementally, making it easier
to identify problems along the way.

Depending on your flow, you can perform verification of the SSN during integration either at
the RTL or the gate level. For both cases, the ICLNetwork verification patterns also verify the
Streaming-Through-IJTAG Scan Data path of the SSN. The entry point and path within the
SSH is the same, regardless of access IJTAG registers in the SSH or streaming scan data
through the IJTAG interface of the SSH.

Table 8-3. Block-Level Verification Pattern Summary

Least complex → → → Most complex

ICLNetwork
Verify
Patterns1

1. Includes verification of the streaming-through-IJTAG SSH path

Continuity
Pattern

Scan Pattern Loopback
Pattern

Scan Pattern

Parallel Serial

SSN integration2

2. SSN integration at RTL, gate level, or both

X X

Post-synthesis
validation
(non-scan)

X X

Core-level
ATPG pattern
validation

X X (chain test)

X (scan test) X (scan test)

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 449

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level Signoff Patterns
You should simulate the top-level patterns without error before signoff. Block-level patterns
include parallel scan patterns, SSH loopback patterns, serial chain patterns, and serial scan
patterns. Each of these pattern types has its own set of prerequisites.

As part of the signoff process, you should retarget cores on a per-module basis. Do not group
different modules for retargeting during signoff. Grouping different modules for retargeting is a
process performed for manufacturing.

Parallel Scan Patterns

Prerequisites:

• ICL network verify patterns pass

• SSN continuity patterns pass

• Child core scan patterns pass, as described in “Block-Level Signoff Patterns” on
page 445

• Scan graybox has been created for all lower-level blocks

Top-level parallel scan patterns operate in two different situations:

• Parallel pattern during top-level ATPG with child cores — During ATPG, the top-
level scan chains and the wrapper scan chains of each child core are active. This pattern
tests the intra-domain capture between the top level and the child cores. The active SSHs
in the parallel pattern are capture-aligned. You should write the parallel pattern without
a pattern count limit.

• Parallel pattern during pattern retargeting — Normally, during scan pattern
retargeting with SSN, each core transitions between shift and capture independently.
However, a Verilog test bench cannot accurately model this behavior for the cores.
Therefore, in this test bench the active cores appear to be capture-aligned, although this
is not the way that the implemented design will behave. Use this pattern to verify the
clocking during pattern retargeting.

For a description of parallel scan pattern behavior and an example of how to write the pattern,
refer to the section “Parallel Scan Patterns” in the topic “Block-Level Signoff Patterns” on
page 445.

SSH Loopback Patterns

Prerequisites:

• SSN parallel scan patterns pass

During top-level ATPG when child cores are present, the top-level SSH loopback pattern
delivers packetized data to the top-level SSH and the SSH of each child core. The cores are in

Tessent™ Shell User’s Manual, v2021.3450

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

external mode. During simulation of this pattern, the tool forces the scan signals at the edges of
the SSHs low. The packet contains data for the top-level SSH and the SSH for each child core.
This pattern is short and simulates quickly. It verifies that each SSH can precisely extract and
replace data in the packet.

You cannot retarget SSH loopback patterns. During pattern retargeting, the packet used in the
SSH loopback test is created from the scan data for each core whose patterns is being retargeted.
In this case, the purpose of the SSH loopback pattern is to test the SSN with a representative
packet to be used during pattern retargeting.

For a description of SSH loopback pattern behavior and an example of how to write the pattern,
refer to the section “SSH Loopback Patterns” in the topic “Block-Level Signoff Patterns” on
page 445.

Serial Chain Patterns

Prerequisites:

• SSH loopback patterns pass

Top-level serial chain patterns operate in two different situations:

• Serial chain pattern during top-level ATPG with child cores — During ATPG, this
pattern delivers packetized scan shift data to the top-level SSH and to the SSH of each
child core. The child cores are in external mode, and the local SSH to those child cores
shifts their wrapper chains. During simulation of this pattern, the capture clock is
suppressed and the top-level SSH and child core SSHs are capture-aligned.

• Serial chain pattern during pattern retargeting — During simulation of this pattern,
the tool creates the packet from each core whose patterns are being retargeted. Each core
operates independently of the others, receiving a different number of bits per packet
based on data throttling.

For a description of serial chain pattern behavior and an example of how to write the pattern,
refer to the section “Serial Chain Patterns” in the topic “Block-Level Signoff Patterns” on
page 445.

Serial Scan Patterns

Prerequisites:

• Serial chain patterns pass

Top-level serial chain patterns operate in two different situations:

• Serial scan pattern during top-level ATPG with child cores — During ATPG, this
pattern delivers packetized scan data to the top-level SSH and to the SSH of each child
core. The child cores are in external mode, and the local SSH to those child cores shifts

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Tessent™ Shell User’s Manual, v2021.3 451

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

their wrapper chains. During simulation of this pattern, the scan chains shift and capture,
and the top-level SSH and child core SSHs are capture-aligned.

• Serial scan pattern during pattern retargeting — During simulation of this pattern,
the tool creates the packet from each core whose patterns are being retargeted. Each core
operates independently of the others, receiving a different number of bits per packet
based on data throttling.

For a description of serial chain pattern behavior and an example of how to write the pattern,
refer to the section “Serial Scan Patterns” in the topic “Block-Level Signoff Patterns” on
page 445.

Top-Level Signoff Pattern Summary

The following table summarizes the top-level patterns used for verification from integration to
pattern creation of the SSN. You should run the pattern verification from least complex to most
complex. If your design has more than two levels of hierarchy (for example, more than block
and top), you should verify the SSN at all intermediate levels. This ensures that the datapath is
properly connected. When you follow this order, it verifies the SSN incrementally, making it
easier to identify problems along the datapath.

Depending on your flow, you can perform verification of the SSN during integration either at
the RTL or the gate level. For both cases, the ICLNetwork verification patterns also verify the
Streaming-Through-IJTAG Scan Data path of the SSN. The entry point and path within the
SSH is the same, regardless of access IJTAG registers in the SSH or streaming scan data
through the IJTAG interface of the SSH.

Table 8-4. Top-Level Verification Pattern Summary

Least complex → → → Most complex

ICLNetwork
Verify
Patterns1

1. Includes verification of streaming-through-IJTAG

Continuity
Pattern

Scan Pattern Loopback
Pattern

Scan Pattern

Parallel Serial

SSN integration2

2. SSN integration at RTL, gate level, or both

X X

Post-synthesis
validation
(non-scan)

X X

Top-level ATPG
pattern
validation

X X (chain test)

X (scan test) X (scan test)

Pattern
retargeting
validation

X X (chain test)

X (scan test)3

3. SSN retargeting parallel test bench only verifies clocking during scan pattern retargeting

X (scan test)

Tessent™ Shell User’s Manual, v2021.3452

Streaming Scan Network (SSN)
Signoff Patterns With SSN

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Signoff Pattern Quick Reference
The table in this topic summarizes the signoff patterns at the block and top levels. You should
simulate these patterns without error before releasing the design for layout.

Table 8-5. Signoff Pattern Quick Reference

Pattern Type Limits Description

ICLNetwork
verify

None Verifies ICL instruments (tool and user) are readable and writable
along the IJTAG serial path.

Verifies the full scope of the IJTAG network, including streaming-
through-IJTAG path.

Runs at TCK period.

Continuity None Verifies SSN bus integrity between bus data_in and data_out.

Runs at bus_clock period.

Parallel scan None Verifies each scan register can reliably capture.

Capture clock and scan signals are cut points on SSH that test bench
pulses.

For retargeted scan patterns, can verify top-level clocking to lower-
level cores.

SSH loopback None Verifies SSN network can reliably deliver packetized data (excluding
path to EDT).

All SSN nodes are programmed with ssn_setup procedure as though
full pattern is to be run.

Runs at bus_clock period.

Serial chain 1 Delivers packetized data to all SSH and verifies all chains shift
without error. Saves only nonmasking patterns.

bus_clock in the SSH generates scan signals.

Runs off bus_clock.

Serial scan 1 Delivers packetized data to all SSH and verifies all chains shift and
capture without error. SSN end-to-end test.

bus_clock in the SSH generates scan signals.

Runs off bus_clock.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 453

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN SDC Constraints in the Design Flow
The following topics describe how to work with SDC constraints when SSN is present in the
design.

Overview of SSN-Related SDC Procs and Constraints . 454
Changes to SDC Procs for SSN Timing . 455
SSN/SDC Proc Usage. 456

SSN/SSH SDC Constraint Descriptions. 462
SSN Bus Clock and SSN Bus Port Timing Constraints . 462
SSN Bus Data Port Delays . 463
SSN Datapath Timing Constraints . 465
SSN FIFO Timing Constraints . 468
SSN ScanHost Timing Constraints. 471

Tessent™ Shell User’s Manual, v2021.3454

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Overview of SSN-Related SDC Procs and Constraints

SSN requires updates to the logictest-related constraint procs in the SDC output file that the
extract_sdc command produces.

The following topics describe these updates to the SDC file procs and how to use them in
synthesis, layout, hierarchical signoff static timing analysis (STA), and full-chip STA in the
SSN context.

SSN SDC constraints work in conjunction with many of the Tcl procs dedicated to Tessent-
logictest SDC constraints, such as those that define the shift, slow_capture, and fast_capture
STA modes. This is possible because SSN is simply a faster and more flexible scan
implementation than traditional implementations.

The generated constraints added for SSN perform the following functions:

• Declare the SSN bus clocks and define the timing of the SSN bus ports.

• Relax paths across node multipliers and node dividers with MCP constraints.

• Accurately time the SSH scan interface circuits, which includes creating two types of
edt_clock and shift_capture_clock, and adding timing exceptions to the scan_enable and
edt_update circuits, connections to LE (Leading Edge) and TE (Trailing Edge) scan
flops, and loopback circuits.

• Add timing exceptions to and from subphysical block boundaries.

• Provide a way to time the SSN/SSH logic of the lower-level physical blocks.

• Properly time SSN nodes that can only stream through IJTAG, with no SSN bus clock.

• Provide ways to deactivate the SSN logic if needed, and prevent other mode clocks, such
as ijtag_tck, from propagating to the scan flops.

For more information about constraints, refer to the section “SSN/SSH SDC Constraint
Descriptions” on page 462.

The chapter “Timing Constraints (SDC)” on page 715 describes the flow usage of the standard
logictest Tcl procs. The addition of SSN constraints adds only minor changes to the usage of
these procs. You still use the following design flow:

1. In synthesis, invoke the non_modal SDC proc constraints.

2. In layouts, sequentially invoke non_modal SDC constraints followed by some modal
logictest SDC procs.

3. In post-layout STA, time your different logictest modes one at a time, calling the
provided “*ltest_modal*” procs for each mode.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 455

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following sections provide more information about SDC procs with SSN:

Changes to SDC Procs for SSN Timing . 455

SSN/SDC Proc Usage. 456

Changes to SDC Procs for SSN Timing

The presence of SSN adds new constraint procs to the SDC file and modifies some other
preexisting logictest-related SDC procs.

For a detailed description of the procs that are modified for SSN, refer to their original
descriptions in the section “LOGICTEST Instruments” on page 735.

Note
When you specify the SSH scan_signals_bypass, all modified logictest proc constraints
cover both the SSN mode and the bypass mode timing paths at the same time, so there is no

need to separate your bypass-mode STA from your SSN-mode STA runs.

Summary of New and Modified Tcl Procs for SSN Timing Support

<prefix> :== tessent_set

New SSN-Specific Procs

<prefix>_ltest_ssn

• Applies set_input/output delay constraints on SSN bus ports

• Creates clock groups between SSN clocks, functional clocks, and other DFT clocks

• Adds SSH constraints

• Adds MCP constraints for frequency multiplier and divider nodes

• Accepts “mode” argument with values “shift” or “non_modal”

set_load_unload_timing_options

• The SDC file equivalent of the command of the same name in Tessent Shell

For usage information, refer to the set_load_unload_timing_options command reference
page.

• Sets global Tcl timing variable values, which are used in SSN constraints

Modified Preexisting Procs

<prefix>_ltest_create_clocks

• Creates SSN bus clocks on top-level ports and generated clocks within the SSH logic

Tessent™ Shell User’s Manual, v2021.3456

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

<prefix>_ltest_non_modal

• Calls <prefix>_ltest_ssn with the argument “non_modal”

<prefix>_ltest_modal_shift

• Calls <prefix>_ltest_ssn with the argument “shift”

<prefix>_ltest_modal_edt_slow_capture

• Calls <prefix>_ltest_ssn with the argument “non_modal”

<prefix>_ltest_modal_edt_fast_capture

• Forces the SSH scan_en output signal inactive

<prefix>_ltest_disable

• Blocks tessent_tck from propagating to SSH and scannable logic

New Procs for Chip-Level SSN STA

These are global chip-level versions of the procs in the previous subsection, which apply the
same constraints over all SSN node instances across sub-physical block hierarchies.

• <prefix>_ltest_ssn_with_sub_PBs

• <prefix>_ltest_create_clocks_with_sub_PBs

• <prefix>_ltest_modal_shift_with_sub_PBs

• <prefix>_ltest_modal_edt_slow_capture_with_sub_PBs

• <prefix>_ltest_modal_edt_fast_capture_with_sub_PBs

SSN/SDC Proc Usage

Use SSN-related SDC procs during preparation for synthesis, layout, and STA (both pre- and
post-layout). SSN/SSH implementation has a few important points in which it differs from
implementation without SSN.

Much of this material is covered in greater detail in some portions of the chapter “Timing
Constraints (SDC)” on page 715. However, the following sections describe some details that are
specific to SSN/SSH implementations.

SSN/SDC Constraints for Synthesis

Preparing a block with SSN for RTL-to-gate synthesis does not differ significantly from
preparing a standard EDT-inserted block, as described in “Timing Constraints (SDC)” on
page 715. That section contains example synthesis scripts for both Design Compiler and
Cadence Encounter that can help you understand the SDC constraints for synthesis. The

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 457

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

primary difference from the non-SSN flows for SSN is that you must specify your SSH scan
interface global Tcl variables by calling the set_load_unload_timing_options proc instead of
overriding them directly with a “set” command in your mainSDC script. Refer to the
set_load_unload_timing_options command reference page for usage information for the
command and Tcl proc.

The following summarizes the usage flow for preparing a block with SSN for synthesis:

1. Load your design.

2. Set your functional constraints.

3. Source the Siemens EDA <design>.sdc file.

4. Call the tessent_default_variables proc.

5. Redefine the global Tessent variables to meet your needs.

6. Call the “set_load_unload_timing_options -usage ssn” proc with the proper option
values.

This redefines the default SSH global Tcl timing variables.

7. Call the <prefix>_non_modal proc.

This adds SDC for all of your Tessent DFT, including SSN.

8. Add synthesis control commands and run synthesis according to the process in the
“Timing Constraints (SDC)” chapter.

Note
The <prefix>_non_modal proc declares all SSN bus clocks and SSH-generated scan clocks
and propagates them alongside your functional clocks to all your scannable domains. Such

clocks may expose some invalid shift_capture_clock (SCC)-speed capture paths between
otherwise asynchronous functional domains. Because synthesis usually runs with ideal clocks,
these bogus timing paths are unlikely to fail hold timing; however, it is possible that they could
still fail setup timing if your specified scan frequency is too high. Such a proc is also unusable
as-is in layout without major modification, as described in the subsection “Single-Mode vs
Dual-Mode Constraining in Synthesis/Layout” in the section “LOGICTEST Instruments” on
page 735.

SSN/SDC Constraints for Layout

As described in the section “Running Layout with Tessent Shell DFT” on page 723, the
recommendation for layout with Tessent is to load multiple timing mode constraints. This
section also shows the preparation steps required prior to loading the constraints themselves.

If your design includes at least one SSH controller, your clock tree synthesis (CTS) step must
include the CTS stop point declarations listed by the tessent_get_cts_skew_groups_dict proc

Tessent™ Shell User’s Manual, v2021.3458

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

inside your generated SDC file. These points are located at the base of the SSH edt_clock and
shift_capture_clock generated clock source pins. These prevent the potentially problematic
balancing of the SSN datapath clock network with your potentially very large scan clock
network.

The following sections describe how the presence of SSN affects these SDC constraints.

Mode 1: All Tessent DFT Logic Except logictest

proc: <prefix>_non_modal off

Loads non-modal constraints for all Tessent DFT controllers but turns off the logictest DFT
logic, including all SSN bus nodes and the SSH. In this mode, some constraints are needed
to prevent tessent_tck from propagating to the scannable domains through the SSH “ijtag
streaming” and “capture with tck” logic. For more details, refer to the subsection
“<ltest_prefix>_non_modal” on page 744.

Mode 2: SSN Bus and Modal Shift

proc: <prefix>_modal_shift

Forces the SSH and SSH bypass scan_enable signals to be tied active and covers all SSN
bus and SSH scan interface timing paths. If the SSH supports bypass mode, both bypass and
SSH modes are covered at once.

Mode 3: SSN Bus and Capture With Slow Clock

proc: <prefix>_modal_edt_slow_capture

Adds the same SSN constraints as the <prefix>_modal_shift proc but leaves the SSH
scan_en signals toggling in order to time them using specifications from the
set_load_unload_timing_options command. Optionally relaxes SCC intra- and cross-
domain paths to avoid false violations. Its main function is to cover the scan_en signal
timing path.

You can merge the preceding Modes 2 and 3 into a single stage to save on total layout runtime
and complexity. You can do this only if your design meets the following criteria:

• Clock tree synthesis (CTS) has balanced the entire SSH shift_capture_clock source
fanout, along with the same SSH edt_clock source fanout, so that there are no hold
issues on same-edge cross-domain paths.

• All cross-domain paths can still meet setup timing in one SCC cycle. Capture clock
waveforms are assumed to be the same as those of the shift clock.

In this case, you only need to run the <prefix>_modal_edt_slow_capture proc, which then
covers both the shift paths and capture paths in addition to properly timing the scan_enable
signal with the specified number of setup and hold cycles.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 459

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For designs with SSN, the <prefix>_ltest_modal_edt_slow_capture proc includes the
possibility of defining one set of generated clocks per OCC in the fanout of each SSH. This
results in relaxed hold for all capture between different OCCs. This also relaxes paths between
SIBs or Bscan to or from other OCC domains. Turn on this feature by defining the following
global Tcl variable in your top-level calling script:

set tessent_relax_xdomain_capture_paths 1

Setting this variable means the tool supports hardened OCCs and all-design-level STA. Each
generated clock is defined at the OCC slow_clock input pin, to permit a possible
shift_capture_clock from the parent level to go through the fast_clock pin in multi-level
designs. If the OCC persistent slow_clock buffer is visible in the netlist, the multicycle path
constraint is defined on its input pin.

You can modify each generated clock OCC pin by editing a global OCC dictionary, but support
for full custom OCC is not available.

If you do not define this variable, you can also choose from the following options:

• Not relaxing any path—this means closing stuck-at slow capture timing, for setup and
hold, across those generated clocks coming from the OCC

• (default) Applying a global same-edge multicycle path -hold to the SSH
shift_capture_clocks

Limitation for bypass mode constraints: When the SSH bypass is present, the bypass mode
scan_en and edt_update input ports have no MCP declaration, unlike the SSH local scan_en
signal sources, which MCP constraints relax based on timing specifications from the
set_load_unload_timing_options command. For more details, refer to the section “SSN/SSH
SDC Constraint Descriptions” on page 462.

Furthermore, the bypass mode test clock frequency is assumed to be the same as the SSH test
clock frequency, which is unlikely to be the case. If you intend to run the SSH-bypass scan at a
slower frequency than the SSH-based scan, you must override the SSH-bypass test_clock
definition in your main script after calling the procs listed previously. You may also need to add
your own MCP declarations for both scan_en and edt_update top-level ports, as in the following
example:

<prefix>_modal_edt_slow_capture
create_clock –period <bypass test_clock period> \

[get_ports test_clock port]
Set_multicycle_path 2 –setup –from [get_ports <scan_enable port>]
Set_multicycle_path 2 –hold –from [get_ports <scan_enable port>]
Set_multicycle_path 2 –setup –from [get_ports <edt_update port>]
Set_multicycle_path 2 –hold –from [get_ports <edt_update port>]

Tessent™ Shell User’s Manual, v2021.3460

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN/SDC Constraints for STA Signoff on the Current Design

The Tessent logictest DFT STA Signoff flow is described in the sections “Checking Your
Functional Logic Alone” on page 726 and “LOGICTEST Instruments” on page 735. The modal
SDC procs these sections describe also cover both the fast SSN bus logic and the SSH scan
interface logic. For more details on the SSN constraints, refer to the section “SSN/SSH SDC
Constraint Descriptions” on page 462. Therefore, to perform STA signoff on your SSN DFT
logic, you must run the same modes and the same procs as for the EDT/logictest logic; that is,
the following:

• Mode shift STA — Call proc <prefix>_modal_shift

• Mode edt_slow_capture STA — Call proc <prefix>_modal_edt_slow_capture

• Mode edt_fast_capture STA — Call proc <prefix>_modal_edt_fast_capture

Note
As with SSN/SDC Constraints for Layout, if your design meets the configuration conditions
described in the note in that section, you can run only the

<prefix>_modal_edt_slow_capture proc to cover both the shift and edt_slow_capture modes
simultaneously.

SSN/SDC Constraints for Hierarchical or Whole-Chip STA

The hierarchical STA flow with SSN stays the same as that described in the section
“Hierarchical STA in Tessent” on page 752 for as long as you use extracted timing models
(ETM or .lib) to represent the timing of child physical blocks (PBs). If your flow requires full or
partial child PB instance netlists, you must replace your call to the usual logictest modal procs
with their “*_with_sub_PBs” equivalent; that is, the following:

• <prefix>_ltest_modal_shift_with_sub_PBs

• <prefix>_ltest_modal_edt_slow_capture_with_sub_PBs

• <prefix>_ltest_modal_edt_fast_capture_with_sub_PBs

These procs include retargeted SDC constraints for all SSN logic inside all of your individual
child PBs. Tessent-generated graybox models include all SSN logic. Without them, the parent
SSN bus clock would enter through the block’s SSN bus pins and propagate directly to the

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 461

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

block’s scannable logic. This, in turn, would overconstrain the child SSH-generated DFT
signals. The following is an example of such a retargeted constraint:

array set tessent_ssh_mapping_with_sub_PBs {
 ssh2 top_rtl2_tessent_ssn_scan_host_1_inst
 ssh0 corea_i1/corea_rtl2_tessent_ssn_scan_host_1_inst
 ssh1 corea_i2/corea_rtl2_tessent_ssn_scan_host_1_inst
}
…
if {$mode eq "shift"} {
 set_case_analysis 1 [tessent_get_pins \
 $tessent_ssh_mapping_with_sub_PBs(ssh0)/tessent_persistent_cell_scan_en_buf/Y]
 set_case_analysis 1 [tessent_get_pins \
 $tessent_ssh_mapping_with_sub_PBs(ssh1)/tessent_persistent_cell_scan_en_buf/Y]
 set_case_analysis 1 [tessent_get_pins \
 $tessent_ssh_mapping_with_sub_PBs(ssh2)/tessent_persistent_cell_scan_en_buf/Y]
}

When you run top-level logictest STA with isolated lower-level PBs, your calling script must
also call the proc <prefix>_ltest_lower_pbs_external_mode. This takes care of constraining the
DFT signal and the OCC logic of the lower PBs. For example, to set the shift STA mode, you
must run the following command sequence:

tessent_set_default_variables
set_load_unload_timing_options <list of timing options>
(or source the file containing this command)
<prefix>_ltest_modal_shift_with_sub_PBs
<prefix>_lower_pbs_external_mode

Note
Using *_with_sub_PBs procs is subject to the following limitations:

• These procs create retargeted SSN/SSH SDC constraints for all instances of SSN/SSH
modules in the child PBs; however, all PBs end up using the same set of timing
parameter variables (such as the bus clock, the shift clock frequency, and the number of
scan_en/edt_update extra setup/hold cycles) as the level of the current design. Child PBs
may have been designed and laid out with different parameter sets, with potentially
faster internal shift clocks than their parents. If this applies to any of your PBs, you must
manually fix their associated constraints in your extract_sdc file.

• SSN/SSH constraints are declared for all PB instances, so you must load all of those
instances to avoid errors in reading constraints.

• You cannot set child PBs to internal ltest mode only using the provided procs in the SDC
file. If you need to do this, you can copy your <prefix>_lower_pbs_external_mode
proc, change its name, and manually change the settings of the int_ltest_en and
ext_ltest_en signals to put all child PBs into internal mode.

Tessent™ Shell User’s Manual, v2021.3462

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN/SSH SDC Constraint Descriptions

The following sections provide more detailed descriptions of SDC constraints for SSN and
SSHs.

SSN Bus Clock and SSN Bus Port Timing Constraints . 462

SSN Bus Data Port Delays. 463

SSN Datapath Timing Constraints. 465

SSN FIFO Timing Constraints . 468

SSN ScanHost Timing Constraints . 471

SSN Bus Clock and SSN Bus Port Timing Constraints

The SSN bus clock is declared using variables that contain a period in nanoseconds and a
multiplier that aligns the units with your timing tool.

The following example shows the variables you use to declare the SSN bus clock:

global tessent_ssn_bus_clock_network_period
global time_unit_multiplier
set local_ssn_bus_clock_network_period \
 [expr $tessent_ssn_bus_clock_network_period * $time_unit_multiplier]
create_clock <port> -name tessent_ssn_bus_clock_network \
 -period $local_ssn_bus_clock_network_period –add

In this example, the tessent_ssn_bus_clock_network_period variable is always given in ns. The
time_unit_multiplier variable converts the ns unit to the one used by the timing tool. For
example, set a value of 1000 if the timing tool uses ps instead of ns. In the Tessent
recommended flow, you set the bus clock network period variable indirectly with the following
proc in your primary timing script:

 set_load_unload_timing_options –usage ssn –ssn_bus_clock_period

The option values corresponds to the maximum possible SSN network speed across your entire
design, even if your current level test patterns do not require that speed. Refer to the
set_load_unload_timing_options command reference page for more information on using it in
the SSN reference flow.

Note
If your SSN scan host implementation uses only Streaming-Through-IJTAG, your
generated SDC file does not contain this declaration. For more information about

Streaming-Through-IJTAG, refer to “Streaming-Through-IJTAG Scan Data” on page 405.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 463

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN Bus Data Port Delays

The SSN data bus port external delays reflect the hard-coded timeplates in Tessent test patterns,
relative to the tessent_ssn_bus_clock_network clock edges.

The SSN test patterns do the following:

• Force SSN bus data primary inputs at 0% of the tester period or 50% of the bus_clock
period. Refer to the following discussion for further explanation.

• Cause the bus clock to rise at 0% of the tester period.

• Measure SSN bus data primary outputs at 0 ns into the next tester period.

This translates to an external delay of zero for both directions.

The first node of an SSN bus might capture its input data at every rising edge of the bus clock or
on the first phase of a multi-phase node. This is the case for nodes of type Pipeline, ScanHost, or
Multiplexer, or one of BusFrequencyMultiplier with its capture_phase property set to
“transmitter”. For such nodes, the following is true:

• If the current design level is chip, the SSN patterns force the bus inputs at 50% of the
bus clock period inside the tester period, thus giving a half bus_clock_period margin for
both setup and hold.

• Otherwise, the patterns assume a synchronous data path across the block boundaries and
force the bus inputs at 0% of the tester period.

For all other node types, SSN patterns force the bus inputs at 0% of the tester period.

The 0% output delay permits a full bus clock period to the setup margin of the bus data out loop
timing path, as shown in the figure “Schematic Showing Loop Timing Path for Bus Data Out”
in the section “BusFrequencyDivider” in the Tessent Shell Reference Manual.

The input/output delay constraints include an “-add_delay” option that enables them to share
their primary pin with functional signals when you apply the non-modal constraints.

The following example illustrates the input/output delay constraints:

set_input_delay 0.0 -add_delay \
 -clock tessent_ssn_bus_clock_network \
 [tessent_get_ports {gpio[0]}]

set_output_delay 0.0 -add_delay \
 -clock tessent_ssn_bus_clock_network \
 [tessent_get_ports {gpio[16]}]

Tessent™ Shell User’s Manual, v2021.3464

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

At the chip level, the tester directly feeds input/outputs. Therefore, input/output pin delays are
based on the actual pattern waveforms, and no adjustments or virtual clocks are necessary. For a
chip, constraints look like the following:

set_input_delay 0.0 -add_delay \
 -clock tessent_ssn_bus_clock_network \
 [tessent_get_ports {gpio[1]}]

set_output_delay 0.0 -add_delay \
 -clock tessent_ssn_bus_clock_network \
 [tessent_get_ports {gpio[6]}]

For a block, in order to account for pre- and post-layout designs with varying ssn_bus_clock
latency and in order to facilitate timing path budgeting, the proc declares a virtual clock and
set_input/output_delay constraints use global user-modifiable Tcl variables, such as in the
following example:

proc xxx_ltest_set_timing_variables_default:

set tessent_ssn_bus_input_delay_percentage 25.
set tessent_ssn_bus_output_delay_percentage 25.

proc xxx_ltest_ssn:

set local_ssn_bus_clock_network_period \
 [expr $tessent_ssn_bus_clock_network_period * $time_unit_multiplier]
set local_ssn_bus_input_delay
 [expr $tessent_ssn_bus_input_delay_percentage/100. * \
 $local_ssn_bus_clock_network_period]
set local_ssn_bus_output_delay \
 [expr $tessent_ssn_bus_output_delay_percentage/100. * \
 $local_ssn_bus_clock_network_period]

set_input_delay $local_ssn_bus_input_delay -add_delay \
 -clock tessent_ssn_virtual_bus_clock_network \
 [tessent_get_ports {ssn_bus_data_in[0]}]
set_output_delay $local_ssn_bus_output_delay -add_delay \
 -clock tessent_ssn_virtual_bus_clock_network \
 [tessent_get_ports {ssn_bus_data_out[0]}]

Note
To accurately reflect the generated test patterns, the following occurs at the chip level:

• If the first SSN datapath node is a receiver_1x_pipeline (which captures at the falling
edge of the ssn_bus_clock), the preceding input delay is set to 0.0 ns.

• If the first node is anything else (that is, captures at the rising edge of the
ssn_bus_clock), the input delay is set to 0.5 × ssn_bus_clock_period.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 465

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For a core, the input delay is always set to 0.0 + <an external delay timing budget>, assuming
the following:

The driving node exists inside the chip, either in the parent design or in another core.

SSN source nodes always toggle their output data on the ssn_bus_clock posedge, and full-speed
data paths likely need balanced source/destination clocks.

If the datapath crosses a non-balanced clock, it does so through an SSN divider/multiplier
combination. This combination is less sensitive to these input/output delay constraints, because
it relaxes with additional multicycle path (MCP) constraints.

SSN Datapath Timing Constraints

Some sections of the SSN datapath may run with a bus data rate that is a fraction of the bus
clock speed, such as at half- or quarter-speed, thus behaving as multicycle paths (MCPs) across
SSN nodes. Such paths occur when inserting SSN nodes of the types BusFrequencyDivider,
BusFrequencyMultiplier, or OutputPipeline in your datapath specifications.

For more details about these nodes and their usage, refer to the section “BusFrequencyDivider”
in the Tessent Shell Reference Manual.

The three previously mentioned nodes (BusFrequencyDivider, BusFrequencyMultiplier, and
OutputPipeline) intercept the data bus bits with rows of flops that capture or update all bus data
bits at a specified phase of the bus clock. In the SDC file, the phase of each node is represented
by two numbers “(n m)” where m is the number of bus clock cycles for a single data cycle. For
example, consider a quarter-speed SSN data bus section. The section may require MCPs
between the following types of nodes:

• A BusFrequencyDivider node with a (1 4) phase

This means that the divider latches its output data at the beginning of the first (1) cycle
for a duration of four (4) cycles.

• A BusFrequencyMultiplier node with a (3 4) phase

The specified phase number (3) represents the clock cycle number that the input data is
latched at the beginning of. The output data rate of a multiplier always equals the clock
rate.

• An OutputPipeline node with a (1 4) phase

The node features a single pipeline flop row that captures at the beginning of the first (1)
cycle of four (4).

Tessent™ Shell User’s Manual, v2021.3466

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

As another example, a bus datapath between a (1 4) divider and a (3 4) multiplier ends up with
timing margins of two cycles of setup and two cycles of hold, making that combination suitable
for data handoff between two skewed CTS regions:

From bus_frequency_divider (phase 1 4) to bus_frequency_multiplier
(phase 3 4)
set_multicycle_path -setup 2 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_cells <multiplier node instance>/datapath/r0*]
set_multicycle_path -hold 3 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_cells <multiplier node instance>/datapath/r0*]

A bus datapath between the previously referenced (1 4) divider node and a (1 4) output pipeline
node features timing margins of four cycles of setup and zero cycles of hold, thus requiring
balanced source and destination clocks:

From bus_frequency_divider (phase 1 4) to output_pipeline (phase 1 4)
set_multicycle_path -setup 4 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_cells <multiplier node instance>/datapath/r0*]
set_multicycle_path -hold 3 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_cells <multiplier node instance>/datapath/r0*]

Datapaths from SSN bus output ports of a (1 4) OutputPipeline node also feature four cycles of
setup margin, as shown in the figure “Output Data Slow Down Using BusFrequencyDivider
Node” in the section “BusFrequencyDivider” in the Tessent Shell Reference Manual, because
the test patterns capture the bus data at the rising edge of Phase 1, leaving all four bus cycles for
data to close its output timing loop:

From output_pipeline (phase 1 4) to output bus ports
set_multicycle_path -setup 4 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_ports <list of output bus ports>]
set_multicycle_path -hold 3 -start \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_ports <list of output bus ports>]

More subtle MCP constraints are required when handling datapath sections that run across bus
clocks that operate at frequencies that are ratios of each other. This could result in, for example,
a (1 2) divider fanning out to a (3 4) multiplier, which implies that the destination multiplier is
clocked at double the frequency of the source divider. In such cases, the MCP constraint always

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 467

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

sets its setup and hold number of cycles relative to the faster of the two clocks, using either the
-start or the -end option:

From bus_frequency_divider (phase 1 2) to bus_frequency_multiplier
(phase 3 4)
set_multicycle_path -setup 2 -end \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_ports <multiplier node instance>/datapath/r0*]
set_multicycle_path -hold 2 -end \
 -from [tessent_get_cells <divider node instance>/datapath/r1*] \
 -to [tessent_get_ports <multiplier node instance>/datapath/r0*]

Input and output pins of child physical blocks may also include phases if they internally connect
to either SSN multiplier or divider nodes. These phases are reported in the module description
of their .icl file. Because the internal cells of a physical block are not normally visible to the
parent SDC, you must set MCP constraints using the -through switch with the PB boundary
pins, as in the following example:

From PB output pins (phase 1 2) to PB input pins (phase 0.5 1)
set_multicycle_path -setup 1 -start \
 -through [tessent_get_pins <PB1 list of bus data output pins> \
 -through [tessent_get_pins <PB2 list of bus data input pins>]
set_multicycle_path -setup 1 -start \
 -through [tessent_get_pins <PB1 list of bus data output pins> \
 -through [tessent_get_pins <PB2 list of bus data input pins>]

The extract_sdc command itself actively traces the .icl files of the design to find which actual
SSN node is connected to which other SSN nodes and whether phase specifications are
involved. Such tracing enables handling of bus networks with multiplexer nodes and
connections between partial lists of SSN bus ports or subphysical block pins, which can further
complicate the list of MCPs. For the sake of clarity and self-documentation, the SDC file reports
the traced list of connections under a comment banner labeled “SSN list of node connections.”

Tessent™ Shell User’s Manual, v2021.3468

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This banner shows all connections, including those not involving clock phases, as in the
following example:

#--
SSN list of node connections
output_pipeline 'top_rtl2_tessent_ssn_out_pipe_out_inst'
--> SSN Bus Data Outputs
bus_frequency_divider 'top_rtl2_tessent_ssn_bus_freq_div_1_inst'
--> output_pipeline 'top_rtl2_tessent_ssn_out_pipe_out_inst'
scan_host 'top_rtl2_tessent_ssn_scan_host_1_inst'
--> bus_frequency_divider 'top_rtl2_tessent_ssn_bus_freq_div_1_inst'
pipeline 'top_rtl2_tessent_ssn_pipe_2_inst'
--> scan_host 'top_rtl2_tessent_ssn_scan_host_1_inst'
bus_frequency_multiplier 'top_rtl2_tessent_ssn_bus_freq_mult_1_inst'
--> pipeline 'top_rtl2_tessent_ssn_pipe_2_inst'
physical_block 'corea_i1' (launching phase = 1/2)
--> bus_frequency_multiplier 'top_rtl2_tessent_ssn_bus_freq_mult_1_inst'
physical_block 'corea_i2' (launching phase = 1/2)
--> physical_block 'corea_i1' (strobing phase = 0.5/1)
pipeline 'top_rtl2_tessent_ssn_pipe_1_inst'
--> physical_block 'corea_i2' (strobing phase = 0.5/1)
SSN Bus Data Inputs
--> pipeline 'top_rtl2_tessent_ssn_pipe_1_inst'
#--

SSN FIFO Timing Constraints

An SSN FIFO advantageously replaces a combination of BusFrequencyDivider and
BusFrequencyMultiplier nodes in cases where the clock domain handoff can occur within a
single physical partition.

For a full description of the FIFO circuit and node definition usage, refer to the section “Fifo” in
the Tessent Shell Reference Manual.

A Fifo node includes an input register for storing input packets, similar to that of a
BusFrequencyDivider, and it selects the output packet based on the phase counter value, similar
to the operation of a BusFrequencyMultiplier. Similar to datapaths between
BusFrequencyDivider and BusFrequencyMultiplier explained in the section “SSN Datapath
Timing Constraints” on page 465, a set_multicycle_path declaration can relax FIFO internal
paths from the input register. The setup and hold parameters for this declaration depend the
following property values inside the DftSpecification/SSN/Datapath/Fifo wrapper:

• frequency_ratio

• in_clock_to_out_clock

• in_clock_to_out_clock_skew_programmable

You can think of the last two properties as defining a “deskewing” mode.

Data output from the FIFO input register remains stable for a number of clock cycles equal to
the value of the FIFO frequency_ratio property. The FIFO output register captures this data

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 469

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

either in the middle of these cycles (when in_clock_to_out_clock_skew is early_or_delayed) or
at the end of these cycles (when in_clock_to_out_clock_skew is delayed_only). Refer to the
figures “Waveform for FIFO early_or_delayed Configuration” and “Waveform for FIFO
delayed_only Configuration” in the “Fifo” reference page in the Tessent Shell Reference
Manual to see examples of these capture cycles. Because of this, your SDC FIFO multicycle
path (MCP) constraint “-setup” parameter is set equal to the FIFO frequency_ratio property, and
its “-hold” parameter adjusts depending on its in_clock_to_out_clock_skew property value. The
setup and hold calculations occur explicitly using Tcl variables in your SDC.

If you set in_clock_to_out_clock_skew_programmable to “on”, the SDC enables you to
dynamically select the deskewing mode just before applying the SDC in the timing tool. For
each such FIFO instance in your design, select the deskewing mode by defining the Tcl variable
tessent_ssn_fifo_deskew_setting(sfifo<n>) in your primary script. This variable name is
mapped; refer to the primary calling script in the “Examples” section in this topic to see how to
use these variables. The in_clock_to_out_clock_skew property determines the default deskew
mode when you do not set these variables.

The following figure illustrates how the MCP is applied in a FIFO.

Tessent™ Shell User’s Manual, v2021.3470

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-24. FIFO MCP Example

Examples

Example of FIFO Settings in Your Primary Calling Script

The following example shows how to use Tcl variables in the primary calling script to set up the
FIFO and control programmable skew settings:

tessent_set_default_variables
tessent_ssn_fifo_deskew_setting(sfifo0) delayed_only
tessent_ssn_fifo_deskew_setting(sfifo1) early_or_delayed
tessent_ssn_fifo_deskew_setting(sfifo2) delayed_only
tessent_set_non_modal
this proc calls the tessent_set_ltest_ssn proc, which appears in the
next example section

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 471

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples of FIFO SDC File Contents

The following is an example of content appearing in the SDC proc
tessent_set_default_variables:

array set tessent_sfifo_mapping {
 sfifo0 top_rtl2_tessent_ssn_fifo_1_inst
 sfifo1 core1/core_rtl2_tessent_ssn_fifo_1_inst
 sfifo2 core2/core_rtl2_tessent_ssn_fifo_1_inst
}

The following is an example of content appearing in the SDC proc tessent_set_ltest_ssn:

global tessent_ssn_fifo_deskew_setting
array set sfifo_setup_multiplier {delayed_only 1 early_or_delayed 0.5}
sfifo0:
frequency_ratio : 4
in_clock_to_out_clock_skew: delayed_only
in_clock_to_out_clock_skew_programmable: on
set deskew_setting delayed_only

if {[info exists tessent_ssn_fifo_deskew_setting(sfifo0)]} {
 set deskew_setting $tessent_ssn_fifo_deskew_setting(sfifo0)
}

set frequency_ratio 4
set_multicycle_path \
 -setup [expr int($frequency_ratio * $sfifo_setup_multiplier($deskew_setting))] \
 -from [tessent_get_cells $tessent_sfifo_mapping(sfifo0)/datapath/fifo_reg*] \
 -to [tessent_get_cells $tessent_sfifo_mapping(sfifo0)/datapath/bus_data_out*]
set_multicycle_path \
 -hold [expr $frequency_ratio - 1] \
 -from [tessent_get_cells $tessent_sfifo_mapping(sfifo0)/datapath/fifo_reg*] \
 -to [tessent_get_cells $tessent_sfifo_mapping(sfifo0)/datapath/bus_data_out*]

Note
The preceding constraints repeat for sfifo1 and sfifo2, but with variations for the actual
MCP constraints that depend on the DftSpecification property settings for these FIFOs.

Note
The section in bold in the previous example is present only when programmable skew is
enabled; that is, in_clock_to_out_clock_skew_programmable is set to “on”.

SSN ScanHost Timing Constraints

The ScanHost node generates the scan control and data signals when it drives the logictest
modules of a block. It generates all of these signals from the SSN bus_clock.

It is recommended that you clearly understand the SSH scan interface operation and features
described in the section “ScanHost Scan Interface Operation and Timing Requirements” of the

Tessent™ Shell User’s Manual, v2021.3472

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ScanHost reference page in the Tessent Shell Reference Manual, as a prerequisite for the SSH
SDC descriptions in this section.

SSH Scan Clocks

A given Tessent test SSN scan pattern may drive the SSN bus clock port with one of three
different frequencies. The frequency depends on whether the ScanHost is bypassed or used for
scan with gated or with divided shift clocks. To precisely determine the timing that the
hardware implements, the SDC needs to create three clocks on that port. The following figure
shows all root clocks and generated clocks that may exist in the SDC.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 473

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-25. SSH Clock Signal Generation

Call the set_load_unload_timing_options command to configure the SDC clock and control
signal timing parameters, and to configure pattern generation so that the parameters of the
generated patterns are consistent with those used during timing closure and analysis. The

Tessent™ Shell User’s Manual, v2021.3474

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

following table lists set_load_unload_timing_options arguments that define Tcl variables used
in SDC. If your primarytiming script does not explicitly set these options, then they use the
default values from the table.

The first SSN bus clock is called ssn_bus_clock_network (red dot in Figure 8-25). It times the
SSN network operation at its maximum possible datapath speed, whether or not the ScanHost
node is active.

When the ScanHost node is active, the SSN bus clock pin generates the shift_capture_clock and
the edt_clock used to operate the scan circuitry. One scan bit per chain gets shifted in per SSN
packet. If the SSN packet is small enough to occupy less than two bus clock cycles on the
network, the scan clocks can be generated from the SSN bus_clock using a clock gater. The test
patterns then adjust the SSN bus clock frequency to match the required shift_clock_period.
However, when the SSN packet is large enough to occupy a minimum of N bus clock cycles on
the network, a faster frequency clock is applied to the ssn_bus_clock pin and is divided to
generate the shift clocks using a clock divider flop, maintaining as much as possible a fifty-
percent duty cycle. Because these two clock paths differ slightly, both must be covered in SDC
and STA, requiring the SDC to create one generated clock for the gated clock and another for
the divided clock.

When the test patterns generate the scan clocks using a clock gater, they must increase the SSN
bus clock period to be as large as the shift clock period, which defaults to 10 ns. The SDC
version of the SSN bus clock created at the shift_clock_period is called
ssn_bus_clock_scan_slow (green dot labeled 1 in Figure 8-25) and is referenced as the source
of the generated clocks ssn_shift_capture_clock_gated and ssn_edt_clock_gated, which are
defined on the outputs of the edt_clock_cg and shift_capture_clock_cg persistent cells (green
dots 2 and 3 in Figure 8-25).

When the test patterns generate the scan clocks using a clock divider, another SDC clock called
ssn_bus_clock_scan_fast is required (blue dot 1 in Figure 8-25) and becomes the -master option
of the divided_by N generated clocks called ssn_shift_capture_clock_div and
ssn_edt_clock_div, which are defined on the output of the edt_clock_div_and and
shift_capture_clock_div_and cells (blue dots 2 and 3 in Figure 8-25).

Table 8-6. set_load_unload_timing_options Arguments and SDC Variables

Option SDC Timing Variable Default

-ssn_bus_clock_period tessent_ssn_bus_clock_network_period 2.5 ns

-shift_clock_period tessent_ssn_bus_clock_scan_slow_period 10.0 ns

-scan_en_setup_extra_cycles tessent_scan_en_setup_extra_cycles 1

-scan_en_hold_extra_cycles tessent_scan_en_hold_extra_cycles 1

-edt_update_setup_extra_cycles tessent_edt_update_setup_extra_cycles 1

-edt_update_hold_extra_cycles tessent_edt_update_hold_extra_cycles 1

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 475

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Regardless of the size of the SSN packets in your final design, the ssn_bus_clock_scan_fast
clock frequency in SDC must be set as the largest possible integer multiple of your specified
shift clock period, so that the SDC can use it in a simple “create_generated_clock -divided_by
<n>” constraint without exceeding the maximum ssn_bus_clock_network clock frequency. A
simple case of this is when shift_clock_period/ssn_bus_clock_period is exactly an even integer.
Then the period of the ssn_bus_clock_scan_fast clock is exactly equal to the period of the
ssn_bus_clock_network clock. However, consider an example where the ssn_bus_clock_period
is 2.5 ns and the shift_clock_period is 12 ns. Then the period of ssn_bus_clock_fast must be set
to 3 ns, so that 3 ns × 4 = 12 ns. This accurately reflects the way the SSN scan test patterns
themselves also slow the bus clock down to 3 ns if given the same timing specifications and if
the packet size is four bus_clock cycles.

If the ratio of your shift_clock period to your ssn_bus_clock period is larger than two, the SDC
creates the SSH divided scan clock with a period equal to the period of the SSH gated scan
clocks. However, if the ratio is less than two, the created divided clock is slower than the gated
clock, as it would be whenever your SSN scan packet is larger than two clock cycles.

Even more clock declarations are required if the SSH supports the optional scan bypass mode.
These clocks are represented by the brown dots in Figure 8-25. Both the *edt_clock and
*ssh_shift_capture_clock are divided_by 1 versions of the test_clock. For simplification of the
constraints, the generated SDC file assumes a test_clock period that always matches the value
specified by the “set_load_unload_timing_options -shift_clock_period” command, even though
the latter value ideally applies only to the SSN scan mode and not the bypass mode.

The preceding clocks belong to clock groups that correspond to their dot colors in Figure 8-25.
Red, blue, green, and brown clocks never run at the same time. Therefore, the SDC declares
them as “-physically_exclusive.” All such clocks are also asynchronous to all functional domain

Tessent™ Shell User’s Manual, v2021.3476

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

clocks, because both clock types may interact at the same time on the pre-OCC branches during
scan. The following is an excerpt from a sample design:

Figure 8-26. SSH Clock Group Constraints

scan_en and edt_update Signal Timing

The following figure shows the SSH circuit that generates the scan_en and edt_update signals.

Figure 8-27. SSH scan_en and edt_update Generation Circuit

The SSH generates the edt_update signal with a negedge flop (brown dot 3) when
bus_clock_period = scan_clock_period to provide negedge retiming to its destination EDT
controller’s posedge flops. The posedge flops run off the late edt_clock relative to the
bus_clock. When edt_clock is divided, on the other hand, a posedge source flop (brown dot 2)
can properly toggle the edt_update signal 0.5 edt_clock cycles before and after the posedge of
the destination flop.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 477

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Although the scan_en signal may propagate to either posedge or negedge scannable flops on a
delayed SCC clock tree, the fact that SCC is gated while scan_en toggles makes both its setup
and hold timing safer without needing to rely on a negedge flop source like for edt_update.
Furthermore, the scan_en setup margin to negedge flops gets a half-cycle bonus, because the
first SCC falling edge after a scan_en transition always occurs after the first rising edge. The
following figure shows the margin definitions.

Figure 8-28. scan_en Margin Definition Diagram

By default, although these signals show some very safe setup and timing margins, you can still
extend them by calling the set_load_unload_timing_options command. As discussed
previously, this proc sets several global Tcl variables used in timing exceptions discussed in the
following information.

In the Tessent SDC file, the hold and setup margins of all MCP constraints are derived
dynamically from the variable values in Table 8-6 and from the bus_clock/scan_clock
frequency ratios. Non-even bus/scan clock ratios, such as 3 or 5, add more complexity for
divided clock constraints, because they mean that the scan clock duty cycle can no longer be
50%, which affects the number of bus clock cycles between its rising and falling edges. To
account for this, the SDC file derives Tcl variables such as $lowPulseCycles and
$highPulseCycles and uses them in the divided clock MCPs, at the price of added complexity.
The following excerpt from an SDC file shows how all setup and hold margins are calculated.
In this excerpt, the Tcl variable names intentionally match the setup and hold margin names
shown in Figure 8-28.

Tessent™ Shell User’s Manual, v2021.3478

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 set freq_ratio [expr int($local_ssn_bus_clock_scan_slow_period\
 $tessent_ssn_bus_clock_scan_fast_period)]
 set half_ratio [expr $freq_ratio/2]
Divided clock duty cycle isn't 50% if freq_ratio is odd.
 set highPulseCycles [expr $half_ratio]
 set lowPulseCycles [expr $freq_ratio - $highPulseCycles]
Scan_en to gated scan clocks:
 set seSetupPos [expr 1 + $tessent_scan_en_setup_extra_cycles]
 set seHoldPos [expr 1 + $tessent_scan_en_hold_extra_cycles]
 set seSetupNeg [expr 1 + $seSetupPos]
 set seHoldNeg $tessent_scan_en_hold_extra_cycles
Scan_en to divided scan clocks:
 set seSetupPos_div [expr $seSetupPos * $freq_ratio]
 set seHoldPos_div [expr $seHoldPos * $freq_ratio]
 set seSetupNeg_div [expr $seSetupPos_div + $highPulseCycles]
 set seHoldNeg_div [expr $seHoldPos_div - $highPulseCycles]
edt_update to gated scan clocks:
 set setup expr 1 + $tessent_edt_update_setup_extra_cycles]
 set hold $tessent_edt_update_hold_extra_cycles
edt_update to divided scan clocks:
 set setup [expr $lowPulseCycles + \
 $tessent_edt_update_setup_extra_cycles*$freq_ratio]
 set hold [expr $highPulseCycles + \
 $tessent_edt_update_hold_extra_cycles*$freq_ratio]

The following is an example of how the preceding $setup and $hold Tcl variables are typically
used in the SDC file MCP constraints:

set_multicycle_path -setup $setup -start \

 -from [tessent_get_cells $tessent_ssh_mapping(ssh0)/clock_gen/edt_update_delayed*] \

 -to [tessent_get_clocks tessent_ssh*_div]

set_multicycle_path -hold [expr $setup-1 + $hold] -start \

 -from [tessent_get_cells $tessent_ssh_mapping(ssh0)/clock_gen/edt_update_delayed*] \

 -to [tessent_get_clocks tessent_ssh*_div]

To help you visualize these constraints, the following figures show some actual simulation
results of the timing of the scan_en and edt_update signals relative to the SSN bus and SSH scan
clocks:

Figure 8-29. Gated Scan Clocks With All *extra_cycle* Variables Set to 1
(Default)

The following figure is the same as the previous, but the *extra_cycle* variables are set to zero.
This results in shorter setup and hold margins.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 479

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-30. Gated Scan Clocks With All *extra_cycle* Variables Set to 0

In this figure, due to some inner SSH logic requirements, the scan_en setup and hold paths get
some bonus margins over the gated clocks case.

Figure 8-31. Divided Shift Clocks With Ratio of 4 and *extra_cycle* Variables at
0

Figure 8-32. Divided Shift Clocks With Ratio of 4 and *extra_cycle* Variables at
1

Scan Chain Interface Timing

The SSH scan chain interface circuit appears in the following figure. Given the many different
clocks and the two operation modes involved, this circuit requires many timing exceptions of
different natures, such as set_disable_timing, set_false_path, and set_multicycle_paths.

Tessent™ Shell User’s Manual, v2021.3480

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 8-33. SSH Scan Chain Interface Circuit

The following describes how this circuit operates:

• Persistent cells appear with red borders.

• All clock names appear without the “tessent_” prefix.

• The two flops on the right-hand side represent the scan chains. Their SI input comes
from the SSH to_scan_in* pins, and their SO outputs go back to the SSH through the
from_scan_out* pins.

• Direct loopback paths exist in some modes between the SSH to_scan_in* and
from_scan_out* pins.

• Logic elements that are active only during scan with gated shift clocks are colored
green.

• Logic elements that are active only during scan with divided shift clocks are colored
blue.

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 481

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The from_scan_out*_and (blue) cell strobes the SO data of the returning chain when
running with divided shift clocks, at the last of the N cycles of the divided clock. It is
transparent when running with the gated clock.

• Chains may feature either a trailing edge (TE) or strobing edge (SE) chain terminating
SO flop.

o When running with gated shift clocks, the from_scan_out_ret_n (green) flop
captures TE SO data.

o With both gated and divided clocks, the from_scan_out_ret_p flop captures the LE
SO data.

o With divided clocks, the SSH control logic directly captures TE SO data through the
from_scan_out_mux.

• The enable_sync (blue) signal is static during test and must be prevented from reaching
the shift_capture_clock and edt_clock generation circuit.

• The tck_clock_gater (purple) cell feeds a gated version of tessent_tck to the SSH logic
when it runs in Streaming-Through-IJTAG mode.

Scan Chain Interface Timing Exceptions

The following two tables summarize the SDC’s false_path and set_multicycle_path declarations
with regard to the preceding SSH chain interface circuit. For improved clarity, all clock names
appear without the “tessent_” prefix.

Table 8-7. SSH Chain Interface Circuit SDC False Paths

Source Destination Reason

to_scan_in_ret_not_for_div ssh*_div

ssn_bus_clock_network

ssn_bus_clock_fast

Green logic only active with
slow clocks

to_scan_in_ret_for_div ssh*_gated Blue logic only active with
fast clocks

ssh*_gated -through from_scan_out_mux/
<out>

With slow clocks, all chain
SOs are captured by a single
flop and do not reach the rest
of the SSH logic

-to/-from ssh*_div,
ssn_bus_clock_network,
ssh_bus_clock_scan_fast

-from/-to
from_scan_out*_ret_n

This negedge flop only
captures TE SO with slow
clocks and is inactive with fast
clocks

-fall_from ssh*gated from_scan_out*_ret_p This flop only captures chain
LE (rising edge) SO flops

-rise_from ssh*gated from_scan_out*_ret_n This flop only captures chain
TE (falling edge) SO flops.

Tessent™ Shell User’s Manual, v2021.3482

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additional SSH Scan Chain Interface Constraints

• For the sake of simplifying the SSH constraints, block tessent_tck from propagating to
SSH logic, because it is redundant with the SSN bus clock, which imposes tighter
constraints:

set_disable_timing <ssh_instance>/*tck_clock_gater/GCK

• Prevent the timing tool from finding a stray clock path through the enable_sync source
flop CLK-to-Q timing arc in the fan-in of generated clock definitions on that same AND
gate’s output pin:

set_disable_timing <ssh_instance>/clock_gen/*edt_clock_div_and/A1
set_disable_timing <ssh_instance>/clock_gen/*shift_capture_clock_div_and/A1

-from virtual_force_pi -through to_scan_in*_buf/
<out>

-through
from_scan_out*_and/<out>

-to virtual_measure_po

Ignore stray paths from
edt_channel_in* to
edt_channel_out* through
SSH scan loopbacks when
bypass mode is present

-from flop enable_sync -to ssh*_gated, ssh*_div enable_sync signal is static
during test but fans out to scan
logic through the scan_en and
edt_update signals

-from/-to
ssh_bus_clock_scan_fast,
ssn_bus_clock_network

-to/-from SSH logic flop

last_in_bits_in_current_bus_word_ret

(not shown in preceding figure)

SSH negedge flops are active
only when using slow clocks.

Table 8-8. SSH Chain Interface Circuit SDC Multicycle Paths

Source MCP Destination Reason

flop
to_scan_in_ret_for_div

s:N/2

h:N/2

-start –to Clock ssh*_div Adjust setup/hold to
chain SI LE flop.

Clock ssh*_div s:N

h:0

-through from_scan_out*_and/
<out>

-to ssn_bus_clock_scan_fast -end

Strobed TE SO flop
data is captured
directly by SSH
control logic

Clocks
ssn_bus_clock_scan_fast
* ssn_bus_clock_network

s:N

h:0

-through to_scan_in*_buf/<out>

-through from_scan_out*_and/
<out>

-to clocks <same as –from>

Scan loopback paths
are MCPs of ssn_bus
fast clocks

Table 8-7. SSH Chain Interface Circuit SDC False Paths (cont.)

Source Destination Reason

Streaming Scan Network (SSN)
SSN SDC Constraints in the Design Flow

Tessent™ Shell User’s Manual, v2021.3 483

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Because all SSH clock multiplexers switch clocks statically at the beginning or end of
the test, avoid irrelevant noisy warnings from timing tools such as Primetime PTE-060:

set_disable_clock_gating_check <ssh_instance>/*clock_mux

Tessent™ Shell User’s Manual, v2021.3484

Streaming Scan Network (SSN)
Tessent SSN Examples and Solutions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent SSN Examples and Solutions
This section contains Tessent solutions for DFT scenarios and problems specific to SSN. This
includes applications and flows that solve issues resulting from the presence of specific design
objects or the use of specific implementation flows.

The solutions are organized in the following sections:

Third-Party OCCs With SSN . 484

Third-Party OCCs With SSN
Third-party OCC connections require specific handling when you are using SSN.

Problem

Third party OCCs need connections to scan_en and shift_capture_clock, which do not exist
until the SSN ScanHost node is inserted. This section explains how to automate these
connections.

Solution

The third-party OCCs are assumed to be pre-inserted into the design when SSN is inserted as
described in the section “Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and
SSN” on page 357. The scan_en and slow_clock pins on the OCC instances are tied low.

Follow these steps to properly connect the OCC to the ScanHost node:

1. Before calling the check_design_rules command, run the “add_dft_control_points
-type dynamic_dft_signal -dft_signal_name scan_en” command while pointing to the
scan_en pin of each OCC instance.

set occs [get_instances my_occ*]
add_dft_control_points [get_pins scan_en -of_inst $occ] \
 -type dynamic_dft_control \
 -dft_signal_source_name scan_en

2. Run the “add_dft_control_points -type dynamic_dft_signal -dft_signal_name
shift_capture_clock” command while pointing to the slow_clock pin of each OCC
instance:

add_dft_control_points [get_pins slow_clock -of_inst $occ] \
 -type dynamic_dft_control \
 -dft_signal_source_name shift_capture_clock

Discussion

In the solution described in the previous subsection, you use the add_dft_control_points
command to make the scan_en and shift_capture_clock connections to the OCC. This is the

Streaming Scan Network (SSN)
Third-Party OCCs With SSN

Tessent™ Shell User’s Manual, v2021.3 485

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

general command you use to connect any DFT signal to any destination. When you insert the
ScanHost node, the insertion process remaps dynamic DFT signals scan_en, edt_update,
edt_clock, and shift_capture_clock to the output pins of the ScanHost node.

Because the ScanHost node delivers the scan data in both the internal and external scan modes,
your third-party OCC must still be able to inject the slow_clock into the clock_domains when
scan_en is high, even when the OCCs are not active. In a wrapped core, you have an OCC on
each clock input. Those OCCs are active during the internal scan modes but are typically
inactive during the external test modes, such that the sourcing for the capture clock is from a
single OCC localized at the functional clock source of the domain. Those inactive OCCs must,
however, still inject the shift_capture_clock generated by the local ScanHost node when
scan_en is high during the external modes. This is the shift_only_mode feature described in the
Tessent OCC reference page. The presence of this feature enables easier timing closure because
the entire shift timing is internal to the physical block and completely derived from the SSN bus
clock, as illustrated in the following figure:

Figure 8-34. Localized Scan Timing With Shift-Only Mode OCC

If you want your legacy scan access mechanism to coexist with SSN in your first few designs
that use SSN, add the scan_en and other dynamic DFT signals on their original sources as you
do currently. Then, continue to preconnect the scan_en and slow_clock inputs of your third-
party OCC to those sources. When the ScanHost node is inserted, the complete fanout of the
specified sources moves so that the output pins of the ScanHost node drive them, and your
original sources are connected to the bypass_in pins of the ScanHost. See Example 2 in the
ScanHost reference page for more information about this flow.

Tessent™ Shell User’s Manual, v2021.3486

Streaming Scan Network (SSN)
SSN Frequently Asked Questions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Unlike with the Tessent OCC, you must describe the third-party OCC to the Tessent Tool. To
do this, use the “add_clocks -capture_only” command manually on each OCC output clock pin,
and provide a clock control definition as described in the “Support for Internal Clock Control”
section of the Tessent Scan and ATPG User’s Manual.

SSN Frequently Asked Questions
This section contains frequently asked questions and possible solutions about SSN.

1. Is it possible for an SSN datapath to have a branch that is narrower than the main
datapath?

Tessent SSN does support this, but it is not recommended. IPs with narrower bus widths
than the parent design are supported, but the IP is should be rebuilt with the proper
width.

Use the SSN multiplexer node to isolate the narrower branch of the bus from the parent
design. When an SSH on the narrower bus is active, the effective bus width is scaled
down to the narrower bus width.

An IP with a wider bus than the parent design is not supported.

2. Can I have multiple independent active datapaths?

SSN supports multiple SSN datapaths operating concurrently at different frequencies for
retargeting. During top-level ATPG, the effective bus width is scaled down to the
narrower datapath width. The two datapaths are capture-aligned, with padding added to
the packet to ensure capture alignment.

3. Can I change the SSN bus_clock and shift_capture_clock frequencies during
retargeting?

You can change the bus_clock and shift_capture_clock frequencies during retargeting
after the patterns have already been created at the block level.

During retargeting, set the set_current_physical_block command to the scope of the
physical block that you want to change either frequency. Use the
set_load_unload_timing_options command to change the frequencies.

Note
The SSN bus_clock frequency operates at the slowest specified frequency set by the
set_load_unload_timing_options command at any physical block.

4. How do I exclude a physical block from top-level ATPG with SSN?

Do not add the core instance for the EDT inside the physical block that you want to
exclude. Without the core instance of the EDT added, the SSH is disabled and behaves
as a two-stage pipeline.

Streaming Scan Network (SSN)
SSN Frequently Asked Questions

Tessent™ Shell User’s Manual, v2021.3 487

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. What design view of my physical blocks should I use during pattern retargeting?

Use the graybox design view of the physical block whose patterns you want to retarget.

6. How do I program my SSN multiplexer nodes?

Use the generated PDL to write the select of the SSN multiplexer using the
set_test_setup_icall command.

set_test_setup_icall \
 "chip_top_ssh_insertion_tessent_ssn_mux_returnPath_inst.setup
 select_secondary_bus 1" -append

7. How is the negative edge of scan_en synchronized across all SSH during top-level
ATPG?

During top-level ATPG, one SSH may enter the capture state before another SSH in the
same active datapath. This may happen with certain bus configurations and is normal
behavior. During top-level ATPG, all active SSH nodes are capture-aligned. Each SSH
receives the same number of packets before entering or leaving the capture state. This
guarantees that each physical block does not miss any capture clock pulses.

8. Can I use a custom test_setup sequence with “pulse TCK” and “force TMS” to
initialize an analog IP and still use SSN?

Yes, add your custom test_setup sequence using the set_procfile_name command, and
the SSN initialization is appended at the end of your custom sequence.

9. How do I enable Streaming-Through-IJTAG?

Use the set_ssn_options command to enable the Streaming-Through-IJTAG mode.

set_ssn_options -streaming_interface ijtag

10. How do I decide the width of my SSN bus?

Reuse the same number of GPIO used for scan in/out without SSN. The SSN data_in
and data_out ports should be symmetrical.

11. How fast can I run my SSN bus?

The default SSN bus_clock frequency is 400 MHz. A wide high-speed bus requires
physical resources. Consult with your physical implementation team to work within the
physical design budget.

12. Do all my physical blocks have to shift at the same frequency?

No, each physical block can shift at an independent frequency.

13. Can I change the shift frequency of one of my partitions during retargeting?

You can lower the shift frequency of a physical block after the patterns have been
created. Set the set_current_physical_block command to the physical block to change

Tessent™ Shell User’s Manual, v2021.3488

Streaming Scan Network (SSN)
SSN Limitations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the frequency and use the “set_load_unload_timing_options -shift_clock_period”
command to change the shift clock frequency. You can see the changed frequency using
the report_load_unload_timing_options or get_load_unload_timing_options commands.

14. Do I have to insert SSH, EDT, and OCC in the same DFT insertion step?

The SSH, EDT, and OCC do not have to be created or inserted at the same time.
However, if you do not insert them at the same time in one DFT insertion step, you are
responsible for making the physical connections between them and for the multiplexing
logic that shares the path back to the SSH between external and internal test EDT
channels.

SSN Limitations
Use of SSN is subject to limitations in pattern writing, ScanHost identification, failure mapping,
Streaming-Through-IJTAG mode, automatic configuration, and certain commands that are
incompatible with SSN.

Pattern Writing Limitations

Pattern writing using the write_patterns command for designs including SSN has the following
limitations:

• The following write_patterns command switches are not supported for SSN:

o -PATtern_size

o -MEMory_size

o -SCAN_Memory_size

• For hierarchical designs, writing core-level patterns in the PatDB format using the
write_patterns command is the only source for retargeting scan patterns to the top level.
ASCII format patterns are not supported for retargeting.

ScanHost Identification Limitations

Other instruments, such as EDT and OCC, can use the add_core_instances command to
associate a core description currently in memory with a specified core instance or instances in
the design.

• Do not use the add_core_instances command to add SSN ScanHost core instances.

The ScanHost instances are inferred from the ICL, and the active ScanHost instances are
automatically identified.

Streaming Scan Network (SSN)
SSN Limitations

Tessent™ Shell User’s Manual, v2021.3 489

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Failure Mapping Limitations

Failure mapping in the presence of SSN does not support designs with the following
characteristics:

• When you have compare groups with multiple instances, failure mapping is not able to
uniquely identify the failing instance.

Streaming-Through-IJTAG Limitations

You cannot use Streaming-Through-IJTAG if all of the following are true:

• There are enabled pipelines that you specified using the icl_port attribute
tessent_pipeline_stages on the streaming path.

• One or more of the active scan hosts on that path are capture-aligned with other active
scan hosts in the streaming scan network.

For more information about Streaming-Through-IJTAG, refer to the section “Streaming-
Through-IJTAG Scan Data” on page 405.

Automated SSN Datapath Configuration

SSN does not support automated programming of SSN multiplexers. You must manually
configure these multiplexers using IJTAG to ensure that all of the SSH you intend to use are
along the active datapath between the SSN bus_in and bus_out.

LogicBIST Functionality

You cannot implement SSN and LogicBIST on the same design without access to beta
functionality. If you need to implement both sets of functionality in the same design, contact
your Siemens Digital Industries Software representative.

Command Limitations

You cannot use the macrotest command with SSN.

Manual Integration of SSN Datapath

The SSN datapath is subject to the following limitations for manual integration of the datapath:

• You must ensure there are no incidental inversions or permutations of bits on the SSN
bus.

• The bit sequence of the datapath must be maintained throughout the SSN bus.

Tessent™ Shell User’s Manual, v2021.3490

Streaming Scan Network (SSN)
SSN Limitations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STARTPAT and ENDPAT in SSN Serial Test Bench

SSN serial test benches do not contain STARTPAT and ENDPAT statements. The
STARTPAT/ENDPAT mechanism does not work with serial test benches in SSN, because the
SSN stream is a single shift pattern that cannot be broken up. If you need to break up the pattern
manually, save it again using -begin and -end values instead. Refer to the section “Verilog
Plusargs” in the Tessent Scan and ATPG User’s Manual for more information about using
Verilog plusargs like STARTPAT and ENDPAT.

Tessent™ Shell User’s Manual, v2021.3 491

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 9
Tessent Examples and Solutions

This chapter contains Tessent solutions for specific DFT scenarios and problems. This includes
applications and flows that solve common, difficult issues encountered in DFT.

How to Avoid Simulation Issues When Using the Two-Pin Serial Port Controller . . . 491

How to Handle Clocks Sourced by Embedded PLLs During Logic Test 494

How to Design Capture Windows for Hybrid TK/LBIST . 500

How to Use Boundary Scan in a Wrapped Core. 502

How to Use an Older Core TSDB With Newly-Inserted DFT Cores 504

TAP Configuration . 506
Insert a Stand-Alone TAP in a Design . 506
Insert a TAP with an IJTAG Host Scan Interface. 508
Insert a Compliance Enable TAP with an IJTAG Interface . 509
Insert a Daisychained TAP . 511
Insert a Primary TAP . 512
Insert a Secondary TAP . 514
Connecting to a Third-Party TAP. 517

How to Set Up Third-Party Synthesis . 517

How to Set Up Support for Third-Party OCCs . 520
How to Configure Files for Third-Party OCCs . 520
Test Logic Insertion . 521
Configuration for Scan Insertion . 523
Pattern Generation and Simulation . 523

Post-Synthesis Update . 527
ICL and TCD Post-Synthesis Update . 527
Limitations Related to SystemVerilog Interface Arrays. 528
Updating ICL Attributes From the Design . 529
Matching Requirements for Port Names in Post-Synthesis Update 530
Design Name Mapping Commands . 531

How to Avoid Simulation Issues When Using
the Two-Pin Serial Port Controller

You may observe some compare failures during signoff simulations using the Two-Pin Serial
Port (TPSP) interface. This topic describes a common cause and its solution.

Tessent™ Shell User’s Manual, v2021.3492

Tessent Examples and Solutions
How to Avoid Simulation Issues When Using the Two-Pin Serial Port Controller

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Problem

Some pad models with internal pull resistors also model delays for the pull value, which allows
a “Z” or “X” value to propagate to the clock pin of the TRST generator. This will cause a
simulation artifact that will propagate an “X” on the network’s TRST signal and effectively fail
the simulation.

Solution

The failure is purely a simulation artifact. The solution uses a Verilog side file that prevents an
undetermined value from propagating to the TRST generator’s clock pins.

`timescale 1ns/1ns

module tpsp_artifact_solution;

 `ifndef TPSP_INST

 `define TPSP_INST top_rtl_tessent_twopinserialport_tpsp_inst

 `endif

 always@(TB.DUT_inst.`TPSP_INST.tessent_persistent_cell_spio_in_trst_clk_buf.A) begin

 if (TB.DUT_inst.`TPSP_INST.tessent_persistent_cell_spio_in_trst_clk_buf.A === 1'bx)

 force TB.DUT_inst.`TPSP_INST.tessent_persistent_cell_spio_in_trst_clk_buf.Y = 1'b0;

 else

 #0.1 release TB.DUT_inst.`TPSP_INST.tessent_persistent_cell_spio_in_trst_clk_buf.Y;

 end

endmodule

Using the “run_testbench_simulation” command inside Tessent Shell

1. Create a Verilog side file using the code above, such as “tpsp_artifact_solution.v”.

2. Determine the path to your TPSP instance. If you do not know the path, then you can use
the commands below to find it.

set tpsp_module [get_icl_modules -filter
tessent_instrument_subtype=="tpsp_controller"]

set tpsp_icl_instance [get_icl_instances -of_modules $tpsp_module]

set tpsp_instance [get_single_name [get_instances -of_icl_instances
$tpsp_icl_instance]]

set tpsp_sim_path [convert_design_path_format $tpsp_instance -to_dot_separator]

3. Define the library sources for simulation in the Tessent shell.

set_simulation_library_sources -v ../data/sim_models.v ../data/pad_models.v

4. Run the simulation using the extra options to provide the TPSP controller’s path, the
extra Verilog side file, and the module inside.

run_testbench_simulations \
-simulation_macro_definitions "TPSP_INST=$tpsp_sim_path" \
-extra_verilog_files ../data/tpsp_artifact_solution.v \
-extra_top_modules tpsp_artifact_solution

Using the Questa Simulator outside Tessent Shell

1. Create a Verilog side file using the code above, such as “tpsp_artifact_solution.v”.

Tessent Examples and Solutions
How to Avoid Simulation Issues When Using the Two-Pin Serial Port Controller

Tessent™ Shell User’s Manual, v2021.3 493

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Load your design files with Questa’s “vlog” command.

3. Load the side file and provide the path to the TPSP controller instance using the
“+define+” command unless it is hard coded in the side file.

vlog -work dut_work "../../../../data/tpsp_artifact_solution.v" \
+define+TPSP_INST=path.to.instance.top_rtl_tessent_twopinserialport_tpsp_inst

4. Run the simulation using Questa’s “vsim” command, adding the module’s name from
the Verilog side file. (Use “acc” optimization if simulating with SDF.)

vsim -lib "dut_work" -L dut_work -do 'run -all; exit' \
 -voptargs=\"+acc\" \
 p1_configuration \
 p1_sdf \
 tpsp_artifact_solution

Discussion

The failure is purely a simulation artifact. The proposed solution is to use a Verilog side file to
prevent an undetermined value from propagating to the TRST generator’s clock pins.

The Two-Pin Serial Port (TPSP) controller is an interface for the 1149.1 TAP controller and can
drive a TAP with two pins on the chip boundary. A 4-bit shift register inside the TPSP generates
the TRST signal pulse for the TAP controllers it drives.

Figure 9-1. TRST Pulse Generator inside TPSP

In Figure 1, an undetermined value (“X”) may occur on the internal “spio_in” net and reach the
clock pin of the TRST generator (shown in red), causing corruption of the simulation results.
This register is sensitive to these states, and the TPSP protocol is such that the inout port is put
in a high impedance state every third cycle. For these reasons, Tessent Shell requires a pull
resistor modeled for the SPIO port, whether an Inout Pad or Input Pad model.

The pull value will drive the input immediately if the pad has no delay modeled. The registers
will not get corrupted, and the simulation will end with the correct results. However, if your pad
models a delay for the pull value, you will observe the problem. This problem is purely a
simulation artifact and will not be present during manufacturing tests, and you can use a Verilog
side file to avoid it.

Tessent™ Shell User’s Manual, v2021.3494

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To solve the simulation artifact when your pad model has a delay on the pull value, you can use
a Verilog side file to prevent a corrupting value from reaching the TRST generator registers’
clock pins. The side file changes the behavior of the persistent buffer inside the TPSP controller,
“tessent_persistent_cell_spio_in_trst_clk_buf” (see Figure 1.), to disable the propagation of an
undetermined value through the buffer. The output of the buffer cell (Y) is forced to “0” when
the undetermined value is present on its input (A). The forced value is released with minor delay
when the value on the buffer’s input becomes determined.

An example Verilog side file was provided in the “Solution” on page 492. The code uses the
“`define” statement to provide the TPSP controller instance’s design path. However, the path
could be hard coded as well. Copy the code and create a new Verilog side file (Step 1). Before
you can compile your new Verilog side file and run it with the testbench generated by Tessent,
you must define values for several TCL variables (Step 2). Define the library sources for
simulation using the set_simulation_library_sources command (Step 3). Finally, run the
run_testbench_simulations command with extra options to use the Verilog side file (Step 4).

You can also compile and run the new Verilog side file directly in a simulation tool such as
Questa. Copy the code and create a new Verilog side file (Step 1). Load your design files into
the Questa simulator (Step 2). Load the Verilog side file and define the path to the TPSP
controller instance using a “+define+” statement unless it is already hard coded in the side file
(Step 3). Finally, run Questa simulation using the additional options to utilize the Verilog side
file (Step 4).

In summary, you can use a Verilog side file to resolve a simulation artifact. A pad modeled with
a delay on the pull value exhibits the problem. You can use a Verilog side file to prevent “X”
value propagation by changing the behavior of a buffer inside the TPSP. The side file solution
works with a Tessent testbench inside the Tessent shell or the Questa simulator outside the
Tessent shell.

How to Handle Clocks Sourced by Embedded
PLLs During Logic Test

Clocks sourced by an embedded PLL have local OCCs that are reused when testing parent
physical regions. The flow is different when the parent physical regions are wrapped cores.

Problem

For embedded PLLs, such as the one shown inside “corec” in Figure 9-2, the OCC inserted on
the VCO output of the PLL is used during the internal logic test modes of the core. The OCC is
also reused during the internal test modes of its parent physical regions.

When the PLL is inside a wrapped core that is the child of another wrapped core, you must
ensure that the OCC is still controllable by the scan chains when running logic test modes of the
top level.

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Tessent™ Shell User’s Manual, v2021.3 495

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Solution

Wrapped Core Only Used in the Top Level

If the PLL is embedded inside a wrapped core that is only used inside the top level physical
region, then no further action is needed. The standard flow handles this scenario automatically,
as described in “Tessent Shell Flow for Hierarchical Designs” on page 141.

Wrapped Cores Used Inside Other Wrapped Cores

You must use the following procedure when the wrapped core in which the embedded PLL is
located has another wrapped core above it, as shown in Figure 9-2

1. Add an extra DFT signal when you process the wrapped core that embeds the PLL in
“Second DFT Insertion Pass: Inserting Top-Level EDT and OCC” on page 171 (for
example, when processing corec) as follows:

add_dft_signals promoted_cells_mode

2. Create a new scan mode when you process the wrapped core that embeds the PLL in the
“Scan Chain Insertion” step (for example, when processing corec) as follows:

set promoted_instances \
 [get_attributed_objects \
 -attribute_name wrapper_type_from_clock_source \
 -object_type instance]
if {[sizeof_collection $promoted_instances] > 0} {
 add_scan_mode promoted_cells_mode \
 -include_elements [get_scan_elements \
 -of_instances $promoted_instances]
}

The new scan mode contains the control flip-flops of the OCCs that need to be
accessible from the top-level.

3. Modify the definition of the external scan mode when you process the parent wrapped
core in the scan chain insertion step of the flow (for example, when processing corea).

set_attribute_value corea_i1 -name active_child_scan_mode \
 -value promoted_cells_mode

set ext_scan_elements [add_to_collection \
 [get_scan_elements -class wrapper] \
 [get_scan_elements -of_child_scan_modes promoted_cells_mode]]

add_scan_mode ext_mode -chain_length 32 \
 -include_elements $ext_scan_elements

Modifying the external scan mode definition enables you to include the promoted scan
chains from the child wrapped cores in the external chain of the current wrapped core.
This step ensures that the control flip-flops of the embedded OCCs are accessible by the
test modes of the top level.

Tessent™ Shell User’s Manual, v2021.3496

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4. Depending on the hierarchy of your design, do one of the following:

o If your design only uses the wrapped core at the top level of the chip (such as corea),
then no further modifications are required for the standard flow.

o If your design embeds the wrapped core inside another wrapped core (for example,
there was a layer of wrapped core between corea and top), you need to recreate the
promoted scan mode at the current level.

This step provides access to the OCC control bits in its external scan mode. The
method shown in Step 3 is reapplied to that parent wrapped core as follows:

set_attribute_value corea_i1 -name active_child_scan_mode \
-value promoted_cells_mode

add_scan_mode promoted_cells_mode \
-include_elements [get_scan_elements \
-of_child_scan_modes promoted_cells_mode]

Discussion

The example chip shown in the following figure illustrates functional clocking when a PLL is
embedded inside a child physical region.

Figure 9-2. Example Chip with PLL Embedded Inside Lower Core

Figure 9-3 shows the location of the OCCs inserted inside corec and coreb. The two OCCs
inside corec are active during its internal test modes to inject the shift clock during the shift
cycles and to chop the functional clocks during capture cycles. The two OCCs inside coreb are
also active during its internal test modes.

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Tessent™ Shell User’s Manual, v2021.3 497

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-3. Active OCCs During Internal Test Modes of corec and coreb

If you want to run the internal test modes of corec in parallel with those in coreb, you need to
provide a clock bypass path, such that the free running output of the PLL can continue to source
the red clock of coreb when the OCC inside corec is active.

The bypass clock path is not required. The tool issues an error if you try to re-target an internal
test mode of coreb in parallel with an internal test mode of corec or corea, and the bypass path is
not present. The reason for this check is that the OCC at the input of the red domain of coreb
expects and requires a free running clock when active. The red clock output of corea is not a
free running clock when the red OCC inside corec is active. Instead, it is alternating between the
shift clock and bursts of at-speed clock pulses.

If you provide the bypass clock path, you reduce the overall chip test time as you can
concurrently test corec or corea with coreb. If you want to insert the clock bypass path within
the DFT insertion process, use a process_dft_specification.post_insertion callback to create the
ports and make the connections. Use the intercept_connection command to insert the
multiplexer inside coreb. The best option to control the select input of the multiplexer is to
register and add a new DFT signal. See the register_static_dft_signal_names command for more
information.

The get_dft_signal command in the process_dft_specification.post_insertion callback gets the
connection point for the added DFT signal. If the bypass path is manually added in the golden
RTL, leave the select input of the multiplexer tied low and connect it to the DFT signal during
the DFT process with the add_dft_control_points command. See of the
register_static_dft_signal_names command description section for an example.

When you move up to corea, another OCC is inserted at the base of the blue clock domain to be
used during its internal logic test modes, as shown in Figure 9-4.

Tessent™ Shell User’s Manual, v2021.3498

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-4. Active OCCs During Internal Test Modes of corea and coreb

The OCC on the blue domain inside corec is kept inactive, as it is during the functional mode.
The clocking of the entire blue clock domain is controlled by the OCC located inside of corea at
the base of the clock tree. The red OCC inside corec is active during the internal test mode of
corea to control the scannable flip-flops on the red domain inside corea, as well as the wrapper
flops on the red domain inside corec. Because the “fast_clock” input of that red OCC is not
sourced by an input of corec, its scan chain is automatically promoted to its wrapper chains.
This promotion enables the scan chain to be under ATPG control when running the internal test
mode of corea.

If corec was not embedded within another wrapped core (such as coreb that is directly
instantiated in the top level), the handling is completely automated and no deviation from the
standard flow, described under “Tessent Shell Flow for Hierarchical Designs” on page 141, is
necessary. However, when the wrapped core containing the embedded PLL is inside another
wrapped core, you must follow the steps described under “Solution” on page 495 to enable the
embedded OCC inside corec to be under ATPG control at the top level.

Extra DFT Signals

Figure 9-5 shows the active OCCs when running the logic test mode of the top level. The red
OCC inside corec is active, which requires that the scan segment that contains the control flip-
flops of the red OCC must be accessible by the scan chains of the top level. This requirement is
why Step 1 shows how to add a new DFT signal called “promoted_cells_mode” to use as the
enable for that scan chain configuration.

The OCCs within the cores are implemented with the shift only mode parameter. This has the
advantage of keeping the internal core shift timing identical between internal and external
modes. The relative shift timing between the many functional clock domains and the EDT clock
domain is derived from the common test_clock entering each core. You can close timing during

Tessent Examples and Solutions
How to Handle Clocks Sourced by Embedded PLLs During Logic Test

Tessent™ Shell User’s Manual, v2021.3 499

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

layout on each core and not have to wait until you run final STA from the top level to know how
fast each core shifts in external mode.

Figure 9-5. Active OCCs During Test Modes of Top Level

If the OCCs do not have the shift only mode, the shift clock is injected through the red and the
blue OCCs. The relative timing of the shift clock as it arrives at the input of the two clocks
inside coreb is not known until the clock trees of the two functional clocks are completed, which
does not happen until you complete the layout of the top level.

When you use the add_dft_signals command to add the ext_ltest_en DFT signal to a given core,
the OCCs of that core are automatically equipped with the shift only mode.

New Scan Mode

Step 2 shows how to create the scan mode that contains the control flip-flops of the promoted
OCCs. The OCC instances that have their “fast_clock” input controlled by an internal source
have an attribute named “wrapper_type_from_clock_source” set on them automatically. The
get_attributed_objects command is used to find them and make them part of the special scan
mode.

Promoted Scan Chains

When you get to the corea level, you need to promote the special scan chain on corec into the
wrapper chain of corea, such that the control flip-flops of the red OCC are under ATPG control
from the top level. This task is described in step 3.

Step 4 provides instructions for when corea is not directly instantiated into the top level, but
instead is embedded within another wrapper core. In that case, you need a special scan mode to
collect the embedded OCC chains such that they can be included in the wrapper chains of the

Tessent™ Shell User’s Manual, v2021.3500

Tessent Examples and Solutions
How to Design Capture Windows for Hybrid TK/LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

parent wrapped core. You follow step 3 on the parent wrapped core to include the promoted
scan mode of corea within its wrapper chain.

The purple line in Figure 9-5 represents the promoted scan chain that contains the control
flip-flops of the red OCC. This scan segment is inserted in the “ext_mode” of corea in step 3
such that the OCC is part of the scan chains of the top level.

Related Topics

On-Chip Clock Controller Design Description

OCC

How to Design Capture Windows for Hybrid
TK/LBIST

A capture window is a group of capture cycles defined by one or more clocks. Test logic can be
configured to run a selected number of patterns for each capture window. This approach gives
full control over the patterns to optimize test coverage and test power consumption.

Problem

The fundamental objectives for LBIST are increased test coverage, decreased test time, and
lower power consumption for the test run. In a typical flow, the full set of data needed to
perform optimal insertion to meet these objectives is not available until the gate-level netlist is
ready. In practice, test circuitry is closely integrated into the design and the design suffers when
test is treated as an ad-hoc component or inserted later in the gate-level netlist.

To address these issues and achieve a high level of test coverage and performance, the Hybrid
TK/LBIST flow enables you to insert DFT logic at the RTL level, before the gate-level netlist is
ready. Capture windows enable the flexibility to add test logic in the RTL and test accurately.

Solution

The solution is provided in two parts:

• Define capture windows (which clocks and how many pulses from each clock).

• Determine how many patterns to run per capture domain to achieve the targeted
coverage.

Define Capture Windows

If the clocking structure is known and determined during the insertion of the IP, define capture
windows for this flow by following the examples under “NCP Index Decoder” in the Hybrid
TK/LBIST Flow User's Manual.

Tessent Examples and Solutions
How to Design Capture Windows for Hybrid TK/LBIST

Tessent™ Shell User’s Manual, v2021.3 501

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If the clocking structure is not yet defined or finalized, use the following procedure:

1. Create a gate-level netlist using quick synthesis.

2. Run ATPG with the following constraints:

a. Use the same setup and constraints used for LBIST.

b. Set the number of random patterns:

set_random_pattern integer

where the integer argument is the number of patterns that are planned for use in
LBIST.

c. Run pattern simulation:

simulate_patterns –source random –store all

d. Report the test coverage per clock domain:

report_statistics –clock all

e. Report the generated patterns:

report_patterns

f. Design your capture windows using information from the ATPG run and the
report_statistics command.

• The ATPG run helps you identify the test clock domains in the design.

• The report_statistics command helps you identify the number of clock pulses per
clock domain

g. Determine how many patterns to run for each capture domain to achieve the targeted
coverage.

In the following example, the design has three clock domains, with possible interaction between
CLK2 and CLK3. The highest faults per domain is at CLK2 at 78%, followed by CLK3 at 43%.

Clock Domain Summary % faults Test Coverage
 (total) (total relevant)
--
 CLK3_OCC 43.07% 99.13%
 CLK2_OCC 78.80% 99.08%
 CLK1_OCC 22.98% 98.17%

Patterns to Run per Capture Domain

For stuck-at-fault, try to use as many clock domains in the capture window as possible. This
saves test time. Complete the steps under Define Capture Windows in the preceding to select
the number of patterns per capture window.

Tessent™ Shell User’s Manual, v2021.3502

Tessent Examples and Solutions
How to Use Boundary Scan in a Wrapped Core

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In the following example, to achieve the best coverage with the lowest number of patterns, use a
two-cycle capture window for 20% of the patterns and use a single CLK2_OCC/CLK1_OCC
pulse capture window for 80% of the patterns.

 pre-filtering
patt. # pattern # type cycles loads capture_clock_sequence
------- ------------- ---------------- ------ ----- ------------------
0 0 basic 1 1 [CLK1_OCC,*]
1 1 basic 1 1 [CLK2_OCC,*]
 … … …
1 400 basic 1 1 [CLK2_OCC,*]
2 401 clock_sequential 2 1 [CLK2_OCC,*] [CLK3_OCC,*]
3 405 clock_sequential 2 1 [CLK2_OCC,*] [CLK3_OCC,*]
3 500 clock_sequential 2 1 [CLK2_OCC,*] [CLK3_OCC,*]
Note: [*] = "SHIFT_CLOCK", which is a pulse-in-capture clock.

How to Use Boundary Scan in a Wrapped Core
You must perform a specific procedure if a wrapped core has embedded pads that require
boundary scan. Care must be taken during the insertion of the boundary scan and during ATPG.

Problem

Pads embedded inside a wrapped core must be identified such that boundary scan cells can be
added. The resulting boundary scan cells must also be made visible to the tool in order for them
to be included in scan chains and to apply scan patterns.

Solution

The solutions are given for wrapped core and chip-level flows.

Tessent Examples and Solutions
How to Use Boundary Scan in a Wrapped Core

Tessent™ Shell User’s Manual, v2021.3 503

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Wrapped Core Flow

The following figure shows the standard command flow for creating a wrapped core that
includes embedded boundary scan:

Figure 9-6. Wrapped Core Boundary Scan Flow

If the core contains pads and boundary scan, you must include the following commands in the
wrapped core flow shown in Figure 9-6 on page 503:

• Insert memory BIST and embedded boundary scan using during the
insert_mbist_ebscan step as follows:

a. Specify DFT requirements to insert memory test and embedded boundary scan:

set_dft_specification_requirements -memory_test on \
-boundary_scan on

Tessent™ Shell User’s Manual, v2021.3504

Tessent Examples and Solutions
How to Use an Older Core TSDB With Newly-Inserted DFT Cores

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

b. Insert embedded boundary scan cells and identify the pads:

set_boundary_scan_port_options \
-pad_io_ports [list taclk ta_cci0a ta_cci0b ta_cci1a ta_cci1b
ta_cci2a ta_cci2b ta_out0 ta_out1 ta_out2]

Note
The order specified is the order in which the boundary scan cells are inserted.

• Specify not to add any dedicated wrapper cells on the embedded pad I/O during the
insert_scan step:

set_dedicated_wrapper_cell_options off \
-ports {ta_out0 ta_out1 ta_out2}

set_dedicated_wrapper_cell_options off \
-ports {ta_cci0a taclk ta_cci0b ta_cci1a ta_cci1b ta_cci2a

ta_cci2b}

• Preserve the boundary scan instances in the graybox during the ATPG_patterns
(graybox generation) step.

set preserve_bscan {}

set preserve_bscan \
[get_instances -hier *_tessent_bscan_logical_group_*]

analyze_graybox -preserve_instances $preserve_bscan
write_design -tsdb -graybox -verbose

Chip-Level Flow

For boundary scan at the chip-level, follow the standard chip-level flow by inserting boundary
scan as the first step in the flow. There are no specific additions for embedded boundary scan at
this phase of the flow. The boundary scan segments from the wrapped core are picked up
automatically during chip-level boundary scan insertion.

How to Use an Older Core TSDB With Newly-
Inserted DFT Cores

When you have existing cores with Tessent DFT inserted, you can use them with automation
through the Tessent Shell database (TSDB).

Prerequisites

• Legacy core TSDB file.

Procedure

1. Open the TSDB of the legacy core:

open_tsdb <tsdb_directory>/legacy_core.tsdb

Tessent Examples and Solutions
How to Use an Older Core TSDB With Newly-Inserted DFT Cores

Tessent™ Shell User’s Manual, v2021.3 505

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell provides automation through the TSDB directory and TCD files. From the
TSDB, the tool finds all available TCD files that apply to the design.

2. Load the current design:

read_design <core_name> -design_id <final_design_id>

3. Prepare your legacy cores by configuring them into the correct mode.

a. If scan insertion was performed using Tessent Scan, use the import_scan_mode
command during pattern generation to import the EDT and OCC settings.

b. If the scan insertion was not performed using Tessent Scan, but there are TCD files
in the TSDB, use the add_core_instances command to configure the EDT and OCC.

add_core_instances -module <module_name>

c. If scan insertion was not performed using Tessent Scan and there are no TCD files
for OCC, manually add clock information using the add_clocks command and
define the clock definition as a third-party OCC.

For OCC clock definition
add_clocks <occ_output_mux/y_pin> -capture_only
For procedure setup of OCC
set_test_setup_icall "<OCC_name.setup>"
For OCC clock definition file
read_procfile <occ_control.proc>

4. Perform pattern generation with a regular ATPG session.

Results

You have successfully added legacy cores to newly-inserted cores using the TSDB.

Tessent™ Shell User’s Manual, v2021.3506

Tessent Examples and Solutions
TAP Configuration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

TAP Configuration
Tessent Shell typically relies on an IEEE 1149.1-based Test Access Port (TAP) as the primary
access mechanism to the DFT it inserts. When boundary scan is implemented, the Tessent TAP
fully complies with IEEE 1149.1 standard requirements, however many other possible
configurations are possible.

This section provides a quick reference to the various TAP insertion styles that are supported,
how to specify them, and what to expect from such implementations.

Insert a Stand-Alone TAP in a Design . 506

Insert a TAP with an IJTAG Host Scan Interface . 508

Insert a Compliance Enable TAP with an IJTAG Interface . 509

Insert a Daisychained TAP . 511

Insert a Primary TAP . 512

Insert a Secondary TAP . 514

Connecting to a Third-Party TAP . 517

Insert a Stand-Alone TAP in a Design
Insert a stand-alone TAP in a design. The TAP generated in this example can be further
enhanced with additional IR opcodes, IJTAG host scan interfaces, and decoded outputs to
enable downstream logic, such as another TAP.

Solution

1. Set the design level to “chip.”

2. Use the following dofile example to insert the TAP:

set DFT [create_dft_specification]
read_config_data -in $DFT -from_string {
 IjtagNetwork {
 HostScanInterface(ijtag) {
 Interface {
 tck : tck;
 }
 Tap(single) {
 }
 }
 }
}
process_dft_specification

The generated TAP connects to the trst, tck, tms, tdi, and tdo pads that were present in the pre-
DFT design.

Tessent Examples and Solutions
Insert a Stand-Alone TAP in a Design

Tessent™ Shell User’s Manual, v2021.3 507

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Discussion

If the TAP pins in the current design do not use the default names (trst, tck, tms, tdi, or tdo),
then they can be mapped using one of the following:

• The DftSpecification::IjtagNetwork::HostScanInterface::Interface wrapper.

• The following dofile command:

set_attribute_value portname -name function \
-value [trst | tck | tms | tdi | tdo]

The tool issues errors if the TAP pads are not yet present in the current design. If the
design is only temporary, you can specify the “set_design_level sub_block” command
instead. Many TAP-specific DRCs are not run in such a case and other side effects may
result. You should read an updated design that includes TAP pads as soon as possible.

The following is a schematic representation of this example:

Related Topics

Insert a TAP with an IJTAG Host Scan Interface

Insert a Compliance Enable TAP with an IJTAG Interface

Insert a Daisychained TAP

Insert a Primary TAP

Insert a Secondary TAP

Connecting to a Third-Party TAP

Tessent™ Shell User’s Manual, v2021.3508

Tessent Examples and Solutions
Insert a TAP with an IJTAG Host Scan Interface

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Insert a TAP with an IJTAG Host Scan Interface
Insert a TAP equipped with an IJTAG host scan interface. An IJTAG network can then be
connected to the TAP in a subsequent test insertion phase.

Solution

1. Set the design level to “chip.”

2. Use the following dofile example to insert the TAP:

set DFT [create_dft_specification]
read_config_data -in $DFT -from_string {
 IjtagNetwork {
 HostScanInterface(ijtag) {
 Interface {
 tck : tck;
 }
 Tap(single) {
 HostIjtag(1) {
 }
 }
 }
 }
}
process_dft_specification

Discussion

The host scan interface on the generated TAP can be used to control any type of
IJTAG-compliant network.

The host scan interface provides a test_logic_reset output to reset downstream logic; it asserts
the host_<hostname>_to_sel output to 1 when accessing the client IJTAG network.

The capture_dr_en, shift_dr_en, and update_dr_en outputs are consumed by the client IJTAG
network or instruments after qualification with the host_<hostname>_to_sel port.

Tessent Examples and Solutions
Insert a Compliance Enable TAP with an IJTAG Interface

Tessent™ Shell User’s Manual, v2021.3 509

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is a schematic representation of this example:

Related Topics

Insert a Stand-Alone TAP in a Design

Insert a Compliance Enable TAP with an IJTAG
Interface

Insert a TAP in a design with compliance enable (CE) decoding logic. The CE decoding logic
ensures that the TAP can only be accessed if all of the specified values are present on the
primary inputs. The same scheme is also used when the TAP pins are shared with functional
pins. The CE pins ensure that the TAP is only activated during intended test modes and not
accidentally, for example, while the functional pins toggle during normal operation.

Solution

1. Set the design level to “chip.”

2. Ensure that at least one primary input pad is set to 0 or 1 to enable the TAP logic.

3. Use the following dofile example to insert the TAP:

set DFT [create_dft_specification \
-active_low_compliance_enables {tap_en0} \
-active_high_compliance_enables {tap_en1}]

read_config_data -in $DFT/IjtagNetwork/HostScanInterface(tap) \
-from_string {

Tap(CE_decoded) {
HostIjtag(1) {

}
}

}
process_dft_specification

Tessent™ Shell User’s Manual, v2021.3510

Tessent Examples and Solutions
Insert a Compliance Enable TAP with an IJTAG Interface

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Discussion

Note how the CE pins are specified as options to the create_dft_specification command.

The CE decoding module relies on the CE pin values to select the active TDO and TDO_EN
signals and route both to the primary TDO output pad.

The same CE module also gates the TMS signal such that when the proper values are not
present, the TMS input on the TAP is kept to 0. This normally has the effect of “parking” the
TAP in one of the stable FSM states (refer to the IEEE 1149.1 FSM state diagram for details).

Caution
Do not confuse the CE decoding module input port names with expected CE values! For
instance, in the preceding diagram the “ce0” input is actually sourced by the CE pin driven

at 1; the “ce1” input is connected to the CE pin driven at 0.

The general rule is that if n CE inputs are specified, the tool creates CE decoding logic with
input ports ranging from ce<n-1> down to ce0.

If internal CE nodes have to be used (that is, when the pre-DFT design already contains
decoding logic and hookup points to connect the new TAP to), declare those hierarchical nodes
in a new DftSpecification::IjtagNetwork::HostScanInterface::Interface wrapper. The
Tap<name> wrapper then has to be put within the very same interface wrapper.

The following is a schematic representation of this example:

Related Topics

Insert a Stand-Alone TAP in a Design

Tessent Examples and Solutions
Insert a Daisychained TAP

Tessent™ Shell User’s Manual, v2021.3 511

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Insert a Daisychained TAP
This example inserts a second TAP in series with an existing one. The TRST, TCK, and TMS
signals are shared between both TAPs, which implies that the complete JTAG chain (for
example, top-level TDI to TDO) always shifts through both TAPs.

Solution

1. Set the design level to “chip.”

2. Use the following dofile example to insert the TAP:

set DFT [create_dft_specification]
read_config_data -in $DFT -from_string {
 IjtagNetwork {
 HostScanInterface(tap) {
 Interface {
 tck : tck;
 daisy_chain_with_existing_client : on;
 }
 Tap(2) {
 HostIjtag(2) {
 }
 }
 }
 }
}
process_dft_specification

Discussion

The first TAP in this example has a name that starts with “top_rtl_”, while the second TAP
begins with “top_rtl1_”. These names are used because this step is typically done as a
subsequent insertion pass, such that the current design already contains at least one valid TAP.

Tessent™ Shell User’s Manual, v2021.3512

Tessent Examples and Solutions
Insert a Primary TAP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is a schematic representation of this example:

Related Topics

Insert a Stand-Alone TAP in a Design

Insert a Primary TAP
This example inserts a TAP into a design that does not contain one. The generated TAP is a
primary TAP. Primary TAPs provide outputs to enable secondary TAPs, which are inserted
later.

Solution

1. Set the design level to “chip.”

Tessent Examples and Solutions
Insert a Primary TAP

Tessent™ Shell User’s Manual, v2021.3 513

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. In the IjtagNetwork::HostScanInterface::Tap wrapper, create one or several DataOut
output ports on the primary TAP. These enable a secondary TAP when the
corresponding DataOut port is asserted:

set DFT [create_dft_specification]
read_config_data -in $DFT -from_string {
 IjtagNetwork {
 HostScanInterface(tap) {
 Interface {
 tck : tck;
 }
 Tap(primary) {
 HostIjtag(1) {
 }
 DataOutPorts {
 count : 1;
 }
 }
 }
 }
}
process_dft_specification

Discussion

Except for the new user_ir_bits[0] output port created using the DataOutPorts wrapper, this
TAP is functionally identical to a stand-alone TAP with a host scan interface.

The added DataOutPort ports are TAP IR bits. If you need to create these bits as DR bits, insert
a TDR on the existing host scan interface using the following command:

 create_dft_specification –existing_ijtag_host_scan_in hierarchical_pin

Tessent™ Shell User’s Manual, v2021.3514

Tessent Examples and Solutions
Insert a Secondary TAP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is a schematic representation of this example:

Related Topics

Insert a Stand-Alone TAP in a Design

Insert a Secondary TAP

Insert a Secondary TAP
This example generates a primary TAP, a 2-to-1 scan mux, and a secondary TAP. The primary
TAP is enabled by default.

Solution

1. Set the design level to “chip.”

Tessent Examples and Solutions
Insert a Secondary TAP

Tessent™ Shell User’s Manual, v2021.3 515

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Use the following dofile example to insert the TAP:

set DFT [create_dft_specification]
read_config_data -in $DFT -from_string {
 IjtagNetwork {
 HostScanInterface(tap) {
 Interface {
 tck : tck;
 }
 Tap(primary) {
 HostIjtag(0) {
 }
 DataOutPorts {
 count : 1 ;
 }
 }
 ScanMux(1) {
 select : Tap(primary)/DataOut(0) ;
 Input(1) {
 Tap(secondary) {
 HostIjtag(1) {
 }
 }
 }
 }
 }
 }
}
process_dft_specification

Discussion

To trace through the TAP secondary implementations, begin with the TDO output and trace
back toward the primary TDI input.

The inserted ScanMux selects the TDI input by default and routes it to its own mux_out output.

The mux_select input comes from the primary TAP’s user_ir_bits[0] output. When this output
transitions to 1, the secondary TAP is enabled and the complete JTAG scan path goes through
both TAPs.

Tessent™ Shell User’s Manual, v2021.3516

Tessent Examples and Solutions
Insert a Secondary TAP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is a schematic representation of this example:

Tessent Examples and Solutions
Connecting to a Third-Party TAP

Tessent™ Shell User’s Manual, v2021.3 517

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Topics

Insert a Stand-Alone TAP in a Design

Insert a Primary TAP

Connecting to a Third-Party TAP
Connecting an IJTAG network or instruments to a third-party TAP requires reading the Verilog
module of that TAP along with its ICL before setting the current design in Tessent Shell.

Solution

When creating the DFT specification, specify the -existing_ijtag_host_scan_in port option and
point to the ScanInPort on the third-party TAP that receives the scanned-out data from the
inserted IJTAG network or instruments. The DFT specification is then created accordingly.

Related Topics

Insert a Stand-Alone TAP in a Design

How to Set Up Third-Party Synthesis
You must synthesize DFT logic generated in the Tessent Shell flow in order to perform scan
insertion, test pattern generation, and other processes.

Solution

You must define constraints in synthesis tools to enable accurate gate level representations of
the RTL. These constraints are primarily made up of clock definitions and timing constraints.
Use the following procedures to set up constraints for Synopsys and Cadence synthesis tools
within the Tessent Shell flow.

Synopsys

The following procedure provides a high-level overview of the synthesis flow for Synopsys. For
complete details, refer to “Example Design Compiler Synthesis Script” on page 760 for an
example.

1. Source the SDC file generated by the tool.

The generated SDC file is located in the TSDB of the current design under the design ID
to which the DFT was inserted and the ICL was extracted.

2. Set and redefine the Tessent Tcl variables.

The SDC file includes variables that need to be set in order for the script to operate
correctly. For example, the period of the TCK clock needs to be set. Depending on your

Tessent™ Shell User’s Manual, v2021.3518

Tessent Examples and Solutions
How to Set Up Third-Party Synthesis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT flow, you may need to define additional variables. The variables that you must set
are identified in the SDC script file.

3. Verify the declaration of the functional clocks.

You must define all functional clocks. The tool automatically generates clock
definitions based on the information from your DFT insertion script. You must review
these definitions for accuracy.

4. Redefine other Tessent Tcl variables.

You must review and customize any additional variables. For example, a variable must
be set that defines the input delay for the primary pins. This setting is based on the pre-
defined TCK period and a custom multiplier value. The following is an example:

set tessent_input_delay [expr 0.3 * $tessent_tck_period]

Note
The value of tessent_tck_period might depend on the maximum tck clock frequency
that can be applied to the circuit. See “IJTAG Network Performance Optimization”

in the Tessent IJTAG User’s Manual showing how to maximize the frequency of the
IJTAG network test clock.

5. Load the design into your synthesis tool.

The Tessent Shell tool automatically creates a script to import your design. The tool then
sources the generated script to elaborate the design.

6. Apply the SDC constraints.

At this stage of the flow, the SDC constraints for the DFT logic are applied by sourcing
the appropriate procedure. The procedures are described under the “extract_sdc”
command of the Tessent Shell Reference Manual.

7. Prepare the DFT logic for synthesis.

You must set up the DFT logic by configuring synthesis tool settings to ensure proper
synthesis. For example, some instances need to be preserved during synthesis to ensure
that the gate-level analysis functions correctly. The following statements are examples
of configuration settings:

set_app_var
compile_enable_constant_propagation_with_no_boundary_opt false
set preserve_instances [tessent_get_preserve_instances icl_extract]
set_boundary_optimization $preserve_instances false
set_ungroup $preserve_instances false
set_app_var compile_seqmap_propagate_high_effort false
set_app_var compile_delete_unloaded_sequential_cells false
set_boundary_optimization [tessent_get_optimize_instances] true
set_size_only -all_instances [tessent_get_size_only_instances]

8. Synthesize your design.

Tessent Examples and Solutions
How to Set Up Third-Party Synthesis

Tessent™ Shell User’s Manual, v2021.3 519

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The synthesis script compiles the design to create a gate-level representation of the RTL.

9. Write out the SDC and the final gate-level netlist.

The final SDC is a combination of the functional and the DFT constraints.

Genus

For synthesis with the Genus tool, follow the procedure for the Synopsys tool, but ensure that
you adjust steps 3 through 9 to match the script shown in “Example Genus Synthesis Script” on
page 761. These steps are different because the tools use different commands to run synthesis.
Otherwise, the flow and results are the same.

Tessent™ Shell User’s Manual, v2021.3520

Tessent Examples and Solutions
How to Set Up Support for Third-Party OCCs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Set Up Support for Third-Party OCCs
Tessent tools provide automation that enables you to insert Tessent OCCs as well as define and
configure them for ATPG. If the design contains third-party OCCs, Tessent tools can set up and
operate the OCC throughout the flow by reading and processing files that describe the operation
of the OCC.

How to Configure Files for Third-Party OCCs . 520

Test Logic Insertion . 521

Configuration for Scan Insertion . 523

Pattern Generation and Simulation . 523

How to Configure Files for Third-Party OCCs
In order to automate the flow as much as possible, the following files set up and control how the
tool interacts with the OCC.

Solution

You must place the ICL and PDL files in the same directory as the Verilog of the OCC using the
same file base name. For this example, the OCC Verilog module is in a file named
third_party_occ.v.

Moving the ICL and PDL files into the same directory as the Verilog enables the tool to
automatically load them and carry the information throughout the flow.

You must prepare the following files and definitions as described:

• ICL — Provide an ICL file based on the IEEE 1687 IJTAG standard to describe the
ports on the OCC that need to be controlled by IJTAG during test. Name the file
third_party_occ.icl and place it in the same directory as the Verilog file.

• PDL — Provide a PDL file based on the IEEE 1687 IJTAG standard to describe the
procedures that configure the third-party OCC. Name the file third_party_occ.pdl and
place it in the same directory as the Verilog file.

• TCD Scan — Provide a TCD Scan file based on the Tessent Core description language
to describe the OCC’s programming shift register (chain segment) that needs to be
connected to the design’s scan chains during scan insertion.

The following is an example TCD Scan file for a third-party OCC. The sub-chain port
information must be included in the ScanChain wrapper and in the Clock and ScanEn
wrappers to define the polarity of each port.

Tessent Examples and Solutions
Test Logic Insertion

Tessent™ Shell User’s Manual, v2021.3 521

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core(third_party_occ) {
 Scan {
 module_type : occ;
 allow_scan_out_retiming : 0;
 is_hard_module : 1;
 traceable : 0;
 pre_scan_drc_on_boundary_only : 1;
 Clock(slow_clock) {
 off_state : 1'b0;
 }
 ClockOut(clock_out_mux/y) {
 slow_clock_input : slow_clock;
 fast_clock_input : fast_clock;
 }
 ScanEn(scan_en) {
 active_polarity : 1'b1;
 }
 ScanChain {
 length : 4;
 scan_in_port : scan_in;
 scan_out_port : scan_out;
 scan_in_clock : slow_clock;
 scan_out_clock : ~slow_clock;
 }
 }
}

• Clock Control Definitions — Provide a test procedure file that contains Clock Control
Definitions (CCDs) for the OCC instances in the design. For details on the format of
CCDs, refer to “Clock Control Definition” on page 567.

Test Logic Insertion
During test logic insertion (for example, EDT), the tool reads and processes the ICL and PDL
files and includes this information in design files stored in the TSDB. Additionally, any OCC
ports described in the ICL file that need to be controlled by IJTAG are connected to the
generated IJTAG network such that the OCCs can be easily configured in subsequent steps.

See “How to Configure Files for Third-Party OCCs” on page 520 for instructions on setting up
the ICL and PDL files.

Solution

EDT Example

The following EDT example uses a post-insertion procedure to connect the slow_clock port of
the OCC to the newly-generated shift_capture_clock DFT signal. This enables the same clock
source to be used for the OCC and EDT logic. The post-insertion script is executed after the
process_dft_specification command creates all other logic defined in the DFT Specification.
For detailed information on how to create and use a post-insertion procedure, refer to
“process_dft_specification.post_insertion” in the Tessent Shell Reference Manual.

Tessent™ Shell User’s Manual, v2021.3522

Tessent Examples and Solutions
Test Logic Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context dft -rtl
set_tsdb_output_directory ../tsdb_outdir

Read the design and OCC module. The ICL and PDL files with the
same base name are automatically read from the same directory
read_verilog ../rtl/RDS_process_with_occ.v
read_verilog ../rtl/third_party_occ.v

set_current_design RDS_process
set_design_level physical_block

Define DFT Signals for EDT and scan test.
add_dft_signals scan_en edt_update test_clock -source_node \
 {scan_en_r edt_update test_clock_r}
add_dft_signals edt_clock shift_capture_clock -create_from_other_signals
set_dft_specification_requirements -logic_test on
add_clocks clock1 -period 3ns
add_clocks clock2 -period 4ns

check_design_rules

Create the DFT Spec for adding EDT
set spec [create_dft_specification -sri_sib_list {edt}]
read_config_data -in $spec -from_string {
 EDT {
 ijtag_host_interface : Sib(edt);
 Controller (c1) {
 longest_chain_range : 50, 65;
 scan_chain_count : 60;
 input_channel_count : 2;
 output_channel_count : 2;
 }
 }
}

Post-insertion procedure to change the existing connection to
third-party OCC's slow_clock port and connect to the shift_capture_clock
DFT Signal
proc process_dft_specification.post_insertion {RDS_process args} {
 set occ_insts [get_instances -of_module third_party_occ -silent]
 if {[sizeof_collection $occ_insts] > 0} {
 set slow_clock_pins [get_pins slow_clock -of_instances $occ_insts]
 foreach_in_collection occ_pin $slow_clock_pins {
 delete_connection $occ_pin
 create_connection [get_dft_signal shift_capture_clock] $occ_pin
 }
 }
}
process_dft_specification
extract_icl

Create a synthesis script of all RTL (original and newly created)
write_design_import_script use_in_synthesis.tcl -use_relative_path_to . \
-replace
exit

Tessent Examples and Solutions
Configuration for Scan Insertion

Tessent™ Shell User’s Manual, v2021.3 523

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Configuration for Scan Insertion
You must configure the tool to read the OCC files before running scan insertion. The Tessent
OCC provides independent control of each clock domain in your design in the context of DFT.

See “How to Configure Files for Third-Party OCCs” on page 520 for instructions on setting up
the OCC files.

Solution

When inserting scan into the post-synthesis netlist, you must specify the location of the TCD
Scan file using the set_design_sources command. The tool uses the description of the OCCs’
scan segment to stitch them into the design’s scan chains.

The following is an example:

set_context dft –scan
set_tsdb_output_directory ../tsdb_outdir

Specify the location of the TCD Scan file that describes the OCC's scan
segment
set_design_sources -format tcd_scan -Y ../rtl -extension tcd_scan

Read the cell library and synthesized netlist from DC Shell
read_cell_library ../library/tessent/adk.tcelllib
read_verilog ../2.synthesis/RDS_process_synthesized.vg

Use read_design to read in information (DFT signals, etc.) performed in
previous pass
read_design RDS_process -design_identifier rtl -no_hdl
set_current_design RDS_process
set_system_mode analysis

Add a scan mode and specify EDT instances to which scan chains should be
connected
set edt_instance [get_instances -of_icl_instances [get_icl_instances \

-filter tessent_instrument_type==mentor::edt]]
add_scan_mode edt -edt_instance $edt_instance
analyze_scan_chains
insert_test_logic
exit

Pattern Generation and Simulation
You must configure the tool to read the OCC files before generating patterns. The Tessent OCC
provides independent control of each clock domain in your design in the context of DFT.

See “How to Configure Files for Third-Party OCCs” on page 520 for instructions on setting up
the OCC files.

Tessent™ Shell User’s Manual, v2021.3524

Tessent Examples and Solutions
Pattern Generation and Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Solution

Pattern Configuration

For stuck-at ATPG, much of the setup is automatically imported using the import_scan_mode
command. Additional clock definitions and settings for the OCC should be provided for the
OCC’s asynchronous source clocks as well as the clocks on the output of the OCC instances.

set_context patterns -scan
set_tsdb_output_directory ../tsdb_outdir

Read the cell library and design
read_cell_library ../library/tessent/adk.tcelllib
read_design RDS_process -design_id gate
set_current_design RDS_process

Specify a test mode for stuck-at ATPG
set_current_mode edt_stuck

Import scan, EDT, and clock configuration for ATPG
import_scan_mode edt

Define external and OCC clocks
set_clock_options test_clock_r -pulse_in_capture on
set occ_insts [get_instances -of_module third_party_occ* -silent]
if {[sizeof_collection $occ_insts] > 0} {
 foreach_in_collection occ_inst $occ_insts {
 set inst_name [get_single_name $occ_inst]
 add_clocks [get_pins ${inst_name}/clock_out_mux/y] -capture_only
Execute iProc for third_party OCC to set default values (test_mode = 1)
 set_test_setup_icall "${inst_name}.setup" -append
 }
}
set_system_mode analysis

Specify a procedure file containing clock control definition for the OCC
instances
read_procfile third_party_occ_clock_controls.proc
create_patterns
write_tsdb_data -replace
write_patterns patterns/RDS_process_stuck_parallel.v -verilog -parallel \

-replace -parameter_list {SIM_KEEP_PATH 1}
set_pattern_filtering -sample_per_type 2
write_patterns patterns/RDS_process_stuck_serial.v -verilog -serial \

–replace -parameter_list {SIM_KEEP_PATH 1}

In the ANALYSIS mode, specify a procedure file that contains the clock control definitions for
the OCC instances.

For transition fault ATPG, a number of changes to the dofile are highlighted in the following
example. Define any additional internal clocks that are needed for the third-party OCC, similar
to those defined in the example (for example, if the OCC internally gates the fast clock during
transition test).

Tessent Examples and Solutions
Pattern Generation and Simulation

Tessent™ Shell User’s Manual, v2021.3 525

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additionally, specify any parameters to the OCC’s iCalls that must be set to configure the OCC
for transition/fast-capture test.

You must constrain the design’s I/Os that are not used for transition test.

set_context patterns -scan
set_tsdb_output_directory ../tsdb_outdir

Read the cell library and design
read_cell_library ../library/tessent/adk.tcelllib
read_design RDS_process -design_id gate
set_current_design RDS_process

Specify a test mode for transition ATPG
set_current_mode edt_transition

Import scan, EDT, and clock configuration for ATPG
import_scan_mode edt
import_clocks

Define external and OCC clocks
set_clock_options test_clock_r -pulse_in_capture on
set occ_insts [get_instances -of_module third_party_occ* -silent]
if {[sizeof_collection $occ_insts] > 0} {
 foreach_in_collection occ_inst $occ_insts {
 set inst_name [get_single_name $occ_inst]
 add_clocks [get_pins ${inst_name}/clock_out_mux/y] -capture_only
 add_clocks \

[get_pins ${inst_name}/occ_control/cgc_SHIFT_REG_CLK/clkg] \
-pulse_in_capture

Execute iProc for third_party OCC and enable fast capture mode for OCCs
 set_test_setup_icall "${inst_name}.setup fast_capture_mode 1" \

-append
 }
}

add_input_constraints -hold
add_output_masks -all

set_system_mode analysis

Specify a procedure file containing clock control definition for the OCC
instances
read_procfile third_party_occ_clock_controls.proc

set_fault_type transition
set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]

create_patterns
write_tsdb_data -replace
write_patterns patterns/RDS_process_transition_parallel.v -verilog \

-parallel -replace -parameter_list {SIM_KEEP_PATH 1}
set_pattern_filtering -sample_per_type 2
write_patterns patterns/RDS_process_transition_serial.v -verilog \

-serial –replace -parameter_list {SIM_KEEP_PATH 1}

Tessent™ Shell User’s Manual, v2021.3526

Tessent Examples and Solutions
Pattern Generation and Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Simulation

You must run a Verilog simulation of the generated patterns to ensure no mismatches are
reported and that the patterns function as expected during the tester application.

For parallel load patterns specified by the “write_patterns -parallel” command, you simulate all
the patterns.

For serial load patterns, a handful of patterns are sufficient because the run time for simulating
serial load patterns can be significant.

Tessent Examples and Solutions
Post-Synthesis Update

Tessent™ Shell User’s Manual, v2021.3 527

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Post-Synthesis Update
Mapping complex ports during synthesis may cause name and footprint changes in the design.

ICL and TCD Post-Synthesis Update . 527

Limitations Related to SystemVerilog Interface Arrays . 528

Updating ICL Attributes From the Design . 529

Matching Requirements for Port Names in Post-Synthesis Update 530

Design Name Mapping Commands . 531

ICL and TCD Post-Synthesis Update
After logic synthesis with Design Compiler, Genus, or Oasys, ports may be flattened or bit-
blasted, causing design footprint changes. Post-synthesis names differ from those in the initial
RTL.

Tessent in no RTL mode uses the post-synthesis netlist when you run set_current_design. The
ICL and TCD of the current design are updated automatically to match the new design objects
loaded from the post-synthesis netlist.

The following ICL model attributes are updated to allow smooth binding of the ICL objects and
design objects later in the flow:

• tessent_design_instance (for the instance path)

• tessent_design_gate_ports (for ports)

• tessent_design_rtl_ports (for ports)

The tessent_design_instance attribute of the ICL instance object is automatically updated when
any of the following commands are invoked:

• set_current_design

• write_design

• update_icl_attributes_from_design

The tessent_design_gate_ports attribute of the ICL port object is automatically updated when
any of the following commands are invoked:

• set_current_design

• write_design

• get_ports -of_icl_ports

• get_pins -of_icl_pins

Tessent™ Shell User’s Manual, v2021.3528

Tessent Examples and Solutions
Limitations Related to SystemVerilog Interface Arrays

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• get_pins -of_icl_ports

• update_icl_attributes_from_design

For ICL ports and instances, the ICL matching performed by set_current_design is insufficient
if the current ICL model does not include the complete ICL of child instances under the physical
blocks. In these cases, the ICL matching is completed later in the flow using the following
commands:

• get_ports -of_icl_ports

• get_pins -of_icl_pins

• get_pins -of_icl_ports

• update_icl_attributes_from_design

Use the -use_path_matching_options option with get_pins, get_ports, or get_instances to match
a name pattern to the ports and pins in the current design when the TCD of instruments dumped
during RTL mode is loaded in no RTL flow.

Limitations Related to SystemVerilog Interface
Arrays

Designs using SystemVerilog interface arrays synthesized with Design Compiler require special
handling.

If your design contains ports declared using SystemVerilog interface arrays, and your netlist is
created with Synopsys Design Compiler, the syntax for these declarations should be restricted
as follows:

Use the following syntax to declare the SystemVerilog interface ports array when creating your
RTL design. The packed range must be from 0 to a positive right index Without this syntax,
Tessent Shell cannot match and automatically update ICL objects and TCD models post-
synthesis with Design Compiler.

<SV interface type> <port name> [0:<positive right index>]

For example, if your design has an interface type named intf1 and a port named p1, the port
declaration in the design file should be written so that the range is restricted:

intf1 p1 [0:<positive_index>];

The left index must be 0 and the right index must be positive.

Tessent Examples and Solutions
Updating ICL Attributes From the Design

Tessent™ Shell User’s Manual, v2021.3 529

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Updating ICL Attributes From the Design
The update_icl_attributes_from_design command updates ICL port, instance, and module
attributes for the gate views of a design. All ICL ports, instances, and modules in the current
design are updated.

The following attributes are updated:

• tessent_design_gate_ports — This attribute refers to the design port corresponding to
the ICL port. The attribute value is the name of the design port as it appears in the netlist.

• tessent_design_instance — This attribute refers to the design instance corresponding to
the ICL instance. The value is the hierarchical name relative to the parent ICL instance.

• tessent_design_rtl_gate_port_mapping — This attribute maps the RTL name to the
netlist name for those ports which appear in the following attribute name lists:

o forced_high_input_port_list

o forced_low_input_port_list

o forced_high_output_port_list

o forced_low_output_port_list

o forced_high_internal_input_port_list

o forced_low_internal_input_port_list

o tessent_ground_port_list

o tessent_power_port_list

o tessent_clock_domain_labels

The attribute value is a list of names. The names at the even index positions in the list
are the RTL names of the ports in the above name lists, and the names at the odd index
positions are the netlist names of those ports.

The update_icl_attributes_from_design command has one Boolean option: -verbose. This
option allows warnings to be issued when a port name cannot be found or matched in the netlist.
The command is invoked automatically from the write_design -tsdb command. It is also
invoked automatically as part of the insert_test_logic command just after insertion.

Related Topics

update_icl_attributes_from_design

Tessent™ Shell User’s Manual, v2021.3530

Tessent Examples and Solutions
Matching Requirements for Port Names in Post-Synthesis Update

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Matching Requirements for Port Names in Post-
Synthesis Update

The following matching rules are supported when looking up a port name in a netlist:

1. Support the transformation performed by dc_shell with “change_names -rules verilog”
to remove the escaping and replace special characters with underscores (“_”). A single
underscore matches multiple underscores.

2. Support the transformation performed by Genus to get the gate name from the RTL
name. All strings and numerical indices in the RTL name are preserved. Only the
delimiters are changed.

3. Support the Genus transformation described in rule #2 but with escaping removed and
special characters replaced with an underscore ("_") as in rule #1.

4. Support bit-blasted escaped names generated by a layout tool. The bit select is
incorporated into the escaped name.

5. Support user specified matching rules.

Tessent Examples and Solutions
Design Name Mapping Commands

Tessent™ Shell User’s Manual, v2021.3 531

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Design Name Mapping Commands
The add_rtl_to_gates_mapping, report_rtl_to_gates_mapping, and
delete_rtl_to_gates_mapping commands have several features to help you control design name
mapping.

Design Name Mapping . 531

Default Matching Rules for the get_pins, get_ports, and get_instances -match_rtl_reg
Commands . 531

Design Name Mapping
Use the add_rtl_to_gates_mapping, report_rtl_to_gates_mapping, and
delete_rtl_to_gates_mapping commands to control design name mapping.

You define custom name mapping rules for RTL to post-synthesis or post-layout name mapping
with the add_rtl_to_gates_mapping command. You can specify substrings, prefixes, and
suffixes in addition to basic mapping rules. Use this command if the matching rules described in
“Default Matching Rules for the get_pins, get_ports, and get_instances -match_rtl_reg
Commands” on page 531 are not sufficient for your application.

Related Topics

report_rtl_to_gates_mapping

delete_rtl_to_gates_mapping

Default Matching Rules for the get_pins, get_ports, and
get_instances -match_rtl_reg Commands

The tool provides several default rules.

• Component Names — All strings between non-escaped delimiters (component names)
in the name to be looked up (lookup name) must match the corresponding strings in a
netlist name unless they contain special characters. The recognized delimiters are
periods (“.”), forward slashes (“/”), brackets (“[]”), and underscores (“_”).

There are two types of component names: subnames and indices. Any of the above
characters can delimit subnames. Indices can be delimited only by brackets or
underscores. A right bracket must follow a component name that is preceded by a left
bracket.

Note
Negative indices are not supported.

Tessent™ Shell User’s Manual, v2021.3532

Tessent Examples and Solutions
Design Name Mapping Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

An example lookup name:

abc.def

The “abc” string in the name to be looked up must exactly match the string before the
first delimiter in a netlist name. The “def” string in the name to be looked up must
exactly match the string after the last delimiter in the same netlist name.

• Escaping — Escape characters are not matched. They are only used to direct the
matching procedure.

• Delimiters — Delimiters in the lookup name are used only to extract the component
names.

All component names after the first are assumed to have a leading delimiter and
optionally a trailing delimiter in a netlist name. There are two cases to consider when
matching the delimiters for a component name in the netlist:

a. The port name in the netlist is escaped.

Possible matches for component name delimiters are as follows:

• Leading and trailing delimiters of brackets (“[]”).

• Leading delimiter of underscore (“_”) and trailing delimiter of underscore or
null.

• Leading delimiter of period (“.”) or slash (“/”) and trailing delimiter of null.

b. The port name in the netlist is not escaped.

Possible matches for component name delimiters are as follows:

• Leading delimiter of underscore and trailing delimiter of underscore or null.

• Special Characters in the Lookup Name — When matching to a non-escaped name in
the netlist, any characters not allowed by the language without escaping in the lookup
name are replaced with the underscore character (“_”). Matching allows truncation in
the netlist name to two trailing underscores.

Note
This truncation rule applies only to underscore characters derived from special
characters, not delimiters.

• Bit Select Lookup Name — A bit select lookup name (last component name is an
index) can match a one-dimensional vector with the final bit select applied to the match
or match directly to a bit select.

Tessent™ Shell User’s Manual, v2021.3 533

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 10
Test Procedure File

Test procedure files specify how the scan circuitry within a design operates. The scan circuitry
operation is specified using previously-defined scan clocks and other control signals. To operate
the scan circuitry in your design, you must define the scan circuitry and provide a test procedure
file to describe its operation. The design rules checking (DRC) process, which occurs when you
exit setup mode, performs extensive checking to ensure the scan circuitry operates correctly.

Test Procedure File Creation . 534

Test Procedure File Syntax . 534

Test Procedure File Structure . 539
#include Statement . 539
Set Statement . 540
Alias Definition. 543
Timing Variables . 545
Timeplate Definition. 548
Multiple-Pulse Clocks. 554
Always Block . 556
Procedure Definition. 557
Clock Control Definition . 567

The Procedures . 576
Test_Setup (Optional). 577
Shift (Required) . 580
Alternate Shift Procedure (Optional) . 582
Load_Unload (Required) . 583
Shadow_Control (Optional) . 586
Master_Observe (Sometimes Required) . 588
Shadow_Observe (Optional). 588
Skew_Load (Optional) . 589
Clock_run (Optional) . 591
Capture Procedures (Optional) . 593
Clock_po (Optional) . 598
Clock_sequential (Optional) . 599
Init_force (Optional) . 599
Test_end (Optional, all ATPG tools) . 600
Sub_procedure . 602

Additional Support for Test Procedure Files . 604

Creating Test Procedure Files for End Measure Mode . 605

Serial Register Load and Unload for LogicBIST and ATPG . 609
Register Load and Unload Use Models . 609

Tessent™ Shell User’s Manual, v2021.3534

Test Procedure File
Test Procedure File Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Static Versus Dynamic Register Variables . 609
Test Procedure File Modifications . 610
Dofile Modifications. 613
Serial Load and Unload DRC Rules . 616

Notes About Using the stil2mgc Tool . 622
Extraction of Strobe Timing Information from STIL (SPF). 622
The STIL ClockStructures Block . 622

Test Procedure File Commands and Output Formats . 623

Test Procedure File Creation
You insert scan circuitry and create test procedure files for ATPG operations using the “patterns
-scan” context of Tessent Shell. If your design already contains scan circuitry, you need to
create a test procedure file to describe its operation either by hand or with Tessent Shell.

You can specify a test procedure file in setup mode using the add_scan_groups command. The
tools can also read in procedure files by using the read_procfile command or the write_patterns
command when not in setup mode. When you load more than one test procedure file, the tool
merges the timing and procedure data.

You can also have the stil2mgc tool translate a STIL Procedure File (SPF) into a dofile and test
procedure file. This tool produces a dofile that defines clocks, scan chains, scan groups, and pin
constraints. This tool also creates test procedure files with a timeplate and the following
standard scan procedures: test_setup, load_unload, and shift. For more information about
stil2mgc, refer to “Notes About Using the stil2mgc Tool” on page 622.

The following subsections describe the syntax and rules of test procedure files, give examples
for the various types of scan architectures, and outline the checking that determines whether the
circuitry is operating correctly.

Test Procedure File Syntax
The test procedure file uses common syntactical conventions such as bold and italic fonts, and
reserved characters. The file supports Tcl conditional statements.

Syntax Conventions

The following syntax conventions are used in this chapter:

• Bold — Indicates a keyword. Enter the keyword exactly as shown.

• Italic — Indicates lexical elements such as identifiers, strings, or numbers. Replace the
italicized word with the appropriate name or integer.

Test Procedure File
Test Procedure File Syntax

Tessent™ Shell User’s Manual, v2021.3 535

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• | — A vertical bar or pipe character indicates a logical “OR” as in “select foo OR
foo_not”.

• [] — Square brackets indicate optional elements. Do not include the brackets.

• … — An ellipsis indicates a repeatable item or set.

Reserved Characters

If you have a pin or pathname that uses a reserved punctuation character, you must enclose that
name in double quotes. See Table 10-1 for a list of reserved punctuation characters.

For example, the following statement is illegal because it uses the exclamation point outside of
double quotes.

force /inst_my_adder_1/xclk_header!x1!x1/op1[9] 1

The signal name contains a reserved punctuation character, the exclamation point (!), so it must
be enclosed inside double quotes. The correct syntax would be:

force "/inst_my_adder_1/xclk_header!x1!x1/op1[9]" 1

Throughout this chapter, value = 0, 1, X, or Z.

Table 10-1. Reserved Punctuation Characters

Name Character

Ampersand/AND &

Caret/Circumflex/XOR ^

Comma ,

Equals =

Exclamation mark !

Left/Opening brace {

Left/Opening parenthesis (

Right/Closing brace }

Right/Closing parenthesis)

Semicolon ;

Vertical bar/OR |

Tessent™ Shell User’s Manual, v2021.3536

Test Procedure File
Test Procedure File Syntax

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using Tcl in the Test Procedure File

Procedure files support the Tcl conditional statements “if”, “else”, and “elseif” using the
following syntax:

if { tcl_expr } {
 procedure file statements
}
elseif { tcl_expr } {
 procedure file statements
}
else {
 procedure file statements
}

Where a “tcl_expr” is any Boolean Tcl expression that uses Tcl variables, dofile variables, or
environment variables. Just as when doing variable substitution in the procedure file, other Tcl
statements and defining Tcl variables are not supported. All variables must be defined in the
dofile or from the shell as environment variables.

The body of these Tcl conditional statements should contain only legal procedure file syntax,
not any other Tcl statements. The Tcl conditional statements are treated as preprocessor
statements in the procedure file parser. They are not preserved in the tool after parsing is
finished; only the procedure file code selected by the evaluation of the Tcl “if” expression is
stored in the tool. Therefore, when using write_procfile to write out the procedure file, none of
the Tcl conditional statements are present, and the procedure file code not used is also not
present. For more information refer to “The Tessent Tcl Interface” on page 771.

Introductory Test Procedure File Example

The following is an example of a test procedure file.

Test Procedure File
Test Procedure File Syntax

Tessent™ Shell User’s Manual, v2021.3 537

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Comments use “//” characters
//
// Set the base time increment for use in all timeplates
set time scale 1.0 ns;

// Define the strobe time for the measure statements
set strobe_window time 1;

// This design uses a single timeplate, named “tp1”, for all
// vectors.

timeplate tp1 =
 force_pi 0;
 measure_po 1;
 pulse CLK0_7 2 1;
 pulse CLK8_15 2 1;
 period 4;
end;

// The shift and load_unload procedures define how the design
// must be configured to allow shifting data through the scan
// chains. The procedures define the timeplate to use
// and the scan group that it references.

procedure shift =
 scan_group grp1;
 timeplate tp1;
 cycle =
 force_sci;
 measure_sco;
 pulse CLK8_15;
 pulse CLK0_7;
 end;
end;

procedure load_unload =
 scan_group grp1;
 timeplate tp1;
 cycle=
 force CLEAR 0;
 force CLK0_7 0;
 force CLK8_15 0;
 force scen1 1;
 end;
 apply shift 8;
end;

// The capture procedure is a "non-scan" procedure. This
// procedure describes the timeplate to use for the
// capture cycle. It also defines the number of cycles
// to use in the capture cycle. In this example there is
// just one cycle.

procedure capture =
timeplate tp1;
 cycle =
 force_pi;
 measure_po;

Tessent™ Shell User’s Manual, v2021.3538

Test Procedure File
Test Procedure File Syntax

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 pulse_capture_clock;
 end;
end;

Test Procedure File
Test Procedure File Structure

Tessent™ Shell User’s Manual, v2021.3 539

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Procedure File Structure
The test procedure file consists of many structural elements that display in a specific order,
starting with #include statements. Some of these elements are required and others are optional.

#include “<file_name>”;
[set_statement ...]
[alias_definition ...]
[timing_variables ...]
timeplate_definition // includes pulse clock statements
always_block
procedure_definition
clock control definition

#include Statement. 539

Set Statement . 540

Alias Definition. 543

Timing Variables . 545

Timeplate Definition . 548

Multiple-Pulse Clocks . 554

Always Block . 556

Procedure Definition . 557

Clock Control Definition . 567

#include Statement
The “#include” statement specifies that the tool read test procedure data from a specified file.

The following rules apply to #include statements and files:

• The “#include” statement can occur anywhere in the file, and multiple “#include”
statements can occur in one file. For example:

#include "foo.proc";

• The filename to be included must be enclosed in double quotes, and the statement must
be followed by a semicolon.

• All timeplates and procedure rules apply to the statements placed in #include files.

• Included files can use the “#include” statement to include other files, up to a maximum
include depth of 512. If you later use the write_procfile command write out procedure
data, the “#include” statements are not preserved, and the tool writes all procedure data
to a single file.

Tessent™ Shell User’s Manual, v2021.3540

Test Procedure File
Set Statement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Set Statement
The Set statements define specific parameters used throughout the test procedure file.

The following statements are available:

set time scale tscale;
set strobe_window time window_width;
set default_timeplate timeplate_name;
set autoforce off;

set time scale Statement

Defines the time scale and unit. The “set time scale” statement must be at the beginning of the
procedure file, before any timeplate or procedure definition. If you do not specify the time scale,
the default value is 1 ns.

The tool applies the time scale and unit to the test procedure file and timeplates. The tscale you
specify can be any real number. Time values in the timeplate, however, must be integers,
representing whole time scale units. If you find you are specifying fractional times in the
timeplate, you must reduce the time scale unit so you can specify integer time values in the
timeplate. For example, the following would result in a syntax error:

set time scale 1 ns ;
set strobe_window time 1 ;

 timeplate fast_clk_tp =
 force_pi 0 ;
 measure_po 0.500 ;
 pulse CLKA 0.750 1.50 ;
 pulse CLKB 0.750 1.50 ;
 period 3.000 ;
 end ;

To correct the syntax, you could change the time scale to picoseconds, and adjust the time value
to meet the scale as follows:

set time scale 10 ps ;
set strobe_window time 1 ;

 timeplate fast_clk_tp =
 force_pi 0 ;
 measure_po 50 ;
 pulse CLKA 75 150 ;
 pulse CLKB 75 150 ;
 period 300 ;
 end ;

The units supported are ms, us, ns, ps, and fs.

The tool translates the time scale in the procedure file into a Verilog ‘timescale directive in the
Verilog test bench when writing patterns in Verilog format.

Test Procedure File
Set Statement

Tessent™ Shell User’s Manual, v2021.3 541

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If the time scale number you specify in the test procedure file is 1 or larger, the resulting Verilog
‘timescale directive has the same time unit (resolution) and time precision. For example, “set
time scale 1 ns ;” would result in this Verilog directive:

‘timescale 1ns / 1ns

If you want the test bench to have smaller precision than resolution, there are several ways to
designate this:

• Specify a time scale number of less than 1 in the procedure file. For example, “set time
scale 0.5 ns ;” produces this Verilog directive:

‘timescale 1ns / 100ps

• Add non-zero significant bits to the time scale in the procedure file. For example, “set
time scale 10.05 ns ;” produces this Verilog directive:

‘timescale 1ns / 10ps

• Add trailing zeros as significant bits for an asynchronous clock period or pattern_set
period (when creating IJTAG patterns). For example, an “add_clocks -period 10.00ns”
command produces this Verilog directive:

‘timescale 1ns / 10ps

• Use the SIM_PRECISION parameter file keyword. For example, “SIM_PRECISION
0.5ns;” produces this Verilog directive:

‘timescale 1ns / 100ps

The precision in the Verilog test bench can originate from any of the previous sources, and the
tool uses the smallest specified precision when writing out the Verilog test bench.

The resolution in the Verilog test bench originates from the procedure file. When you use
multiple procedure files, the various “set time scale” statements can specify different values,
and the tool uses the smallest specified resolution when writing the Verilog test bench.

set strobe_window time Statement

Defines the strobe-window width. The “set strobe_window time” statement must be at the
beginning of the procedure file, before any timeplate or procedure definition. If you do not
specify the strobe_window time, it defaults to the maximum allowable size. For example, if you
look at a timeplate, and if there is a 10 ns window between the measure_po event and the next
event (or end of timeplate), then that is the size of the strobe window. If there are multiple
timeplates, then the smallest strobe window from the timeplates is the maximum allowable
strobe window.

Some tester formats measure primary outputs (POs) at the exact time that you specify with the
measure_po statement in the timeplate. However, other tester formats, such as STIL, require

Tessent™ Shell User’s Manual, v2021.3542

Test Procedure File
Set Statement

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

that output measurements occur during a specified window of time (window_width). For WGL,
this statement changes the strobe window in the output file.

A strobe window can only stretch from the measure_po time to the end of the cycle or the next
force or pulse event. For example, if you issue a measure_po at time 10 and the rising edge of a
pulse at time 30, the strobe window can only be a maximum of 20. Strobe_window lets you
know that, starting at the measure_po time, the primary output should be stable for the time
specified by the strobe window.

Note
Strobe_window only affects the following formats: STIL, TSTL2, and WGL.

set default_timeplate Statement

Specifies a timeplate that can be used for any procedure definition that does not explicitly
specify a timeplate. The referenced timeplate_name must be defined prior to the Set
Default_timeplate statement in the procedure file.

set autoforce Statement

An optional statement that controls the behavior for automatically adding force events. If
included, this statement must appear at the beginning of the procedure file, prior to any
procedures.

By default (without this statement), if a constrained pin is not forced to the constrained value in
the test_setup procedure, a force event is automatically added to the first cycle of the test_setup
procedure. If the test_setup procedure starts with a call to a subprocedure, then the force event is
added to the first cycle following the subprocedure. If a force event already exists in the
test_setup procedure for a constrained pin, then no additional force event is added for that pin.

When you include the “set autoforce off” statement, the tool does not add any force events on
the constrained pins to the test setup procedure.

Including the “set autoforce off” statement also prevents the tool from forcing clock pins to the
inactive state at the beginning of the load_unload procedure. The statement also disables
copying the last value forced on an input port in test_setup and prevents it from becoming a
force at the start of the load_unload procedure.

The “set autoforce off;” statement also turns off auto forcing Z values on bidis in the
load_unload procedure—see Load_Unload (Required).

Test Procedure File
Alias Definition

Tessent™ Shell User’s Manual, v2021.3 543

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alias Definition
The Alias definition groups multiple signal names or cell paths into a single alias name. Signal
Alias statements are useful in procedures or timeplates where multiple signals need to be
assigned to the same value at the same time.

Cell Alias statements are used to group cell paths into a single alias name. You must define
aliases before using them. The definition can occur at any place in the procedure file outside of
a timeplate or procedure definition.

Note
When saving STIL2005, CTL, or Structural_STIL patterns, all aliases defined in the
procedure file are defined as SignalGroups in the resulting STIL file.

There is a predefined alias available for specifying all bidirectional pins. The “_ALL_BIDI”
keyword may be useful for forcing all bidirectional pins to a specified value without having to
identify each individual pin. For example:

force _ALL_BIDI Z;

In using a cell Alias statement to group cell paths from condition statements into a single alias
name, it is possible to override a condition statement in a named capture procedure with a
subsequent condition statement that occurs in the same place (global condition, or local to a
specific cycle). A condition statement can only override a previous condition if the first
condition is specified using an alias name, and if the second condition is specified without using
an Alias statement.

Tip
When using multiple named capture procedures where each procedure requires many
condition statements, it is helpful to group cells into a common name and apply the

condition statement once to the entire group of cells, and then override specific cells that need a
different value than what was applied to the group. This frees you from having to enter
numerous condition statements for each named capture procedure, while only a handful of the
cells require different values for each procedure.

The Alias definition has the following format:

alias alias_name = pin_name [, pin_name ...];

or

alias alias_name = cell_name [, cell_name ...];

• alias_name

A string that specifies the name of the alias.

Tessent™ Shell User’s Manual, v2021.3544

Test Procedure File
Alias Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• pin_name

A repeatable string that specifies the pin name to associate with the alias name.

• cell_name

A repeatable string that specifies the cell name to associate with the alias name.

Alias Examples

This example groups two signal names into a single alias name.

alias my_group = T, U;

This next example shows how a named capture procedure should look when using an Alias
statement for condition cells. The example sets each of four cells to a value of 0, and then the
fourth cell (/inst_3/blockb/reg_2/Q) is overridden with a value of 1.

alias cond_cells = "/inst_0/blocka/reg_1/Q", "/inst_1/blocka/reg_1/Q",
"/inst_2/blocka/reg_1/Q", "/inst_3/blockb/reg_2/Q";

timeplate tp1 =
force_pi 0;
measure_po 10;
pulse ref_clk 50 50;
period 100;

end;
procedure capture capture1 =

timeplate tp1;
condition cond_cells 0;
condition /inst_3/blockb/reg_2/Q 1;

// overrides condition in previous statement
cycle =

force scan_en 0;
force ctrl_a 1;
force_pi;
pulse ref_clk;

end;
cycle =

force_pi;
measure_po;
pulse ref_clk;

end;
end;

This example shows how to define a user-defined bus in a procedure file:

alias wdata = "D[0]", "D[1]", "D[2]", "D[3]";

Test Procedure File
Timing Variables

Tessent™ Shell User’s Manual, v2021.3 545

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

And this shows how to assign a value to that user-defined bus:

procedure sub_procedure subpro1 =
 scan_group grp1 ;
 timeplate shift_tp ;
 cycle =
 force wdata 0010 ;
 pulse ref_clk ;
 end;
end;

Timing Variables
Two timing variable block definitions allow a procedure file to express timing using variables
and equations, and to have this equation-based timing preserved in the tool and reproduced in
the correct syntax in pattern output files.

Test data languages such as WGL and STIL have the ability to express time values in the timing
blocks as numerical values or as equations based on variables. Using equation-based timing
enables one value to be specified for a global attribute, such as the test cycle period, while other
values are derived from this using equations.

The two timing block definitions are called “timing_variables” and “variables”. In the
“timing_variables” block, variables can be defined and assigned timing values. These values are
expressed in the time scale which is already specified by the Set Time Scale statement. The
“timing_variables” block must be defined before the timeplate definitions.

The “variables” block is used to define variables that are not time values and have no units
associated with them. These variables can only be assigned integer numbers, and can be used as
scaling multipliers in the timing equations.

The variables in the “timing_variables” block can also be assigned timing equations instead of
time values. These equations can use either timing values or previously defined variables or
timing variables as operands. When using timing equations, you must ensure that the final value
has a valid time unit. When the tool parses the procedure file, timing variables that are
computed to have an invalid time unit cause a W42 DRC error.

Note
The event statements in the timeplate definition block accept timing values and timing
variables.

When saving patterns in the Verilog, WGL, and STIL supported formats, the waveform tables
in these formats are written using the equations and variables, and the variables are defined in
the appropriate definition blocks which exist in each format. When saving patterns in formats
that don’t support equation-based timing, the equations are computed and the timing
information is specified as the resulting numeric values in the pattern file. Setting the
ALL_FLATTEN_TIMING parameter file keyword to “1” causes Verilog, WGL, and STIL

Tessent™ Shell User’s Manual, v2021.3546

Test Procedure File
Timing Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

outputs to compute the timing equations and use only the resulting numeric values in the output
files. Any equation that does not compute to an integer value is rounded to the nearest integer
value.

The “timing_variables” block has the following syntax:

variables =
variable_name = integer;
[variable_name = integer; ...]

end;

timing_variables =

variable_name = time_or_equation;
[variable_name = time_or_equation; ...]

end;

Note that time_or_equation can either be an integer time value or a time equation. A time
equation is expressed using operators and operands. An operator is one of +, -, *, or /. An
operand can be a time value or a variable name (time or scaling variable). The multiplication
and division operators (* and /) take precedence over the addition and subtraction operators (+
and -). You can use parenthesis to group operations for precedence.

Note
In the timeplate definitions, any place where a time value can be used, a timing variable is
also valid. A scaling variable from the “variables” block cannot be used in a timeplate

definition. These can only be used in time equations.

Variable names can be any identifier except for reserved keywords used in the procedure file
syntax (such as “period” and “force_pi”). The variable names must conform to the rules that
apply to all identifiers used in the procedure file (alpha numeric string, starting with an alpha
character, and no reserved punctuation marks). If reserved characters or reserved words are used
in a variable name, the name must be enclosed in quotes.

Equation-Based Timing Example

The following is a partial example of using equation-based timing.

Test Procedure File
Timing Variables

Tessent™ Shell User’s Manual, v2021.3 547

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set time scale 1.0 ns;
variables =

v_scale = 1;
end;

timing_variables =

t_period = 100;
t_force = 0;
t_meas = ((t_period * 0.1) * v_scale);
t_rise = ((t_period / 2) * v_scale);
t_width = ((t_period * 0.2) * v_scale);

end;

timeplate tp1 =

force_pi t_force;
measure_po t_meas;
pulse ref_clk t_rise t_width;
period t_period;

end;

This is how the preceding timing example would be represented in the STIL output:

Spec STUCK_spec {
Category STUCK_cat {

v_scale = ’1’;
t_period = ’100ns’;
t_force = ’0ns’;
t_meas = ’(t_period*0.1)*v_scale’;
t_rise = ’(t_period/2)*v_scale’;
t_width = ’(t_period*0.2)*v_scale;

}
}

Timing STUCK_timing {

WaveformTable tset_tp1 {
Period ’t_period’;
Waveforms {

input_time_gen_0 { 01 { ’t_force’ D/U; }}
input_time_gen_1 { 01 { ’0ns’ D; ’t_rise’ D/U;

’t_rise+t_width’ D;}}
po { LHX { ’0ns’ X; ’t_meas’ l/h/x; ’t_rise’ X;}}

}
}

}

Tessent™ Shell User’s Manual, v2021.3548

Test Procedure File
Timeplate Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is how the timing example would be represented in the WGL output:

equationsheet STUCK_sheet
exprset STUCK_set

v_scale := 1.0;
t_period := 100nS;
t_force := 0nS;
t_meas := (t_period * 0.1) * v_scale;
t_rise := (t_period / 2) * v_scale;
t_width := (t_period * 0.2) * v_scale;
_tp1_fall_1 := t_rise + t_width;

end
end

timeplate tp1 period t_period

"input_a" := input [t_force:S];
...
"output_z" := output[0nS:X, t_meas:Q, t_rise:X];
...
"refclk" := input[0nS:D, t_rise:S, _tp1_fall_1:D];

end

Timeplate Definition
The timeplate definition describes a single tester cycle and specifies where in that cycle all
event edges are placed.

You must define all timeplates before they are referenced. A procedure file must have at least
one timeplate definition. All clocks must be defined in the timeplate definition. The timeplate
definition has the following format:

timeplate timeplate_name =
timeplate_statement
[timeplate_statement ...]
period time;
end;

The following list contains available timeplate_statement statements. The timeplate definition
should contain at least the force_pi and measure_po statements. You are not required to include
pulse statements for the clocks. But if you do not “pulse” any of the clocks, the tool uses two
cycles to pulse a clock, resulting in larger patterns.

The tool uses the pulse_clock statement rather than individual pulse statements when generating
default procedures.

Test Procedure File
Timeplate Definition

Tessent™ Shell User’s Manual, v2021.3 549

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

timeplate_statement:
offstate pin_name off_state;
force_pi time;
bidi_force_pi time;
measure_po time;
bidi_measure_po time;
force pin_name time;
measure pin_name time;
pulse pin_name time width [, time width];
pulse_clock time width [, time width];

Note
In “timeplate_statement” definitions, you can use timing variables instead of time values.
For more information, refer to “Timing Variables” on page 545.

The following is a list of statements in the timeplate definition:

• timeplate_name

A string that specifies the name of the timeplate.

• offstate pin_name off_state

A literal and double string that specifies the inactive, off-state value (0 or 1) for a
specific named primary input pin that is pulsed within this timeplate but is not defined as
a clock pin by the add_clocks command. The complex timeplates are most useful in the
shift procedure where a non-clock pin must be pulsed while still maintaining a single
cycle in the shift procedure.

This statement must occur before all other timeplate_statement statements. This
statement is required for any pin that is not defined as a clock pin by the add_clocks
command but is pulsed within this timeplate.

Note
An “offstate” statement does not automatically force pin_name to its off state at time
0. For that to occur, you must force or pulse pin_name appropriately in a procedure.

• force_pi time

A literal and integer pair that specifies the force time for all primary inputs.

• bidi_force_pi time

A literal and integer pair that specifies the force time for all bidirectional pins. This
statement enables the bidirectional pins to be forced after applying the tri-state control
signal, so the system avoids bus contention. This statement overrides “force_pi” and
“measure_po”.

• measure_po time

Tessent™ Shell User’s Manual, v2021.3550

Test Procedure File
Timeplate Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A literal and integer pair that specifies the time at which the tool measures (or strobes)
the primary outputs.

• bidi_measure_po time

A literal and integer pair that specifies the time at which the tool measures (or strobes)
the bidirectional pins. This statement overrides “force_pi” and “measure_po”.

• force pin_name time

A literal, string, and integer that specifies the force time for a specific named pin.

Note
This force time overrides the force time specified in force_pi for this specific pin.

• measure pin_name time

A literal, string, and integer that specifies the measure time for a specific named pin.
You can use a “measure” statement in timeplates only to specify a measure time for a
pin.

Note
This measure time overrides the measure time specified in measure_po for this
specific pin.

• pulse pin_name time width [, time width]…

A literal, string, and repeatable integer set that specifies the pulse timing for a specific
named pin.

pin_name — String that refers to a pin in the design. Valid pins must meet one of the
following conditions:

Defined as a clock pin using the add_clocks command.

Not defined as a clock pin, but has a pulse signal and an offstate specified by the
“offstate” statement.

time — Integer that defines the offset from time 0 to the leading edge of the pulse.

width — Integer that defines the width of the pulse.

To define a multiple-pulse waveform, include multiple time and width pairs separated
by a comma.

All pulses must occur within the tester cycle period. You define this period using the
“period” keyword.

Test Procedure File
Timeplate Definition

Tessent™ Shell User’s Manual, v2021.3 551

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Multiple pulses are only supported for the following output formats: Verilog, WGL,
STIL, STIL2005, CTL, FJTDL, MITDL, and TSTL2. Additionally, the TSTL2

output format does not support more than two pulses.

For MITDL format there is restriction that multiple pulse timing must be a cyclical
repetition of the first pulse. Consequently, multi-pulse and double-pulse timing in the
procedure file only works in the MITDL output without an error if the timing fits the
restrictions of the MITDL syntax.

• pulse_clock time width [, time width]…

A literal and integer set that specifies the pulse timing for all signals defined as clocks,
unless another statement such as a “force” or “pulse” exists for a particular clock signal.
This is similar to the force_pi statement, which specifies the timing for ports that are not
explicitly overridden by a force statement for those specific ports.

time — Integer that defines the offset from time 0 to the leading edge of the pulse for the
first pulse. For subsequent edges in a multi pulse clock, time equals the time of the
previous leading edge plus the period of the clock.

width — Integer that defines the width of the pulse.

You can use the pulse_clock statement to ensure that any added clocks (especially
internal clocks) automatically have defined timing.

You may have multiple pulse_clock statements within a timeplate definition, as long as
each statement has a different number of offset and width pairs. If two pulse_clock
statements in the timeplate definition have the same number of offset and width pairs,
the tool issues an error.

For more information on multiple-pulse clocks, see “Multiple-Pulse Clocks.”

All pulses must occur within the tester cycle period. You define this period using the
“period” keyword.

For example (1x pulse_clock):

timing_variables =
tester_period = 10;
strobe_1 = (0.96 * tester_period);
t_time = (0.25 * tester_period);
t_width = (0.5 * tester_period);

end;

timeplate tessent_ijtag =

force_pi 0 ;
measure_po strobe_1;
force tck 0;
pulse_clock t_time t_width;
period tester_period;

end;

Tessent™ Shell User’s Manual, v2021.3552

Test Procedure File
Timeplate Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• period time

A literal and integer pair that defines the period of a tester cycle. This statement ensures
that the cycle contains sufficient time, after the last force event, for the circuit to
stabilize. The time you specify should be greater than or equal to the final event time.

Example 1

timeplate tp1 =
force_pi 0;
pulse T 30 30;
pulse R 30 30;
measure_po 90;
period 100;

end;

Example 2

The following example shows a shift procedure that pulses b_clk with an off-state value of 0.
The timeplate tp_shift defines the off-state for pin b_clk. The b_clk pin is not declared as a
clock in the ATPG tool.

timeplate tp_shift =
offstate b_clk 0;
force_pi 0;
measure_po 10;
pulse clk 50 30;
pulse b_clk 140 50;
period 200;

end;

procedure shift =

timeplate tp_shift;
cycle =

force_sci;
measure_sco;
pulse clk;
pulse b_clk;

end;
end;

Example 3

In the following example, the pin b_clk is not declared as a clock in the ATPG tool. However, in
the shift procedure, the user needs the pin to be pulsed twice with an offstate of 0.

Test Procedure File
Timeplate Definition

Tessent™ Shell User’s Manual, v2021.3 553

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

timeplate tp_shift =
offstate b_clk 0;
force_pi 0;
measure_po 10;
pulse clk 50 30;
pulse b_clk 40 50, 140 50;
period 200;

end;

procedure shift =

timeplate tp_shift;
cycle =

force_sci;
measure_sco;
pulse clk;
pulse b_clk;

end;
end;

Tessent™ Shell User’s Manual, v2021.3554

Test Procedure File
Multiple-Pulse Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple-Pulse Clocks
You can use the pulse_clock statement to handle multiple-pulse clock timing and still use a
single generic timeplate template definition in various flows. The pulse_clock statement
handles multiple-pulse timing definitions in the same manner as the pulse statement.

The pulse_clock Statement . 554

Inferred Timing . 555

Differences Between Default add_clock and 1x Multiplier Clock. 556

The pulse_clock Statement
In a timeplate statement, each pulse_clock statement has a different number of integer pairs for
the offset and width of the clocks. The different statements represent 1x, 2x, 3x, and so on, pulse
timing for clocks. The frequency multiplier that you specify for the clocks identifies the
appropriate pulse timing used for them.

When you specify a multiplier for a clock and no pulse_clock statement exists for that clock, the
tool creates inferred timing for the clock using the timeplate period. The tool issues an error
when a port-specific pulse or force statement exists for the clock and the timing in the statement
does not specify the correct number of pulse statements to match the frequency multiplier of the
clock.

The following example has multiple pulse_clock statements. It is a timeplate that includes both
a port specific pulse statement for a clock and the generic pulse_clock statements for all other
clocks. The first pulse_clock statement sets the default clock timing for this timeplate and
contains a single pair of numbers (offset and width). Clocks other than “SlowClockA” that do
not have frequency multipliers use this timing. Clocks with 2x multipliers use the second
pulse_clock statement, and clocks with 4x multipliers use the third pulse_clock statement. The
tool uses inferred timing for clocks specified with any other frequency multiplier and issues an
error if "SlowClockA" has a frequency multiplier of 2x or more.

timeplate tp1 =
force_pi 0;
measure_po 95;
pulse SlowClockA 20 50;
pulse_clock 30 30;
pulse_clock 13 25, 63 25;
pulse_clock 6 12, 31 12, 56 12, 81,12;
period 100;

end;

The following example shows a timeplate with one port-specific pulse and one pulse_clock
statement for 4x multiplier timing. Clocks other than “ClockA” that do not have a frequency
multiplier use force_pi timing. Inferred timing only occurs when clocks have frequency
multipliers, which means other clocks still use NRZ timing when you use multiple cycles to
create the clock pulse.

Test Procedure File
Multiple-Pulse Clocks

Tessent™ Shell User’s Manual, v2021.3 555

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

timeplate tp1 =
force_pi 0;
measure_po 95;
pulse ClockA 20 50;
pulse_clock 6 12, 31 12, 56 12, 81, 12;
period 100;

end;

Inferred Timing
Based on the period of the timeplate, the tool creates inferred timing for frequency multiplied
clocks when there are no pulse_clock statements in the timeplate with the correct number of
clock edges for the clock.

The total period of a clock pulse is the period of the timeplate divided by the frequency
multiplier of the clock. The offset for the leading edge of the first clock pulse is one-fourth of
the period of the clock. For example, the inferred timing for a 4x clock in a timeplate with a
period of 200 is equivalent to the following pulse_clock definition:

pulse_clock 13 25, 63 25, 113 25, 163 25

Figure 10-1. 200ns Timing Waveform

The first edge is one-fourth the period of the clock rounded to the nearest integer, and the width
of the pulse is one-half the period of the clock. Each subsequent edge is the previous leading
edge plus the period of the clock.

The tool bases the inferred timing for a 1x frequency-multiplied clock on any other clock timing
found for a single pulse clock; otherwise, it uses the inferred timing formula.

When you specify a timeplate period and a clock frequency multiplier that combine to create
inferred timing that is too small to be integer timing, the tool automatically reduces the
procedure file timescale and scales all timing numbers to larger values.

For example, suppose the timescale for the procedure file is 1ns, the period of the timeplate is 5,
and the clock frequency multiplier is 10. The tool automatically adjusts the timescale to 100ps
and the period of the timeplate becomes 50. It adjusts all of the other numbers accordingly. In
this case, the tool multiplies them by 10.

Tessent™ Shell User’s Manual, v2021.3556

Test Procedure File
Always Block

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Differences Between Default add_clock and 1x Multiplier
Clock

Default add_clock clocks use the time specified by pulse_clock statements with one pulse or by
pin-specific pulse statements. However, frequency-multiplied clocks use the timing specified
for them only if they match the number of pulses. If this is not the case, the tool uses inferred
timing and issues an error if there are mismatches.

Clocks specified with a frequency multiplier of one behave differently than default clocks. For
this reason, you must specify the timing for a 1x frequency-multiplied clock with a single clock
pulse. The tool does not use NRZ timing with multiple cycles or forced timing edges, and it
issues an error if the timeplate specifies a double-pulse or multiple-pulse timing for the 1x
clock.

Always Block
This optional block definition specifies events that happen in all cycles of all procedures.
Because the always block specifies events for all cycles, it is used with all timeplates and does
not require a timeplate to be referenced in the block. Also, any signal that is pulsed in the always
block must have a pulse waveform in all timeplate definitions.

If you defined any pulse-always clocks using the add_clocks command, an always block is
automatically created in the procedure file, if one does not already exist, and a pulse statement
added for each clock. Similarly, if you pulse a clock signal in the always block, the signal is
automatically defined as a pulse-always clock. For more information, refer to the add_clocks
description in the Tessent Shell Reference Manual.

Note
Pulse-always clocks are not automatically pulsed in a named capture procedure. The clocks
must be pulsed explicitly.

All events specified in the always block is subject to rules checks that apply to each procedure.
In other words, the events in the always block is added to each cycle of each procedure, and all
DRC rules still apply to these events.

When saving patterns that preserve the structure of the procedures as macros (such as the CTL
pattern file, or structural STIL pattern file), the events in the always block is placed in the cycles
of each procedure. The always block is not present in the structural pattern file as a macro or
procedure.

Always Block Syntax

The always block has the following syntax.

Test Procedure File
Procedure Definition

Tessent™ Shell User’s Manual, v2021.3 557

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

always =
 always_statement ;
 [always_statement ; ...]
end ;

The always_statement is defined as one of the following.

pulse pin_name ;
force pin_name value ;

Always Block Example

The following is a partial example of an always block.

set time scale 1,0 ns ;

timeplate tp1 =
 force_pi 0 ;
 measure_po 10 ;

pulse ref_clk 20 20, 60 20 ;
 pulse shift_clk 50 20 ;
 period 100 ;
end ;
always =
 pulse ref_clk ;
end ;

procedure shift =
 timeplate tp1 ;
 cycle =
 force_sci ;
 measure_sco ;
 pulse shift_clk ;
 end ;
end ;

Procedure Definition
The procedure definition is the heart of the procedure file. The procedure defines precisely how
the scan circuitry operates.

All procedure definitions contain one or more cycle definitions. Each cycle definition in the
procedure specifies a vector; each statement in the cycle specifies which events occur in that
vector. The timeplate being used specifies any timing associated with that vector. The following
is a list of rules for writing procedure definitions:

• If more than one timeplate is defined, you can assign a specific timeplate for each
procedure definition or for each cycle within the procedure definitions. You must assign
a timeplate at some point within a procedure definition.

• You must group all procedure statements, except scan_group, timeplate, apply, and
loop, into cycle statements.

Tessent™ Shell User’s Manual, v2021.3558

Test Procedure File
Procedure Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• You cannot specify time values in cycle statements.

• You cannot specify loop statements within cycle statements.

• The order of events within a cycle definition does not matter. The assigned timeplate
specifies the order.

• Within a procedure definition, you can specify a scan group.

• Each scan group needs a unique test procedure file. You associate the test procedure file
with the scan group when you specify the add_scan_groups command.

• Text following “//” is a comment and is ignored.

• You can include blank lines.

• You define a procedure type for a particular scan group (with the exception of the
seq_transparent and clock procedures) only once in a test procedure file.

• You can only have a single test_setup procedure, even if you define multiple scan
groups for your design.

The procedure definition has the following general format, but certain statements are restricted
to certain procedures.

Test Procedure File
Procedure Definition

Tessent™ Shell User’s Manual, v2021.3 559

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

procedure procedure_type [proc_name] =
[scan_group scan_group_name;]
proc_statement [proc_statement ...]

end;

proc_statement:
[timeplate timeplate_name;]
cycle =

cycle_statement [cycle_statement ...]
end;
annotate “quoted string”;
apply proc_name #times;
loop loop_count =

cycle =
cycle_statement [cycle_statement ...]

end;
end;

cycle_statement:
force_pi;
bidi_force_pi;
force_sci;
force_sci_equiv;
measure_po;
bidi_measure_po;
measure_sco;
restore_pi;
restore_bidi;
bidi_force_off;
pulse_capture_clock;
force_capture_clock_on ;
force_capture_clock_off ;
pulse_read_clock;
pulse_write_clock;
force pin_name value;
expect pin_name value;
condition cell_name value;
measure pin_name;
initialize instance_name [value];
pulse pin_name;
timeplate timeplate_name;
annotate “quoted string”;

• procedure_type

A string that specifies the type of procedure that follows. The following list contains
valid procedures types:

• test_setup • capture • seq_transparent

• shift • clock_po • test_end

• load_unload • ram_sequential • clock

• shadow_control • ram_passthru • sequential

• master_observe • clock_sequential • skew_load

Tessent™ Shell User’s Manual, v2021.3560

Test Procedure File
Procedure Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information, refer to “The Procedures” on page 576.

• proc_name

An optional string that specifies the user-defined name of the procedure. Because you
can specify multiple seq_transparent and clock procedures in a test procedure file, these
procedure types require explicit procedure names, proc_name, for each procedure that
you define.

• scan_group scan_group_name

A literal and string pair that specifies a scan group within a scan procedure. Because
some of the scan procedures are scan group specific, you can specify scan groups within
scan procedures. This makes it possible to define the scan procedures (shift,
load_unload) for multiple scan groups within the same procedure file. You can then
specify this file on the add_scan_groups command for each scan group in this file. If you
use the read_procfile command to read a procedure file, you must include this statement.
However, if you use the add_scan_groups command, this statement is optional because
the group is specified on the command line. When the tool writes out a procedure file, it
produces the scan_group statement.

Note
The scan_group_name argument is case-sensitive if the netlist used is case-sensitive.

• timeplate timeplate_name

A literal and string pair that specifies the name of the timeplate the procedure uses.

A timeplate statement at the beginning of the procedure, outside of the cycle definitions,
is the timeplate used by the entire procedure, if no other timeplates are referenced.

A timeplate statement within a cycle is the timeplate used for that cycle and all other
subsequent cycles until another timeplate statement is encountered. For more
information about timeplates, refer to “Timeplate Definition” on page 548.

• annotate “ quoted string ”;

A literal and string pair that reports the Verilog test bench annotations during
simulation.

The annotate statement is optional and must always include a quoted string. All
procedures can be annotated, including sub-procedures. The annotate statement can
occur inside or outside of cycle blocks, including before the first cycle or after the last
cycle.

• shadow_observe • init_force • sub_procedure

Test Procedure File
Procedure Definition

Tessent™ Shell User’s Manual, v2021.3 561

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This example shows the annotate statement in the beginning of a cycle along with the
cycle timeplate statement, before any event statements:

CYCLE =
 [TIMEPLATE tp_name ;]
 [ANNOTATE “quoted string” ;]
 event_statement;
 …
END ;

The following is an example of using the annotate statement outside of a cycle block:

procedure test_setup =
timeplate tp1 ;
annotate "Before first cycle" ;
cycle =

...
end;
annotate "start sub procedure" ;
apply mySub 1 ;
...

end;

The following is an example of an annotate statement used in a test_setup procedure,
and how this appear sin a STIL pattern file.

Procedure test_setup =
timeplate tp1;
cycle =

annotate “first cycle in test_setup” ;
force reset 1;
force clock 0;

end;
cycle =

annotate “next annotation” ;
force reset 0;

end;
…

This is a segment of the resulting STIL pattern file:

W tset_tp1;
V { _pi_ = 0X11XXX;

po = XXXX;
}
Ann {* Begin chain test *}
Ann {* first cycle in test_setup *}
V { …
}
Ann {* next annotation *}
V { …
}

• label “ quoted_string” ;

Tessent™ Shell User’s Manual, v2021.3562

Test Procedure File
Procedure Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A literal and string pair for including pattern labels in saved patterns. As with the
annotation statement, you can have one label statement per cycle in a procedure
definition. The quoted_string becomes a pattern label for the vector that corresponds to
that procedure cycle.

Only the STIL and WGL pattern formats support a pattern label statement. For pattern
file formats that don't support a pattern label, the label is present as an annotation
statement that has the string “label:” added at the beginning of the label string.

For the simulation test bench, the label is also present as an annotation that has the string
“label:” added at the beginning, and the annotation is echoed when the patterns are
simulated. You can use the existing parameter file keyword SIM_ANNOTATE_QUIET
to turn off echoing the annotations and labels while simulating.

Each pattern label is a unique identifier, with its vector count appended to the end of the
label string.

This statement can be used at the start of any cycle, just like an annotation statement. A
cycle cannot contain both a label and an annotation statement.

The following example shows how to use the label statement within the test_setup
procedure:

procedure test_setup =
timeplate my_tp;
cycle =

force my_sig 0;
end;
cycle =

label "end of test_setup" ;
force my_sig 1;

end;
end;

The previous example produces the following STIL vectors:
V { _pi_ = …;
}
"end of test_setup_1": V { _pi_ = …;
}

• apply proc_name #times

A literal and double-argument string that tells the tool to apply the specified procedure
the specified number of times. You must use the apply shift statement at least once in the
load_unload procedure. For the apply shift statement, you must enter a proper #times
parameter.

If required, you must enter the apply shadow_control statement immediately after the
apply shift procedure statement, and you must set the #times argument to 1. The apply
statement is only valid outside of the cycle blocks because it specifies another group of
cycles within another procedure to be added at that point.

• loop loop_count

Test Procedure File
Procedure Definition

Tessent™ Shell User’s Manual, v2021.3 563

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A literal and integer pair that specifies the loop count and is followed by a block of
statements. The loop procedure statement takes the loop count and causes all cycles
within the loop block to be repeated by the number of times specified by the count. For
example, the following test procedure file excerpt specifies 3 cycles within the loop that
are each repeated 20 times:

procedure test_setup =
timeplate tp1 ;
cycle =

force_pi;
measure_po;

end;
loop 20 =

cycle =
end;
cycle =

pulse tck;
end;
cycle =
end;

end; // end loop
end;

Nesting loops within other loops is permitted. For example, the following test procedure
file excerpt causes tck to be pulsed 20 times and clk_a to be pulsed 100 times:

procedure test_setup =
timeplate tp1 ;
cycle =

force_pi;
measure_po;

end;
loop 20 =

cycle =
end;
cycle =

pulse tck;
end;
loop 5 =

cycle =
pulse clk_a;

end;
end; // end inside loop
cycle =
end;

end; // end outside loop
end;

This statement can be used in procedures but must be specified outside of the cycle
statement.

The loop statement is preserved in the flat model when the tool writes the model and is
also present in the TCD files.

Tessent™ Shell User’s Manual, v2021.3564

Test Procedure File
Procedure Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When writing out the patterns in tester pattern formats, the loops are preserved where
possible, and unrolled if the syntax of the pattern file does not support loops. Specifying
the ALL_NO_LOOP parameter keyword unrolls loops in the pattern files in similar
fashion to sub procedures that are applied more than once. Using the loop statement to
repeat a certain number of cycles N times is exactly equivalent to putting those cycles
within a sub procedure, then applying that procedure N times.

• cycle_statement

The following list describes valid cycle_statement keywords. Cycle_statements cannot
contain time values.

o force_pi

A literal that specifies for the tool to force all primary inputs.

o bidi_force_pi

A literal that specifies for the tool to force all bidirectional pins.

o force_sci

A literal that specifies for the tool, in the shift procedure, to place values on the scan
chain inputs, thus implementing scan cell controllability.

o force_sci_equiv

A literal that acts the same as the force_sci statement, except that it also forces all
pins equivalent to the scan input pins. Using this statement places the complement
value on the associated differential pin of a scan input during scan loading. This
statement is necessary because the test procedures do not consider pin equivalence
relationships (those specified with add_input_constraints -equivalent).

o measure_po

A literal that specifies for the tool to measure or strobe the primary outputs.

o bidi_measure_po

A literal that specifies for the tool to measure or strobe the bidirectional pins.

o measure_sco

A literal that specifies for the tool, in the shift procedure, to measure scan output
values, thus implementing scan cell observability. In End Measure Mode (refer to
“Creating Test Procedure Files for End Measure Mode” on page 605), measure_sco
is also used in the load_unload procedure.

o restore_pi

A literal that returns primary inputs to their original states (prior to this procedure’s
execution). You use the restore_pi statement at the end of a seq_transparent
procedure.

Test Procedure File
Procedure Definition

Tessent™ Shell User’s Manual, v2021.3 565

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o restore_bidi

A literal that returns bidirectional pins to their original states (prior to this
procedure’s execution). You use the restore_bidi statement at the end of a “clock”
procedure.

o bidi_force_off

A literal that specifies for the tool to force all unconstrained bidirectional pins off.

o pulse_capture_clock

A literal that specifies for the tool to pulse the capture clock.

o force_capture_clock_on

A literal that specifies the cycle when the capture clock goes active. This statement
and the force_capture_clock_off statement can be used in place of the
pulse_capture_clock statement.

The “_on” refers to the active state of the clock, which is not necessarily the high
binary value. This statement is used only with the non-scan procedures and cannot
be mixed with the following statements in the same procedure:

• pulse_capture_clock

• pulse_write_clock

• pulse_write_clock

o force_capture_clock_off

A literal that specifies the cycle when the capture clock goes inactive. This statement
and the force_capture_clock_on statement can be used in place of the
pulse_capture_clock statement.

The “_off” refers to the inactive state of the clock, which is not necessarily the low
binary value. This statement is used only with the non-scan procedures and cannot
be mixed with the following statements in the same procedure:

• pulse_capture_clock

• pulse_write_clock

• pulse_read_clock

o pulse_read_clock

A literal that specifies for the tool to pulse the RAM read clock.

o pulse_write_clock

A literal that specifies for the tool to pulse the RAM write clock.

o force pin_name value

Tessent™ Shell User’s Manual, v2021.3566

Test Procedure File
Procedure Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A literal and double string that forces the specified value of 0, 1, X, or Z on the
specified pin. The pin names you specify must be valid pin pathnames for primary
inputs.

o expect name value

A literal and double string that causes the tool to expect the specified value of 0, 1,
X, or Z on the specified internal pin or port. The default value is X. You can use
“expect” statements only in the test_setup and test_end procedure. Internal pins are
checked by DRC and are compared in the test bench. For ports, the tool validates the
values in the test bench, the DRCs, and in the tester pattern formats.

o condition cell_name value

A literal and double string that you use at the beginning of a seq_transparent
procedure to identify the necessary scan cell states (conditions) to establish
transparency in non-scan cells. You identify the scan cell by the pin pathname
associated with the output of its state element. The path from the defined pin to the
scan cell must only contain buffers and inverters. The value argument sets the value
at the specified pin pathname, which may be inverted relative to the associated scan
cell value.

o measure pin_name

A literal and string pair that specifies for the tool to measure the value of the named
pin. You can use a “measure” statement in the capture procedure only to specify a
measure on a pin in a different cycle than the measure_po event.

o initialize instance_name value

A literal and string pair that initializes the named memory element to the value
given. This statement is particularly useful for initializing the finite state machine in
the TAP controller of boundary scan circuitry, when the TAP does not contain the
TRST signal. Once set to a binary state, the TCK and TMS pins can place the finite
state machine in a known state. If not set, these pins remain at X.

If you do not specify a value, the tool chooses a random value to assign to all latches
and flip-flops with the specified instance name.

o pulse pin_name

A literal and string pair that specifies for the tool to pulse the named clock pin.

o observe_method value

A literal and string pair set to a value of master, slave, or shadow, to specify for a
specific observe method to be defined for each named capture procedure.

Test Procedure File
Clock Control Definition

Tessent™ Shell User’s Manual, v2021.3 567

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows how to use a cycle_statement to force scan inputs and
measure scan outputs:

procedure shift =
scan_group grp1;
timeplate tp1;
cycle =

force_sci;
measure_sco;
pulse T;

end;
end;

Clock Control Definition
You can manually create clock control definitions in the test procedure file.

For complete information about when you use this definition, refer to “Support for Internal
Clock Control” in the Tessent Scan and ATPG User’s Manual.

ATPG Restrictions

The following restrictions apply to ATPG when clock control definitions are enabled:

• Clock_PO patterns are disabled.

• In undefined cycles, the internal clock is assumed to be off, even if the source clock
pulses.

• Source clocks are pulsed regardless of clock restrictions. Any false paths should be
explicitly defined with DC or the add_false_paths command.

• External clocks without clock control definitions are controlled through top-level pins.

• Clock control definitions applied to a clock defined as equivalent also applies to all
associated equivalent clocks.

• Timeplate definitions apply only to external clocks.

• If you use the set_clock_restriction -same_clocks_between_loads command, you must
use one of the following definitions to pulse the controlled clock:

o {ATPG_SEQUENCE, END}

o {ATPG_SEQUENCE <N> <M>, END} with N starting from 0. The generated test
pattern includes M+1 capture cycles between the scan loading operation and the scan
unloading operation.

o <ATPG_CYCLE <i>, END} with i=0 defined

Tessent™ Shell User’s Manual, v2021.3568

Test Procedure File
Clock Control Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If none of these statements are present a warning displays during ATPG about clock
controls that cannot be applied because of clock restrictions.

Rules for Clock Control Definitions

The following rules apply to the clock control definitions in the test procedure file:

• Global control conditions and source clocks defined for equivalent clocks must be the
same.

• When a clock is forced off, it cannot be used as a source in the same definition.

• A FORCE statement cannot force a clock pin to an on state.

• Clock control cannot be applied to an asynchronous free-running clock.

• Condition statements cannot be applied to non-scan state elements.

• You must specify a condition to turn on the internal clock; otherwise, it is assumed to be
off.

• When multiple sequence clock control definitions are defined for the same clock, they
must use mutually exclusive pulse conditions as follows:

o The clock control condition to pulse a clock in sequence mode must be mutually
exclusive with the clock control condition for the same clock in per-cycle mode.

o The condition to pulse a clock in sequence mode must be mutually exclusive with
the condition to pulse the same clock by using another sequence mode.

Keywords

The following is a list of keywords used in clock control statement:

• ATPG_CYCLE cycle_number

A literal and integer that specifies a test pattern capture cycle to map the clock control
to. The specified capture cycle values start from 0, which corresponds to the first capture
cycle after scan loading.

Multiple ATPG_CYCLE definitions can be declared to pulse the internal clock at the
same capture cycle with different sets of conditions.

Use a FORCE statement to turn the clock off, or the clock continues to pulse when the
conditions are satisfied.

The specified and actual capture cycles may to differ—see “Capture Cycle
Determination” in the Tessent Scan and ATPG User’s Manual.

• ATPG_SEQUENCE N M

Test Procedure File
Clock Control Definition

Tessent™ Shell User’s Manual, v2021.3 569

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A literal and an integer pair that specify a range of capture cycles for clock pulsing from
N to M consecutively.

Define the condition to pulse the clock continuously from capture cycle N (N>=0) to
capture cycle M (M>=N) right after scan loading. If N is greater than 0, the clock is
automatically set to off state from the first capture cycle right after scan loading to the
capture cycle N -1. When the generated test pattern includes more than M capture cycles
after scan loading, the clock is set to off state from the M +1 capture cycle to the last
capture cycle.

Multiple ATPG_SEQUENCE definitions can be declared as necessary.

Use a FORCE statement to turn the clock off, or the clock continues to pulse when the
conditions are satisfied.

The specified and actual capture cycles may to differ—see “Capture Cycle
Determination” in the Tessent Scan and ATPG User’s Manual.

• ATPG_SEQUENCE

A literal that specifies clock pulsing. When a condition list is provided, the controlled
clock pulses in all capture cycles in the pattern when the conditions are met. When
checking the off conditions for cycles outside the capture window, the conditions listed
in this special atpg_sequence are ignored.

When there is no condition list, the controlled clock pulses unconditionally in every
capture cycle between scan loading.

Multiple ATPG_SEQUENCE definitions can be declared as necessary.

Use a FORCE statement to turn the clock off, or the clock continues to pulse when the
conditions are satisfied.

The specified and actual capture cycles may to differ—see “Capture Cycle
Determination” in the Tessent Scan and ATPG User’s Manual.

• CLOCK_CONTROL pin_pathname

A literal and string value that specifies the pin pathname of the PI for the internal clock.
The specified pin must be an existing clock. Internal clocks must also be defined with
the add_clocks command.

• CONDITION cell_name value

An optional literal and double string that specifies necessary scan cell states
(conditions). The scan cell is specified by the pin pathname associated with the output of
its state element. The value argument specifies the value loaded into the scan cell at the
end of shift.

The specified and actual capture cycles may to differ—see “Capture Cycle
Determination” in the Tessent Scan and ATPG User’s Manual.

Tessent™ Shell User’s Manual, v2021.3570

Test Procedure File
Clock Control Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• FORCE pin_pathname value

A literal and double string that forces a value of 0, 1, or Z on a specified pin. The
specified pin names must be valid pin pathnames for primary inputs. This keyword is
used to force necessary pins off during capture cycles when the controlled clock is
pulsed.

• SOURCE_CLOCK pin_pathname...

A literal and repeatable string that specifies one or more source clocks to drive the
internal clock logic to pulse in the specified capture cycle(s). If no source clock is
specified, the source clock is assumed to be an always-capture clock that pulses in every
capture cycle.

• END

Required literal the specifies the end of an ATPG_CYCLE or ATPG_SEQUENCE
block, or at the end of the clock control definition.

Global Condition Statements

Global conditions are CONDITION statements that are accessible in every scope of a clock
control definition. You can use global conditions to define default conditions within a clock
control definition.

For example, you can specify a CONDITION statement for all ATPG_CYCLE/
ATPG_SEQUENCE blocks within a definition. Then you can define a CONDITION statement
within individual ATPG_CYCLE/ATPG_SEQUENCE blocks to override the global
CONDITION variable when necessary.

The following example uses local conditions (italicized) to define some of the control bits
necessary for each scan cell to pulse the clock. The global conditions define other conditions
that must be satisfied for all clock cycles.

CLOCK_CONTROL /clk_ctrl/int_clk1 =
SOURCE_CLOCK ref_clk;
CONDITION /clk_ctrl/enable_1/q 0;
CONDITION /clk_ctrl/enable_2/q 0;
ATPG_CYCLE 0 =

CONDITION /clk_ctrl/F0/q 1;
END;
ATPG_CYCLE 1 =

CONDITION /clk_ctrl/F1/q 1;
END;
ATPG_CYCLE 2 =

CONDITION /clk_ctrl/F2/q 1;
END;
ATPG_CYCLE 3 =

CONDITION /clk_ctrl/F3/q 1;
END

END;

Test Procedure File
Clock Control Definition

Tessent™ Shell User’s Manual, v2021.3 571

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The previous example is equivalent to the following:

CLOCK_CONTROL /clk_ctrl/int_clk1 =
SOURCE_CLOCK ref_clk;
ATPG_CYCLE 0 =

CONDITION /clk_ctrl/F0/q 1;
CONDITION /clk_ctrl/enable_1/q 0;
CONDITION /clk_ctrl/enable_2/q 0;

END;
ATPG_CYCLE 1 =

CONDITION /clk_ctrl/F1/q 1;
CONDITION /clk_ctrl/enable_1/q 0;
CONDITION /clk_ctrl/enable_2/q 0;

END;
ATPG_CYCLE 2 =

CONDITION /clk_ctrl/F2/q 1;
CONDITION /clk_ctrl/enable_1/q 0;
CONDITION /clk_ctrl/enable_2/q 0;

END;
ATPG_CYCLE 3 =

CONDITION /clk_ctrl/F3/q 1;
CONDITION /clk_ctrl/enable_1/q 0;
CONDITION /clk_ctrl/enable_2/q 0;

END
END;

The previous example demonstrates the importance of ensuring that global conditions do not
conflict with local conditions. To further illustrate this point, consider the following incorrect
definition of global conditions:

// Example of incorrect definition of global conditions
CLOCK_CONTROL /clk_ctrl/int_clk1 =
SOURCE_CLOCK ref_clk;

CONDITION /clk_ctrl/F0/q 0;
ATPG_CYCLE 0 =

CONDITION /clk_ctrl/F0/q 1;
END;
ATPG_CYCLE 1 =

CONDITION /clk_ctrl/F1/q 1;
END;
ATPG_CYCLE 2 =

CONDITION /clk_ctrl/F2/q 1;
END;
ATPG_CYCLE 3 =

CONDITION /clk_ctrl/F3/q 1;
END

END;

Tessent™ Shell User’s Manual, v2021.3572

Test Procedure File
Clock Control Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

On the surface, it may appear correct that the condition in ATPG_CYCLE 0 overrides the
global condition while the other cycles can still be satisfied. However, after the global condition
is expanded to all cycles, the clock control definition looks like this:

// Example of incorrect definition of global conditions
CLOCK_CONTROL /clk_ctrl/int_clk1 =
SOURCE_CLOCK ref_clk;

ATPG_CYCLE 0 =
CONDITION /clk_ctrl/F0/q 1;

END;
ATPG_CYCLE 1 =

CONDITION /clk_ctrl/F1/q 1;
CONDITION /clk_ctrl/F0/q 0;

END;
ATPG_CYCLE 2 =

CONDITION /clk_ctrl/F2/q 1;
CONDITION /clk_ctrl/F0/q 0;

END;
ATPG_CYCLE 3 =

CONDITION /clk_ctrl/F3/q 1;
CONDITION /clk_ctrl/F0/q 0;

END
END;

You can now see that it would not be possible to pulse the clock in ATPG_CYCLE 0 while also
pulsing it in any other cycle. The tool can load only one value into /clk_ctrl/F0, so it can either
pulse the clock in cycle 0 by loading a 1 or pulse it in another cycle by loading a 0.

Per-Cycle Clock Control Definition Example

The following example defines per-cycle clock control for two internal clocks (/top/core1/clk1
and /top/core1/clk2):

CLOCK_CONTROL /top/core1/clk1 =
ATPG_CYCLE 0 =

CONDITION /pll_ctl/cell_0/Q 1;
END;
ATPG_CYCLE 1 =

CONDITION /pll_ctl/cell_1/Q 1;
CONDITION /pll_ctl/cell_4/Q 0;

//both conditions must be satisfied for clock to pulse in
//capture cycle 1

END;
END;
CLOCK_CONTROL /top/core1/clk2 =

ATPG_CYCLE 0 =
CONDITION /pll_ctl/cell_2/Q 1;

END;
ATPG_CYCLE 1 =

CONDITION /pll_ctl/cell_3/Q 1;
CONDITION /pll_ctl/cell_5/Q 1;

END;
END;

Test Procedure File
Clock Control Definition

Tessent™ Shell User’s Manual, v2021.3 573

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Sequence Clock Control Definition Example

The following example defines sequence clock control for two internal clocks (/top/core/clk1
and /top/core1/clk2) derived from the source clock clk_src:

CLOCK_CONTROL /top/core1/clk1 =
SOURCE_CLOCK clk_src;
ATPG_SEQUENCE 0 1 =

// Pulses 2 consecutive cycles if the scan cell
// is loaded with 1, and the source clock is pulsed.

CONDITION /pll_ctl/cell_1/Q 1;
END;

END;
CLOCK_CONTROL /top/core1/clk2 =

SOURCE_CLOCK clk_src;
ATPG_SEQUENCE 0 1=

CONDITION /pll_ctl/cell_2/Q 1;
END;

END;

The following example defines sequence clock control for two internal clocks (/top/core/clk1
and /top/core1/clk2) derived from the source clock clk_src. The clock pulses in all capture
cycles when the conditions are met.

CLOCK_CONTROL /top/core1/clk1 =
SOURCE_CLOCK clk_src;
ATPG_SEQUENCE =

// Pulse clock in all capture cycles if the scan cell
// is loaded with 1, and the source clock is pulsed.

CONDITION /pll_ctl/cell_1/Q 1;
END;

END;
CLOCK_CONTROL /top/core1/clk2 =

SOURCE_CLOCK clk_src;
ATPG_SEQUENCE =

CONDITION /pll_ctl/cell_2/Q 1;
END;

END;

The following example pulses clock /top/core1/clk1 unconditionally in every capture cycle
between scan loading:

CLOCK_CONTROL /top/core1/clk1 =
ATPG_SEQUENCE =

// empty body
END;

END;

Tessent™ Shell User’s Manual, v2021.3574

Test Procedure File
Clock Control Definition

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example defines a multi-sequence clock control definition:

CLOCK_CONTROL /top/core/clk1_int =
SOURCE_CLOCK /clk1;
ATPG_SEQUENCE 0 2 =

CONDITION /pll/ctl_1/Q 1;
FORCE ENABLE_1 1;

END;
ATPG_SEQUENCE 3 4 =

CONDITION /pll/ctl_1/Q 0;
FORCE ENABLE_1 1;

END;
END;

Exclusive conditions ensure that only one sequence block is applied per capture cycle
(otherwise, no sequence is applied). If no cycle numbers are specified for sequence clock
control, the clock pulses in every capture cycle when conditions are loaded.

Multiple Sets of Conditions for the Same Cycle Example

The following example shows that if a clock can be pulsed in a particular cycle or sequence of
cycles when there are multiple sets of conditions where any one set can activate the clock for
that cycle, the same cycle can be defined multiple times:

CLOCK_CONTROL /top/core1/clk1 =
 ATPG_CYCLE 0 =
 CONDITION /pll_ctl/cell_1/Q 1;
 END;
 ATPG_CYCLE 0 =
 CONDITION /pll_ctl/cell_2/Q 1;
 END;
END;

The previous example shows that /top/core1/clk1 can be pulsed in ATPG_CYCLE 0 when any
set of the specified conditions are met. This demonstrates the case where loading a '1' into either
/pll_ctl/cell_1 or /pll_ctl_cell_2 pulses the clock in cycle 0.

Similarly, the following example defines multiple sets of conditions for the same sequence of
cycles, which can overlap. The sequence of cycles must have mutually exclusive conditions to
ensure conditions for each ATPG_SEQUENCE can be satisfied without conflicting with other
sequences.

Test Procedure File
Clock Control Definition

Tessent™ Shell User’s Manual, v2021.3 575

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

CLOCK_CONTROL /top/core1/clk1 =
 ATPG_SEQUENCE 0 2 =
 CONDITION /pll_ctl/cell_1/Q 1;
 CONDITION /pll_ctl/cell_2/Q 0;
 CONDITION /pll_ctl/cell_3/Q 0;
 END;
 ATPG_SEQUENCE 0 3 =
 CONDITION /pll_ctl/cell_1/Q 0;
 CONDITION /pll_ctl/cell_2/Q 1;
 CONDITION /pll_ctl/cell_3/Q 0;
 END;
 ATPG_SEQUENCE 1 4 =
 CONDITION /pll_ctl/cell_1/Q 0;
 CONDITION /pll_ctl/cell_2/Q 0;
 CONDITION /pll_ctl/cell_3/Q 1;
 END;
END;

Source Clocks with Different Frequencies Example

The following example defines source clocks that have different frequencies when using clock
control definitions:

timeplate _default_WFT_ =
 force_pi 0 ;
 measure_po 40 ;
 pulse clk1 45 10;
 pulse ref_clock 15 5, 40 5, 65 5, 90 5;
 pulse clocks_02/my_controller/U2/Z 45 10;
 pulse clocks_03/my_controller/U2/Z 45 10;
 pulse clocks_04/my_controller/U2/Z 45 10;
 period 100 ;
 end;

procedure capture =
 timeplate _default_WFT_;
 cycle =
 force_pi ;
 measure_po ;
 pulse_capture_clock ;
 end;
 end;

In this example, for one pulse of clk1, there are 4 pulses of ref_clock, specifically the ref_clock
frequency is 4 times the frequency of clk1.

Tessent™ Shell User’s Manual, v2021.3576

Test Procedure File
The Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Procedures
The test procedure file contains scan and clock procedures, and non-scan procedures. The scan
and clock-related procedures inform the tool how to operate the scan chain and pulse clocks.
The non-scan procedures can represent any type of pattern that the tool produces.

You can use the non-scan procedures to specify in which cycles of the procedure “potential
events” happen. A potential event is an event that the ATPG engine may or may not have
created to cover a certain fault.

To avoid DRC violations, each non-scan procedure must contain the proper statements in the
correct order with the timing from the timeplate. The statements in a non-scan procedure can be
spread over any number of cycles using a different timeplate for each cycle if needed.

A basic pattern consists of loading the scan chains, a default capture procedure, followed by
unloading the scan chains; however, you do not specify the loading and unloading of scan
chains in non-scan procedures. The following shows the basic pattern for non-scan procedures.

All example procedures shown in this section use one of the following two timeplates, unless
otherwise stated:

timeplate tp1 =
force_pi 0;
measure_po 10;
pulse scan_clk 30 10;
pulse sys_clk 30 10;
period 50;

end;

timeplate tp2 =

force_pi 0;
measure_po 10;
pulse scan_mclk 15 10;
pulse scan_sclk 30 10;
period 50;

end;

Test_Setup (Optional) . 577

Shift (Required) . 580

Alternate Shift Procedure (Optional) . 582

Load_Unload (Required) . 583

Shadow_Control (Optional) . 586

Test Procedure File
Test_Setup (Optional)

Tessent™ Shell User’s Manual, v2021.3 577

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Master_Observe (Sometimes Required) . 588

Shadow_Observe (Optional) . 588

Skew_Load (Optional). 589

Clock_run (Optional) . 591

Capture Procedures (Optional) . 593

Clock_po (Optional) . 598

Clock_sequential (Optional) . 599

Init_force (Optional) . 599

Test_end (Optional, all ATPG tools) . 600

Sub_procedure . 602

Test_Setup (Optional)
This optional procedure, which can only contain force, pulse, init, and expect event statements,
sets non-scan elements to the desired states for the load_unload procedure. You may use this
procedure only once for all scan groups, and it appears only once at the beginning of the test
pattern set.

This procedure is particularly useful for initializing boundary scan circuitry. For an example
using this procedure to set up boundary scan circuitry, refer to “Pattern Generation for a
Boundary Scan Circuit” in the Tessent Scan and ATPG User’s Manual.

IJTAG Embedded Instruments

In the ATPG context patterns -scan, IJTAG is valid in the test_setup and test_end procedures
only. It is invalid in any other procedure, as well as in ATPG’s analysis mode. Also, only iReset
and iCall commands are valid in the test procedures.

For detailed information, see “How to Set Up Embedded Instruments Through Test Procedures”
in the Tessent IJTAG User’s Manual.

Bidirectional Scan Out Pins

The value of all bidirectional scan out pins must be forced to the Z state (indicating it is
operating in “output” mode) to properly sensitize the scan chain. When reading in a test
procedure file, the tool automatically adds force events to the beginning of the load_unload
procedure to force all bidi pins to Z.

Bidi pins that are clocks or constrained pins are not forced to a Z, as they were already forced to
the off-state or the constrained values. Bidi scan-in pins are also not forced to a Z. Any bidi pin
already forced later in the load_unload procedure is not be forced to a Z. Any bidi forced to a
specific value in the test_setup procedure is instead be forced to this value instead of a Z.

Tessent™ Shell User’s Manual, v2021.3578

Test Procedure File
Test_Setup (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Like previous automatic force values, these can be disabled by putting the “set autoforce off;”
statement at the beginning of the procedure file.

Pin Constraints

If you use the add_input_constraints command to set pin constraints, be aware this command
only forces pins during capture. To constrain these pins during test_setup, you should include
the same pin constraints in the test_setup procedure. This ensures the pins are in the same state
for loading the first pattern as for loading all subsequent patterns.

If you do not properly constrain the pins prior to the end of the test_setup procedure, the tool
automatically constrains them by inserting a cycle statement in the test_setup procedure.
However, this automatic handling may not insert the events with the timing you want. Also, the
automatic handling is not included in DRC.

If you have defined input constraints but have not provided a test_setup procedure, the tool
automatically generates a test_setup procedure to force those pins to their constrained values.

You can use both the write_procfile and the report_procedures commands to see the contents of
the test_setup procedure the tool has generated. The write_procfile command writes existing
procedure and timing data to a specified file. The report_procedures command writes the
information to the screen.

Example 1

The following is an example using a sub_procedure. In this example, the signal named C retains
its value of 1 during the test unless it is forced to a different value in a later cycle, by another
procedure, or it is overwritten by WGL patterns.

procedure sub_procedure initialize =
 template soc_timeplate ;
 cycle =
 force C 1;
 end;
end;

The following example shows how to apply the previous sub_procedure. For more information,
see “Sub_procedure” on page 602.

procedure test_setup =
 timeplate soc_timeplate;
 cycle =
 force test_en 1; // force test_en 1
 force chip_en 0; // force chip_en to 0
 end;
 apply initialize 10 ; // force C to 1 for 10 cycles
end;

Test Procedure File
Test_Setup (Optional)

Tessent™ Shell User’s Manual, v2021.3 579

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2

The following example shows a way to apply initialization cycles to a memory. The RST signal
is active for the first 128 cycles, then it is deactivated in the next cycle (cycle 129).

procedure sub_procedure reset_mem =
 timeplate soc_timeplate ;
 cycle =
 force RST 1;
 end;
end;
procedure test_setup =
 timeplate soc_timeplate;
 apply reset_mem 128;
 cycle =
 force RST 0; // deactivate RST
 end;
end;

Example 3

The following example shows a way to use an expect statement in a test_setup procedure. The
output signal (DFT) is expected to 1 in the first cycle and X in the remaining cycle. An “expect”
statement does not work the same as a force or pulse statement. When none is present, it is
assumed to mean do not measure.

procedure test_setup =
 timeplate soc_timeplate;
 cycle =
 expect DFT 1 ;
 end;
end;

Example 4

This example shows a way to start pulsing a clock in a test_setup procedure. The SYSCLK
starts pulsing at cycle number 2 until the end of test.

timeplate soc_timeplate =
 force pi;
 measure_po 90;
 pulse SYSCLK 50 50;
 period 100;
end;

procedure test_setup =
 timeplate soc_timeplate;
 cycle =
 force RST_L 0;
 end;
 cycle =
 pulse SYSCLK;
 end;
end;

Tessent™ Shell User’s Manual, v2021.3580

Test Procedure File
Shift (Required)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Shift (Required)
This required procedure describes how to shift data one position down the scan chain by forcing
the scan input, toggling the clock(s), and strobing the scan output.

Figure 10-2 shows the data flow process for the shift procedure.

Figure 10-2. Shift Procedure

Within this procedure, you must use the force_sci, or force_sci_equiv, and the measure_sco
event statements. You can also use the force and pulse event statements. A shift procedure can
contain more than one cycle, although not all pattern formats can support multiple cycles and
parallel load. Pattern formats that do not support multiple cycles are any parallel format other
than STIL and Verilog. If you use write_patterns to write out one of these other parallel formats
with a multicycle shift procedure, the command generates an AG11 error.

The times at which the timeplate used by the shift procedure applies the force_sci and
measure_sco commands must be consistent with proper operation of the load_unload
procedure. The measure_sco occurs at the measure_po time specified in the timeplate. The
force_sci occurs at the force_pi time specified in the timeplate.

The following are examples of the shift procedure for both mux-DFF and LSSD architectures.

Mux-DFF Example

procedure shift =
timeplate tp1;
cycle =

// force scan chain input
force_sci;
// measure scan chain output
measure_sco;
// pulse the scan clock
pulse scan_clk;

end;
end;

Test Procedure File
Shift (Required)

Tessent™ Shell User’s Manual, v2021.3 581

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

LSSD Example

procedure shift =
timeplate tp2;
cycle =

// force scan chain input
force_sci;
// measure scan chain output
measure_sco;
// pulse primary clock
pulse scan_pclk;
// pulse secondary clock
pulse scan_sclk;

end;
end;

Figure 10-3 graphically displays the waveforms for the clock pin, the scan-in pin, and the scan-
out pin derived from the Mux-DFF shift procedure example. This timing diagram shows one
scan chain shift cycle, assuming the time unit is 1ns.

Figure 10-3. Timing Diagram for Shift Procedure

The procedure contains four scan events: forces scan input values at 0ns, strobes (or measures)
scan output values at 10ns, pulses the scan clock scan_clk (turning it on at 30ns and off at 40ns),
and holds the state of the last event until the procedure finishes at 50ns.

A timing clock monitors when each significant event occurs. If the timing clock is at X when
the shift procedure begins, the timing clock assigns those four events with time values X, X+10,
X+30, and X+40. When the shift procedure finishes, the timing clock advances to X+50. The
shift cycle ending time becomes the starting time for the next shift cycle.

Tessent™ Shell User’s Manual, v2021.3582

Test Procedure File
Alternate Shift Procedure (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alternate Shift Procedure (Optional)
When using on-chip clock generators, such as programmable PLLs, it is sometimes necessary to
change values on input (control) signals to the clock generator a cycle or two before the change
in generated clocking schemes is realized. When the shift clocks for a scan chain are also
provided by the on-chip clock generator, it is sometimes not possible to reprogram the clock
generator near the end of the scan chain shifting in order to stop the shift clock and prepare for
the capture clocks. To accomplish this you might want to use an alternative shift procedure.

Alternate shift procedures have names, as described in the following paragraph. Alternate shift
procedures can only be used for single shifts (a pre shift or a post shift), and there must be one
un-named normal shift as the main shift in the required load_unload procedure. See
Load_Unload (Required).

The shift procedure enables an optional name following the shift procedure type. For each scan
group, one shift procedure must be defined that has the default name of shift. For each scan
group, additional alternate shift procedures can be defined as long as each has a unique name.

Each shift procedure is required to contain a force_sci or force_sci_equiv statement and a
measure_sco statement.

Syntax

procedure shift [procedure_name] =
...
end ;

Example

The following is a partial example of how the alternate shift procedure might be used in a
procedure file for a scan chain with a length of 100.

Test Procedure File
Load_Unload (Required)

Tessent™ Shell User’s Manual, v2021.3 583

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 timeplate tp1 =
 force_pi 0;
 measure_po 10;
 pulse ref_clk 50 50;
 period 100;
end;
procedure shift =
 timeplate tp1;
 scan_group grp1;
 cycle =
 force ctrl_a 1;
 force_sci;
 measure_sco;
 pulse ref_clk;
 end;
end;
procedure shift shift_last =
 timeplate tp1;
 scan_group grp1;
 cycle =
 force ctrl_a 0;
 force_sci;
 measure_sco;
 pulse ref_clk;
 end;
end;
procedure load_unload =
 timeplate tp1;
 scan_group grp1;
 cycle =
 force ref_clk 0;
 force scan_en 1;
 force ctrl_a 1;
 end;
 apply shift 98;
 apply shift_last 1;
 apply shift_last 1;
end;

Load_Unload (Required)
This required procedure describes how to load and unload the scan chains in the scan group. To
load the scan chain, you must force the circuit into the appropriate state for the start of the shift
sequence. This includes forcing clocks, resets, RAM write control signals, and any other signals
that need to be at their off states for scan chain loading. Also, if a reset signal is defined as a
clock, and pin constrained to its off state in the dofile, it needs to again be forced to its off state
in the load_unload and named capture procedures in order to avoid a P34 DRC.

Offstate for clock pins, constrained pin values, and other pins that have values forced in the
test_setup procedure are automatically added as force statements to the beginning of the
load_unload procedure (if not present); this helps reduce DRC failures.

Figure 10-4 shows the data flow for the load_unload procedure.

Tessent™ Shell User’s Manual, v2021.3584

Test Procedure File
Load_Unload (Required)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-4. Load_Unload Procedure

If the scan out pin is bidirectional, you must force its value to the Z state (indicating it is
operating in “output” mode) to properly sensitize the scan chain. If there is a scan enable signal,
you must force it on to enable the scan chain prior to the shift. You then use the apply shift
statement to specify the number of shift cycles (which equals the number of scan elements in the
chain). If you have optionally included the shadow_control procedure (which if used,
immediately follows the shift procedure), you must also include the apply command.

The following list includes the basic statements in the load_unload procedure:

Mux-DFF Example

procedure load_unload =
timeplate tp1;
cycle =

// force clocks off
force RST 0;
force CLK 0;
// activate scanning mode
force scan_en 1;

end;
// shift data thru each of 7 cells
apply shift 7;

end;

LSSD Example

procedure load_unload =
timeplate tp2;
cycle =

// force all clocks off
force RST 0;
force CLK 0;
force scan_sclk 0;
force scan_mclk 0;

end;
// apply shift procedure 7 times
apply shift 7;

end;

The timing for the load_unload procedure is generally straightforward. The load_unload
procedure contains the apply statement. Therefore, the total time for a load_unload procedure

Test Procedure File
Load_Unload (Required)

Tessent™ Shell User’s Manual, v2021.3 585

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

includes the time specified by the timeplate being used plus the time required to execute the
apply cycles.

For example, examine the following load_unload procedure, using the example shift procedure
in the previous section.

procedure load_unload =
timeplate tp1;
cycle =

force RST 0;
force CLK 0;
force scan_en 1;

end;
apply shift 1;

end;

The timeplate of the load_unload procedure specifies the period is 50ns. However, the
load_unload procedure includes an apply statement that executes one shift procedure. The shift
procedure requires an additional 50ns. Thus, the load_unload procedure actually requires a total
time of 100ns, as shown in Figure 10-5.

Figure 10-5. Timing Diagram for Load_Unload Procedure

Within the load_unload procedure, after the completion of the cycle block, the shift procedure
starts at 50ns, executes for 50ns, and ends at 100ns. Thus, the load_unload procedure also ends
at 100ns.

As with the shift procedure, the timing clock determines the event times for the load_unload
procedure. If the timing clock is at Y when the load_unload procedure begins, the first three
events happen at time Y. When the apply cycle executes, the timing clock advances to Y+50,
which is when the shift procedure begins. As mentioned previously, the shift procedure requires
50 time units. Therefore, when the apply cycle finishes, the timing clock reads Y+100.

Because it is the last event in the load_unload procedure, the end of the apply cycle determines
the end of the load_unload procedure.

Tessent™ Shell User’s Manual, v2021.3586

Test Procedure File
Shadow_Control (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Shadow_Control (Optional)
The optional shadow_control procedure, which may only contain force and pulse event
statements, describes how to load the contents of a scan cell into the associated shadow.

Note
This procedure is not supported when using SSN.

If you use this procedure, you must also apply the shadow_control command in the load_unload
procedure. This procedure must not disturb the contents of any of the scan cells. Figure 10-6
shows the data flow for the shadow_control procedure.

Figure 10-6. Shadow_Control Procedure

Test Procedure File
Shadow_Control (Optional)

Tessent™ Shell User’s Manual, v2021.3 587

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following procedure file example demonstrates the syntax for applying a shadow_control
procedure within a load_unload procedure:

proc shift =
 force_sci 0;
 measure_sco 0;
 force SK2 1 1;
 force SK2 0 2;
 force SK1 1 3;
 force SK1 0 4;
end;

proc load_unload =
 force WE 0 0;
 force ABC 1 0;
 force COMB_B 1 0;
 force SK2 0 0;
 force CLK 0 0;
 force SK1 0 0;
 force sh_clk 0 0;
 apply shift 5 1;
 apply shadow_control 1 2;
end;

proc shadow_control =
 force sh_clk 1 1;
 force sh_clk 0 2;
end;

proc master_observe =
 force WE 0 0;
 force SK2 0 0;
 force CLK 0 0;
 force SK1 0 0;
 force sh_clk 0 0;
 force SK1 1 1;
 force SK1 0 2;
end;

proc shadow_observe =
 force WE 0 0;
 force EN 1 0;
 force SK2 0 0;
 force CLK 0 0;
 force SK1 0 0;
 force sh_clk 0 0;
 force CLK 1 1;
 force CLK 0 2;
 force SK1 1 3;
 force SK1 0 4;
end;

Tessent™ Shell User’s Manual, v2021.3588

Test Procedure File
Master_Observe (Sometimes Required)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Master_Observe (Sometimes Required)
The master_observe procedure, which may only contain force and pulse event statements,
describes how to place the contents of a master into the output of its scan cell, where you can
observe it by using the unload operation.

Figure 10-7 shows the data flow for the master_observe procedure.

Figure 10-7. Master_Observe Procedure

You do not need to use this procedure if the master element’s output is the output of the scan
cell. The D1 rule ensures this procedure does not disturb master memory element’s contents.
You can override this requirement by changing the D1 rule handling. The following example
shows a master_observe procedure for the LSSD architecture:

// LSSD architecture example
procedure master_observe =

timeplate tp1;
cycle =

// Force all clocks off
force scan_sclk 0;
force scan_mclk 0;
force rst 0;
force clk 0;
// Pulse the slave clock
pulse scan_sclk;

end;
end;

Shadow_Observe (Optional)
The optional shadow_observe procedure, which may only contain force and pulse event
statements, describes how to place the contents of a shadow into the output of its scan cell,
assuming that data can be transfered in this way in the scan cell. Once the data is at the scan cell
output, you can observe it by applying the unload command. This procedure allows the shadow
to be used as an observation point in the design.

Test Procedure File
Skew_Load (Optional)

Tessent™ Shell User’s Manual, v2021.3 589

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
This procedure is not supported when using SSN.

Figure 10-8 shows the data flow of the shadow_observe procedure.

Figure 10-8. Shadow_Observe Procedure

Skew_Load (Optional)
The optional skew_load procedure propagates the output value of the preceding scan cell into
the master memory element of the current cell without changing the slave, for all scan cells.
Using only force and pulse event statements, this procedure defines how to apply an additional
pulse of the master shift clock after the scan chains are loaded.

Figure 10-9 shows the data flow of the skew_load procedure.

Tessent™ Shell User’s Manual, v2021.3590

Test Procedure File
Skew_Load (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-9. Skew_Load Procedure

Figure 10-10 shows where you apply the skew_load procedure and the master_observe
procedure within the basic scan pattern events.

Test Procedure File
Clock_run (Optional)

Tessent™ Shell User’s Manual, v2021.3 591

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 10-10. Skew_load applied within Pattern

Clock_run (Optional)
For every controller, or concurrent controller group, you can write a clock_run procedure, if
needed. The clock_run procedure has both an internal mode as well as an external mode.

You can specify only one clock_run procedure per controller or concurrent group; however, you
do not need to specify a separate procedure for each controller instance. The same procedure
can be used for multiple controllers. You need to specify a separate procedure for a controller
instance only if it maps to a different set of internal clocks.

In case of controllers running concurrently, and some of these controllers clocks are driven by
PLL internal clocks, the clock_run procedure is required per concurrent group. It is not required
for every BIST controller participating in the group to have its clock driven by a PLL internal
clock. For some controllers, their clocks can be driven by a PLL reference clock or even by a
system clock.

Tessent™ Shell User’s Manual, v2021.3592

Test Procedure File
Clock_run (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool relies on you to control the PLL control signal. This can be achieved by forcing the
PLL control signal to a proper value in a test_setup procedure and in external mode of
clock_run procedure as well (it depends on the PLL model behavior).

A clock_run procedure has to have a N-to-1 or 1-to-N ratio between internal and external
cycles; that is, either the internal mode has to have only one cycle, or the external mode has to
have only one cycle. You cannot have, for example, two external cycles and three internal
cycles.

Test Procedure File
Capture Procedures (Optional)

Tessent™ Shell User’s Manual, v2021.3 593

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Capture Procedures (Optional)
There are three types of capture procedures. These procedures are optional in the “patterns
-scan” context.

• The default capture procedure is an optional capture procedure, without a name, that
provides information on how the series of capture events are broken into cycles and
which timeplates these cycles use. The default capture procedure is defined in the
procfile as part of the scan group definition or internally derived by the tool when you do
not define one. If you need to create or edit a default capture procedure, see “Clock_po
(Optional)” in this chapter.

• The named capture procedure is an optional capture procedure, with a name, that is used
to define explicit clock cycles. You can create multiple named capture procedures, each
with a unique name, using the create_capture_procedures command. If you need to
manually create or edit named capture procedures, see “Rules for Creating and Editing
Named Capture Procedures” in this chapter. For information on using named capture
procedures to create at-speed test patterns, see “At-Speed Test With Named Capture
Procedures” in the Tessent Scan and ATPG User’s Manual.

• The external_capture procedure is an optional capture procedure used for all capture
cycles between each scan load, even when the pattern is a multi-load pattern.
External_capture procedures are used by the “set_external_capture_options
-capture_procedure” command. External_capture procedures that are used with this
command have several restrictions:

o The procedure can only have one force_pi statement and no measure_po statements.
This is because to use the “set_external_capture_options -capture_procedure”
switch, the patterns to be saved must be hold_pi and mask_po patterns. The
statements in the capture procedure must match up to this.

o Unlike named capture procedures, the external_capture procedure cannot have any
load_cycles as it is meant to be used between each scan load of a pattern. The
external_capture cannot contain any events on internal signals.

o When using the -capture_procedure switch with set_external_capture_options, all
clocks in the design that are internally connected (don't trace to just a cut point),
must be controlled. In addition, the clocks must either be constrained, always-
capture, controlled by a clock_control definition, or the clock must have an event in
the external_capture procedure.

Rules for Creating and Editing a Default Capture Procedure . 594

Rules for Creating and Editing Named Capture Procedures . 594

Slow and Load Types in the Cycle Statement . 596

launch_capture_pair Statement . 597

Tessent™ Shell User’s Manual, v2021.3594

Test Procedure File
Capture Procedures (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Rules for Creating and Editing a Default Capture
Procedure

There are several issues to consider when working with default capture procedures.

• The default procedure may only contain force_pi, measure_po, pulse_capture_clock,
bidir_force, bidi_force_pi, bidi_force_off, and bidi_measure_po event statements that
represent the non-scan activity for a normal pattern. There is no overlap between the
capture procedure and the existing clock procedure.

• Use the pulse_capture_clock statement in the default capture procedure to indicate in
which cycle one or more capture clocks should be pulsed.

• Do not specify any complex clocking that needs to be described for capture clocks or
other clocks in the default capture procedure; specify it in the clock procedure or by
using a named capture procedure.

• Do not specify any type of pin or ATPG constraint in the default capture procedure. For
example, specifying that a certain pin is to be held at a certain state in the default capture
procedure does not restrict the ATPG engine from applying different values to that pin.
However, you can use the bidi_force and bidi_force_pi statements in the default capture
procedure to force all bidirectional pins off in one cycle and force the ATPG values on
the bidirectional pins in the next cycle.

Rules for Creating and Editing Named Capture
Procedures

There are several issues to consider when working with named capture procedures.

• A named capture procedure may only contain force_pi, measure_po, observe_method,
pulse (named clock), and condition statements.

• If you use mode definitions, all cycles in a procedure must be defined within mode
definitions. Use the keyword “mode” with two mode blocks: “internal” and “external”.
Use the mode_internal definition to describe what happens on the internal side of the on-
chip PLL. Use the mode_external definition to describe what happens on the external
side of the on-chip PLL.

• All events in a named capture procedure that use modes must be duplicated in both
modes. The only difference is that the internal mode uses only internal clocks and the
external mode uses only external clocks. The number of cycles and timeplates used can
be different as long as the total period of both modes is the same.

• Signal events used in both internal and external modes must happen at the same time.
Examples of these events are force_pi, measure_po, and other signal forces, but also
include clocks that can be used in both modes.

Test Procedure File
Capture Procedures (Optional)

Tessent™ Shell User’s Manual, v2021.3 595

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o If a measure_po statement is used, it can only appear in the last cycle of the internal
mode and must occur before the last clock pulse. If no measure_po statement is used,
the tool issues a warning that the primary outputs cannot be observed.

o The cumulative time from the start of the first cycle to the measure_po must be the
same in both modes.

o The external mode cannot pulse any internal clocks or force any internal control
signals.

o A force_pi statement needs to appear in the first cycle of both modes and occur
before the first pulse of a clock.

o If an external clock goes to the PLL and to other internal circuitry, a C2 DRC
violation is issued.

o At-speed cycles need to be continuous; that is, a named capture procedure cannot
have more than one at-speed clocking subsequence.

o All defined real clocks (excluding internal clocks) must be forced to off state first in
the mode_internal definition.

For more information, see “Internal and External Modes Definition” in the Tessent Scan
and ATPG User’s Manual.

• Do not use the pulse_capture_clock statement in a named capture procedure. The clocks
used are explicitly pulsed.

• If you want to specify the internal conditions that need to be met at certain scan cells in
order to enable a clock sequence, use the condition statement at the beginning of the
cycle statement in the named capture procedure.

• If you want to define a specific observe method for each named capture procedure, use
the observe_method statement in the named capture procedure; otherwise, the ATPG
engine automatically selects master, slave, or shadow observation.

Note
The write_patterns command enables you to save internal or external clock patterns.
Internal clock patterns can be used to simulate the DUT without having the PLL

modeled, while the external patterns only exercise the PLL external clocks and control
signals. Internal patterns are the default for ASCII and binary formats, and external
patterns are the default for tester formats.

• If you generate patterns using a named capture procedure that has both internal and
external modes and you save them in STIL or WGL format, you must use the
write_patterns command’s “internal” option to read them back into the tool (for
example, to use in diagnosis). For more information and for information about special
considerations that apply to LBIST mode in the TK/LBIST Hybrid flow, refer to the
-Mode_internal and -Mode_external switches for the write_patterns command in the
Tessent Shell Reference Manual.

Tessent™ Shell User’s Manual, v2021.3596

Test Procedure File
Capture Procedures (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DRC rules W20 through W36 check named capture procedures. If a DRC error prevents use of
a capture procedure, the run aborts.

Slow and Load Types in the Cycle Statement
Optionally, you can add a “slow” or a “load” type to the cycle definition.

For example:

cycle slow =
...
end;

• The slow cycle indicates that at-speed faults cannot be launched or captured. The tool
must know which at-speed cycles are slow to get accurate at-speed fault coverage
simulation numbers; therefore, be sure to include “slow” when defining cycles that are
not at-speed cycles in an at-speed capture procedure.

Note
At-speed cycles need to be continuous; that is, a named capture procedure cannot
have more than one at-speed clocking subsequence.

• The load cycle indicates that the cycle is always preceded by an extra scan load. The
first cycle in a named capture procedure is always a load (with or without the load type
designation), so you typically apply “load” to subsequent cycles. An at-speed launch
cycle can be a load cycle; however, none of the cycles that follow in the at-speed
sequence, up to and including the capture cycle, can be load cycles.

Note
To get extra loads, you must enable the tool’s multiple load and clock sequential
capabilities by issuing the set_pattern_type command with “-multiple load on” and

“-sequential <2 or greater>”. For more information, see “Multiple Load Patterns” in the
Tessent Scan and ATPG User’s Manual.

Test Procedure File
Capture Procedures (Optional)

Tessent™ Shell User’s Manual, v2021.3 597

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example illustrates the “slow” and “load” attributes:

procedure capture multi_load_example =
timeplate tp1;
// first cycle is always a load, with or without load type designation
cycle slow =

force_pi;
force wr_enable 1;
pulse int_clk1;

end;
cycle slow load =

pulse int_clk1;
end;
cycle =

force re_enable 1;
pulse int_clk1; // launch clock

end;
cycle =

pulse int_clk1; // capture clock
end;

end; // end of capture procedure

launch_capture_pair Statement
Optionally, you can add one or more “launch_capture_pair” statements to the beginning of a
named capture procedure. This statement defines legal at-speed launch and capture points in
non-adjacent cycles. If you do not use the launch_capture_pair statement, the tool launches and
capture only in adjacent cycles. If at least one launch and capture clock pair is defined, the
launch and capture points are derived from the defined launch and capture clock pairs.

Note
This statement is only supported when using a named capture procedure to perform test
generation.

The syntax of the launch_capture_pair statement is as follows:

launch_capture_pair <launch_clock_pin_name> <capture_clock_pin_name>;

Where:

• launch_clock_pin_name is the clock used to launch the transition.

• capture_clock_pin_name is the clock used to capture the transition.

The launch clock cycle is used to check the transition condition. The capture clock cycle is used
to capture the transition fault effect. The cycles between the launch clock and capture clock
must be at-speed cycles. They cannot include any slow cycles between them. The faults to be
tested by the named capture procedure with the defined launch and capture clock pair are the
faults that can be launched by the launch clock and captured by the capture clock defined in the
launch_capture_pair statement.

Tessent™ Shell User’s Manual, v2021.3598

Test Procedure File
Clock_po (Optional)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following is an example of the launch_capture_pair statement:

procedure capture c1_c1 =
launch_capture_pair c1 c1;

cycle = // cycle 1

force_pi;
force c1 0;
force c2 0;
force c3 0;
pulse c1;

end;

cycle = // cycle 2
pulse c2;

end;

cycle = // cycle 3
pulse c1;
pulse c3;

end;
end; // end of capture procedure

In this example, a valid launch can happen in cycle 1. A valid capture can happen in cycle 3
only with c1 as the capture clock. A launch in cycle 1 and a capture in cycle 2 is not used for
fault detection. The faults to be tested by this named capture procedure are the faults that can be
launched and captured by clock c1.

Clock_po (Optional)
The clock_po procedure (optional in “patterns -scan” context), which can contain only force_pi,
measure_po, bidi_force_pi, and bidi_force_off event statements, represents the non-scan
activity for a clock PO pattern. Use this procedure instead of the capture procedure.

Note
This procedure is not supported when using SSN.

With this procedure, you must use a timeplate that does not pulse the clocks.

The following shows the pattern for the clock_po procedure pattern.

Test Procedure File
Clock_sequential (Optional)

Tessent™ Shell User’s Manual, v2021.3 599

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clock_sequential (Optional)
The clock_sequential procedure (optional for “patterns -scan” context), which may only contain
force_pi, pulse_write_clock, pulse_read_clock, pulse_capture_clock, bidi_force_pi, and
bidi_force_off event statements, represents the clock sequential events in a clock sequential
pattern. Use this procedure with the capture procedure.

The following shows the clock_sequential procedure pattern.

Figure 10-11 shows an entire clock sequential pattern, which illustrates where the
clock_sequential and capture procedures are used.

Figure 10-11. Full Clock Sequential Pattern

Init_force (Optional)
The init_force procedure (optional for “patterns -scan” context), which may only contain
force_pi event statements, represents the force cycle that is used in an ATPG pattern that targets
a transition fault. The transition must be launched off of the last scan chain shift. This procedure
is used when the fault type is set to transition fault and either the depth is set to 2 or less or the
ATPG engines fail to find a sequential pattern that can cover this transition fault. Use this
procedure with the capture procedure.

Tessent™ Shell User’s Manual, v2021.3600

Test Procedure File
Test_end (Optional, all ATPG tools)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following illustrates the format of the init_force procedure pattern.

Figure 10-12 shows the pattern which uses the init_force procedure.

Figure 10-12. Init_force Procedure Usage

Test_end (Optional, all ATPG tools)
The optional test_end procedure is used to add a sequence of events to the end of a test pattern
set.

The test_end procedure may only contain force and pulse event statements (see the following
exception), and can only be defined once for all scan groups. When saving patterns, the test_end
procedure is applied to the end of each pattern set saved.

The following shows the general pattern for the test_end procedure pattern.

IJTAG Embedded Instruments

In the ATPG context patterns -scan, IJTAG is valid in the test_setup and test_end procedures
only. It is invalid in any other procedure, as well as in ATPG’s analysis mode. Also, only iReset
and iCall commands are valid in the test procedures.

For detailed information, see “How to Set Up Embedded Instruments Through Test Procedures”
in the Tessent IJTAG User’s Manual.

Test Procedure File
Test_end (Optional, all ATPG tools)

Tessent™ Shell User’s Manual, v2021.3 601

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 1: Using test_end in a Procedure File

The following is a partial example of how the test_end procedure might be used in a procedure
file:

timeplate tp1 =
 force_pi 0;
 measure_po 10;
 pulse ref_clk 50 50;
 period 100;
end;

procedure test_end =
 timeplate tp1;
 cycle =
 force ctrl_a 1;
 force tms 0;
 pulse ref_clk;
 end;
end;

Tessent™ Shell User’s Manual, v2021.3602

Test Procedure File
Sub_procedure

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2: Test_end Procedure with Timeplate

The following is an example test_end procedure with its corresponding timeplate:

timeplate tp4 =
 force_pi 0;
 pulse TCK 10 10;
 measure_po 30;
 period 40;
end;

procedure test_end =
 timeplate tp4;
 cycle =
 // TMS = 1, change to select-DR state
 force TDI 1;
 force TMS 1;
 pulse TCK;
 end;

 cycle =
 // TMS = 0, change to capture-DR state

...
 cycle =
 // Scan out signature (MISR has length of 4)
 force TDI 1;
 force TMS 0;
 pulse TCK;
 end;
 cycle =
 force TDI 1;
 force TMS 0;
 pulse TCK ;
 end;
...
end;

Sub_procedure
The sub_procedure procedure eliminates the need to insert duplicate actions within a procedure.
Once you have defined a sub_procedure, you can specify this procedure within other procedures
using the apply statement.

You can also set the tool to reissue the sub_procedure as many times as needed by specifying
the repeat_count. Because the repeat_count is required when using apply sub_procedure, you
must enter a minimum of 1 for this parameter.

Sub_procedure Looping

Sub_procedure looping is used to reduce the size of pattern files. The default behavior of the
sub_procedure is to use “loops” or “repeats” in all applicable pattern formats to repeat the
contents of the sub_procedure N times, where N is greater than 1.

Test Procedure File
Sub_procedure

Tessent™ Shell User’s Manual, v2021.3 603

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Disabling Sub_procedure Looping

If you want the event data in a sub_procedure to be expanded and represented as N sets of
vectors in the pattern file, where N is the number of times the sub_procedure is applied, use the
“ALL_NO_LOOP 1” parameter file keyword to disable the use of “loop” or “repeat”
statements.

For example, if the test_setup procedure has the following statement:

apply pulse_bclock 1000;

The vector data for the sub_procedure “pulse_bclock” would be expanded to be 1000 vectors.
The default for the ALL_NO_LOOP keyword is off (0).

Sub_procedure Definition Format

The sub_procedure definition has the following format.

procedure sub_procedure my_subprocedure =
timeplate tp1;
cycle =

force_pi;
measure_po;

end;
end;

Using the Sub_procedure in a Procedure

The following is an example of how to use the sub_procedure in a procedure.

procedure shift =
scan_group grp1;
timeplate tp1;
apply my_subprocedure 4;
cycle =

force_sci;
measure_sco;
pulse T;

end;
end;

Note
You must first define a sub_procedure before using it in a procedure. Next, you can apply a
sub_procedure within any procedure type. Also, you cannot use a sub_procedure within the

“cycle =” and “end;” statements.

Tessent™ Shell User’s Manual, v2021.3604

Test Procedure File
Additional Support for Test Procedure Files

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additional Support for Test Procedure Files
Tessent Shell provides additional support so that you can use environmental variable, merge,
default template capabilities with your test procedure files.

Tcl Variables Used for Substitution and Conditional Selection

The procfile can include Tcl variables to provide parameterized values within the procfile
statements. The Tcl variables must be set in the global Tcl namespace. If you are setting the
variables within a proc, make sure to use :: as a prefix to the variable name such that it is set in
the global namespace. For example, use "set ::my_period 4" such that $my_period exists when
processing the proc files.

The Tcl variable can also be used to evaluate the condition of a Tcl if command located inside
the procfile. The element of a list of ports in the procfile must be separated by commas. If the
port names are escaped identifiers, they must be enclosed in quotes. Use the method shown in
the following example to convert a list of port names into a quoted comma-separated list needed
in the proc file:

Command invoked in the dofile:

set ::add_clocks_timing 1
set ::edges "25 75"
set ::port_list [get_name_list [get_clocks -type sync_source]]
set ::all_clocks [string cat {"} [join $port_list {", "}] {"}]
set_procfile_name ./myproc

Given the content of the ./myproc is:

alias all_clocks = $all_clocks;
timeplate mytimeplate =
 if {$add_clocks_timing} {
 pulse all_clocks $edges;
 }
end;

The report_procedures command displays the following:

alias all_clocks = "clk1", "clk2", clk3";
timeplate mytimeplate =
 pulse all_clocks 25 75;
end;

Merging Procedure Files

It is possible to specify more than one procedure file for a design. You can specify a procedure
file with the add_scan_groups command or with the read_procfile command. You need to
supply (to the ATPG tool) a minimum set of information in the procedure file with the
add_scan_groups command. You must supply all event information for the scan procedures.

Test Procedure File
Creating Test Procedure Files for End Measure Mode

Tessent™ Shell User’s Manual, v2021.3 605

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

However, after leaving setup mode, it is possible to specify non-scan procedures, timeplates,
and new timing for the scan procedures by reading in an additional procedure file with the
read_procfile command. Specifying new information for the same design, from more than one
procedure file, is known as “merging the procedure files.” To properly merge the information
from multiple procedure files, the Vector Interfaces code follows these rules:

• All scan procedures that you use must be specified in the procedure file that you load
with the add_scan_groups command.

• If you load a procedure that contains nothing but the procedure name, a timeplate name,
and an optional scan group, it is a template procedure. If a procedure already exists by
that name for that scan group (if it is a group-specific procedure), then the timeplate is
mapped onto the existing procedure. If no procedure already exists with that name, the
tool stores the template procedure for future use.

• If you load a new complete procedure (not a template) and a procedure already exists by
that name for the specified scan group (if applicable), the new procedure overwrites the
existing one.

• In both cases, when a procedure overwrites an existing one, or if a new timeplate is
mapped to an old procedure, the tool checks the procedures to make sure that the
sequence of events in the new procedure does not differ from the old procedure.

Default Information Provided by the Tool

When you issue the write_patterns command, the tool checks to make sure that all procedures
and timeplates needed to save the patterns in the specified format are present.

If there are any missing non-scan procedures, the tool creates default procedures and issues a
warning. For example, in cases where there are ram_sequential patterns that need to be saved
and no ram_sequential procedure was supplied, the tool automatically creates a default
procedure.

For any procedures that are created or that do not have a timeplate specified, the default
timeplate is mapped to these procedures, if it is set. You can set the default timeplate by using
the set default_timeplate statement previously described in the “Set Statement” section. If you
use this statement, the timeplate specified when creating default procedures is used. If the
default procedure needs to be created and no default timeplate has been set, then the first
timeplate specified is used. If no timeplates are specified, a default timeplate is created as well.

Creating Test Procedure Files for End Measure
Mode

You can create test procedure files that enable end measure mode. End measure mode refers to
the special handling that the Vector Interfaces code needs to move the measure to the end of the
shift and capture cycle.

Tessent™ Shell User’s Manual, v2021.3606

Test Procedure File
Creating Test Procedure Files for End Measure Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• A test procedure file.

Procedure

1. Create a new timeplate that measures the outputs after the clock pulse.

2. Change the timeplate for the shift and load_unload to point to the new timeplate.

3. Add the measure_sco statement to the load_unload procedure.

4. Make sure all shift procedures have the measure_sco statement after the shift clock.
When end measure mode is enabled, the measure_sco statement measures the next value
from the output of the scan chain. The very first value for the output of the scan chain is
measured by a measure_sco statement in the load_unload procedure.

5. Change the timeplate for the capture cycle by breaking it into two cycles. Move the
capture clock to the second cycle of the capture procedure to allow the measure at the
end. In the first cycle, the force_pi and measure_po are performed. In the second cycle,
the capture clock is pulsed. When using end measure mode, a measure cannot be
performed after the capture clock.

Test Procedure File
Creating Test Procedure Files for End Measure Mode

Tessent™ Shell User’s Manual, v2021.3 607

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
set time scale 1.000000 ns ;
set strobe_window time 10 ;
 timeplate gen_tp1 =
 force_pi 0 ;
 measure_po 10 ;
 pulse clk 20 10;
 pulse edt_clock 20 10;
 pulse ramclk 20 10;
 period 40 ;
 end;
// CREATE A NEW TIMEPLATE THAT MEASURES AFTER THE CLOCK PULSE
 timeplate gen_tp2 =
 force_pi 0 ;
 // measure_po 10 ;
 pulse clk 20 10;
 pulse edt_clock 20 10;
 pulse ramclk 20 10;
 measure_po 35 ; // <<== NEW MEASURE STATEMENT
 period 40 ;
 end;
// FOR CAPTURE SPLIT INTO TWO CYCLES
 procedure capture =
 timeplate gen_tp1 ;
 cycle =
 force_pi ;
 measure_po ;
 end ;
 cycle =
 pulse_capture_clock ;
 end;
 end;
// FOR THE SHIFT AND LOAD_UNLOAD, USE THE NEW TIMEPLATE
 procedure shift =
 scan_group grp1 ;
 timeplate gen_tp2 ; //<<=== NEW TIMEPLATE
 cycle =
 force_sci ;
 force edt_update 0 ;
 measure_sco ;
 pulse clk ;
 pulse edt_clock ;
 end;
 end;
// ADD A MEASURE_SCO TO THE LOAD_UNLOAD PROCEDURE
 procedure load_unload =
 scan_group grp1 ;
 timeplate gen_tp2 ; //<<=== NEW TIMEPLATE
 cycle =
 force clk 0 ;
 force edt_bypass 0 ;
 force edt_clock 0 ;
 force edt_update 1 ;
 force ramclk 0 ;
 force scan_en 1 ;
 pulse edt_clock ;

measure_sco; //<<=== NEW MEASURE STATEMENT

Tessent™ Shell User’s Manual, v2021.3608

Test Procedure File
Creating Test Procedure Files for End Measure Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 end ;
 apply shift 39;
 end;
 procedure test_setup =
 timeplate gen_tp1 ;
 cycle =
 force edt_clock 0 ;
 end;
end;

Test Procedure File
Serial Register Load and Unload for LogicBIST and ATPG

Tessent™ Shell User’s Manual, v2021.3 609

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Serial Register Load and Unload for LogicBIST
and ATPG

You can use the test_setup or test_end test procedure file procedures to serially load or unload
control registers in the circuit under test. Additionally, this section discusses the commands you
must add to your dofile to use this functionality.

Serial register load and unload targets the following flows:

• LogicBIST — Used to serially unload certain registers (for example, MISRs) using the
test_end procedure.

• Low pin count test — Used to serially load registers with test information through a
serial access port such as a JTAG TAP controller.

Register Load and Unload Use Models . 609

Static Versus Dynamic Register Variables . 609

Test Procedure File Modifications . 610

Dofile Modifications. 613

Serial Load and Unload DRC Rules . 616

Register Load and Unload Use Models
Using serial register load and unload enables you to identify a load/unload register variable
value in the test procedure file and define this variable, either static or dynamic, using
commands in your Tessent dofile. By using this functionality, you can load control registers by
using a type of load procedure where the data value for the register can be passed as a string of
values, and the load register uses a shift mechanism to show how this string of data values is
shifted into the register.

To serially load/unload register value variables, you must make modifications to your test
procedure file and your Tessent dofile.

The register value variable is used in the test procedure file to load the value into a register
through the data input pin, or unload a value from a register through the data output pin. The
load/unload procedures support pin inversions, but you must explicitly specify this.

The registers to be loaded/unloaded can be cascaded such that one load or unload operation
loads or unloads multiple values, for example PRPG/MISR values.

Static Versus Dynamic Register Variables
You can define both static and dynamic register value variables.

Tessent™ Shell User’s Manual, v2021.3610

Test Procedure File
Test Procedure File Modifications

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Static variable — A specific register value variable string you specify during setup
mode. Once set, you cannot change this variable.

• Dynamic variable — A register value variable string that you can define or change later,
and can use tool-specific switches.

Static Variable

A static register variable is one where the value is assigned to the variable when the variable is
defined (using the add_register_value), and this value then cannot be changed. This static value
is used by DRC when simulating the procedures. A static variable cannot be set using tool
specific switches to link the variable to tool computed values, as these may change.

Dynamic Variable

A dynamic register value variable uses tool-specific switches and arguments to link the variable
to a value computed by the tool. If you use a dynamic variable, then you must specify the
register’s width unless the tool knows this value at the time DRC is run (for example, PRPG
size).

This method is used for defining a variable that has a tool-specific computed value that is
available when patterns are saved and needs to be loaded or unloaded by the test_setup or
test_end procedures. The value defaults to all X bits, and you can specify the actual value in
non-Setup mode by using the set_register_value command.

If no value is specified the first time DRC is invoked after adding a register value variable, the
tool considers the variable to be dynamic for DRC and any future invocation of DRC.

Test Procedure File Modifications
In the test procedure file, the load_unload_registers Procedure and shift Keyword are used.

load_unload_registers Procedure

The load_unload_registers procedure is a named procedure; consequently, you can have
multiple occurrences of this procedure, corresponding to multiple groups of registers that need
to be loaded or unloaded. The load_unload_registers procedure can only be called from the
following procedures:

• test_setup

• test_end

The load_unload_registers procedure can load, unload, or both. Additionally, one application of
the procedure can load/unload multiple cascaded registers.

Test Procedure File
Test Procedure File Modifications

Tessent™ Shell User’s Manual, v2021.3 611

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When the test procedure file explicitly calls the load_unload_registers procedure from either the
test_setup or test_end procedures, the values to load or unload are passed to the procedure using
the string of binary values (value hard-coded in the procedure application) or the register value
variables.

shift Keyword

The load_unload_registers procedure uses the shift keyword to define a block of events that
result in one shift operation. This is similar to the IEEE STIL syntax where the shift keyword
defines a shift block within a load or unload procedure. It is analogous to embedding the shift
procedure into the load_unload procedure.

Apply Statement Extension

The apply statement in the procedure file syntax is extended to accept a statement that
associates a set of string values or register value variables with a particular input pin, output pin,
or alias. This pin or alias must then be used within the shift statement and have a “#” character
associated with it. This character is a placeholder for the values that is loaded or unloaded using
the string of values passed to the procedure, or the internally generated values associated with
the value name.

Test Procedure File Syntax

The following illustrates using the load_unload_registers procedure and shift keyword:

procedure load_unload_registers procedure_name =
 ...
 [cycle blocks]
 shift =
 cycle blocks
 end ;
 [cycle blocks]
end ;

The load_unload_registers procedure must have a shift block defined, which has one or more
cycles used to shift the data into the data input pin or the data out of the data output pin. The
procedure can also optionally have cycles which precede or follow the shift block, to be used to
put the circuit into shift mode or finish the shift mode when done, similar to how a load_unload
procedure is used.

Event Statements

Within a shift block, at least one event statements in a load_unload_registers procedure must
use the “#” character to denote where the shift data passed into the procedure is used.

The event statement must be either a “force” event or an “expect” event. An event statement
with the “#” character can also occur in the cycles preceding or following the “shift” block to

Tessent™ Shell User’s Manual, v2021.3612

Test Procedure File
Test Procedure File Modifications

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

express pre-shifts and post-shifts for loading the register. This event statement has the following
syntax:

<force | expect > pin_or_alias_name # ;

The apply statement which is currently used to call shift and sub_procedure procedures and also
calls the load_unload_registers procedure. When calling these procedures, however, the number
of times argument in the apply statement is replaced with one or more value assignments to the
data in or data out pins.

apply procedure_name [#times | shift_data_assignment
[, shift_data_assignment ...]] ;

A shift_data_assignment has the following syntax:

 identifier = < value_string | register_value_variable >
[<value_string | register_value_variable>...]

where identifier is either a pin name or an alias name.

The identifier used in the shift_data_assignment must match an identifier used within the
procedure in one of the event statements with the “#” character.

Register Value Strings

A register value string (value_string) is one of the following:

• A binary string of 0’s, 1’s or X’s, where the length of the string determines the number
of shifts to load the register.

• A string of a different radix as long as the Verilog syntax of identifying the radix and
width are used, such as “32’h” for a 32 bit hexadecimal value.

If a register_value_variable is used in the shift_data_assignment, then a value computed by the
tool for that register_value_variable (as bound within the dofile) or hard-coded in the dofile is
loaded or unloaded at that time and the shift length is also provided by the tool. It is possible for
more than one value_string or register_value_variable to be assigned to an identifier in one
shift_data_assignment. In this case, the extra values are separated by spaces. This enables
multiple shorter values to be shifted into one register group.

The typical usage is that each register_value_variable corresponds to one register being loaded,
and the specification of multiple variables is used when those registers are cascaded and loaded/
unload on after another.

Alias Names

It is possible to use an alias name in the procedure type for loading shift data, even if that alias
name refers to multiple pins. If this is the case, the number of bits assigned by the “#” character

Test Procedure File
Dofile Modifications

Tessent™ Shell User’s Manual, v2021.3 613

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

for each shift is equal to the width of the alias being used. The length of the value string being
passed to the procedure must be a multiple of the width of the alias.

Loading or unloading an alias can be used if performing parallel load/unload and no shift is
required. For example, if each MISR bit is connected to a separate primary output. Even if no
shifting is required, the functionality is still useful to bind the expected values to the signature
computed by the tool.

If multiple shift_data_assignments are passed to a procedure, then all of them must have the
same shift length such that each pin being loaded/unloaded requires the same number of cycles
to load/unload all the data. No padding is performed by the tool.

If a “measure” event is used in one of these procedures to unload a register, then these measure
values can be compared in the final patterns and the Verilog test bench.

Dofile Modifications
You define register value variables using commands you issue to the tool interactively or in a
dofile. The value variables are subsequently referenced in the procedure file.

You use the following commands to perform these operations:

• add_register_value

• set_register_value

• delete_register_value

• report_register_value

Addition of a Register Value Variable

The add_register_value command defines the register value variables. You can define the
variables as either static value variables or dynamic value variables.

You can only use this command in setup mode. You must define the register value variables in
the dofile before the variables are used in a test procedure file to load values into the registers.

Static Value Variables

You specify a static value variable by stating a specific value string. This value variable then
has this value string as a constant value.

You must specify this value in setup mode; the value is considered to be static by default, and
the value is present when simulating procedures in DRC.

add_register_value value_name {value_string [-Radix {Binary | Decimal |
Octal | hexadecimal} -Width integer]} optional_arguments

Tessent™ Shell User’s Manual, v2021.3614

Test Procedure File
Dofile Modifications

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The value_name is a user-specified identifier, and the value_string is a state string in a
particular radix. The default is binary radix.

If the –Radix switch is used to change this to a different radix, then a register width must also be
specified using the –Width switch.

Dynamic Value Variables

You specify a dynamic value variable using the following variation of the command:

add_register_value value_name value_string -Dynamic -Width integer
optional_arguments

The value_string is optional and defaults to all X bits if not specified.

You can subsequently enter the actual value once you have exited setup mode using the
set_register_value command. If no value is specified the first time DRC is invoked after adding
a register value variable, it is considered as dynamic in this and any future invocation of DRC.

Data Pin Inversions

When using either a static or dynamic variable, you can optionally specify inversions on the
input and output data pins by using the -INput_pin_inversion and -OUtput_pin_inversion
switches, respectively.

These are optional switches you use to specify that the data value in this variable should be
inverted before it is loaded into the register through the load_unload_register procedure.

Definition of a Dynamic Register Value Variable

You can define a dynamic register value variable by using tool-specific switches and arguments
to link the variable to a value computed by the tool. These variables are dynamic, and the width
must be specified unless the width is known to the tool at the time DRC is run.

This method is used for defining a variable that has a tool-specific computed value that is
available when patterns are saved and needs to be loaded or unloaded by the test_setup or
test_end procedures.

In this case, you use the add_register_value command with the -Width switch and omit the
value while in setup mode. Once you have exited setup mode, you can use the
set_register_value command to set the variable:

set_register_value value_name value_string [-RAdix {BInary | HEx | OCtal |
Decimal}]

The name of the register value and its width are known prior to parsing the procedure file and
running DRCs. The value is all X bits for DRC.

Test Procedure File
Dofile Modifications

Tessent™ Shell User’s Manual, v2021.3 615

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This command can only be used for a register value that was defined without a value string, and
the width of the value string must match the width specified in the add_register_value
command.

If the value overflows the width specified, an error is issued.

By default, the bits extracted by force/measure “#” in the procedure are from MSB to LSB. If
the value specified should be shifted in/out in the opposite order, with the LSB bits applied/
measured first, use the “-LSB_shifted_first” optional switch.

Deletion of a Register Value Variable

The delete_register_value command deletes all or a specified register value variable. You can
only use this command in setup mode.

Register Value Variable Reports

The report_register_value command provides a detailed report of the register value variables to
stdout or, optionally, a file.

Tessent™ Shell User’s Manual, v2021.3616

Test Procedure File
Serial Load and Unload DRC Rules

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Serial Load and Unload DRC Rules
The P13 and P54, P66, and W5 DRC rules are applied to the procedures and syntax in the
section “Procedure Examples.”

The P1 “syntax error” message is used to catch many potential issues, such as specifying a
“#times” value for applying a load_unload_registers procedure instead of the
shift_data_assignment.

P13 and P54 . 616

P66 . 616

W5 . 617

Procedure Examples . 618

P13 and P54
The P13 and P54 rules are used to check the shift assignment statements when calling a
load_unload_registers procedure.

If the shift assignment uses a value string that is not properly formatted or contains illegal
characters for that radix, then a P13 is issued.

Error: Invalid state value state string. (P13)

If the shift assignment references an undefined register value variable name, a P54 is issued.

Error: Undefined identifier identifier_string referenced by signal_name.
(P54)

P66
The P66 rule is used to check for missing statements within a load_unload_registers procedure.

For example, if no Shift block is specified, or if an event statement using the “#’ character is not
present for each shift_assignment passed to the load_unload_registers procedure, then a P66 is
issued.

Error: Procedure procedure_name is missing required statement_string
statement. (P66)

The following examples illustrate the types of P66 DRC errors you could encounter.

Test Procedure File
Serial Load and Unload DRC Rules

Tessent™ Shell User’s Manual, v2021.3 617

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 1

In the following example, the tool issues this error if there is no shift block within the
load_unload registers procedure:

Error: Procedure procedure_name is missing required shift statement.
(P66)

Example 2

In the following example, the tool issues this error if there are no events in the
load_unload_register procedure that use the “#’ substitute character.

Error: Procedure procedure_name is missing required substitute event
statement. (P66)

Example 3

In the following example, the tool issues this error if an apply statement that uses a
load_unload_registers procedure has a shift data assignment that uses a signal that does not
appear in the load_unload_registers procedure with the substitute character “#’.

Error: Procedure procedure_name is missing event using shift assign
signal_name statement. (P66)

W5
The W5 DRC error is used to flag any extra events or statements in a load_unload_registers
procedure, or any events that are not legal.

For example, if an event type other than Force or Expect is used with the “#’ substitute
character, then a W05 rule is issued. If the load_unload_registers procedure contains more than
one shift block, this rule is issued. If there is a Force or Expect statement using a “#’ character
for a signal name that is not being passed to the procedure as a shift assignment, this rule is
issued. The W05 rule is used when shift assignments for a particular Apply statement do not all
have the same length.

Error: Procedure procedure_name has an illegal event statement or event
order (event_statement_string) (W5)

Example 1

The following error is issued if an event in the load_unload_register procedure uses the “#’
substitute character, but no shift data for this signal is passed into the procedure when it is called
“extra shift block”:

<force | measure> signal_name # without matching shift assign data

Tessent™ Shell User’s Manual, v2021.3618

Test Procedure File
Serial Load and Unload DRC Rules

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2

The following error is issued if there is more than one shift block in the load_unload_registers
procedure.

“extra shift block”

Example 3

The following error is issued if more than one event of the same type in the shift block uses the
same signal name with the “#’ substitute character.

“too many events using shift assign signal_name”

Example 4

The following error is issued for an apply statement that uses a load_unload_registers procedure
but has no shift data assignments in the apply statement.

“apply with no shift data assignment”

Example 5

The following error is issued for an apply statement that uses a load_unload_registers procedure
and has more than one shift assignment, however, the target of the shift assignments are aliases
and they are not the same width.

“unmatched shift assign signal width”

Example 6

This is issued for an apply statement that uses a load_unload_registers procedure and has more
than one shift assignment and the assignments have different shift lengths.

“unmatched shift lengths”

Procedure Examples
The definition of the load_unload_registers procedure would look as follows. Notice how this
procedure uses the “shift =” statement and the “force tdi #” statement to denote the shifting and
where the string of data is applied, one bit at a time.

Test Procedure File
Serial Load and Unload DRC Rules

Tessent™ Shell User’s Manual, v2021.3 619

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

procedure load_unload_registers load_prpg1 =
 timeplate tp1 ;

 cycle =
 force prpg_select 1 ;
 ... // setup tap controller to load prpg
 end;
 shift =
 cycle =
 force tdi # ;
 pulse tck ;
 end;
 end;
end;

This procedure could then be applied in the test_setup procedure to initialize the PRPG,
specifying the string of bits to apply to “tdi” during shifting.

procedure test_setup =
 timeplate tp1 ;

 cycle =
 force clk1 0 ;
 force clk2 1 ;
 force tck 0 ;
 ...
 end;
 apply load_prpg1 tdi = 000000000000000000000001 ;
 cycle =
 ...

 end;
end;

For loading a register with the shift length during test_setup, using the values computed by the
tool, the procedure definition would look the same, but how the procedure is called is slightly
different. The following example both loads and unloads the register, as this same procedure
could be used in a test_end procedure to unload the shift length value. The dofile for this
example contains the following command:

add_register_value length_val -shift_length -width 16

Tessent™ Shell User’s Manual, v2021.3620

Test Procedure File
Serial Load and Unload DRC Rules

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The procedure file would contain the following:

procedure load_unload_registers load_unload_length =
 timeplate tp1 ;
 cycle =
 force clk1 0 ;
 ...
 end;
 shift =
 cycle =
 force tdi # ;
 expect tdo # ;
 pulse tck ;
 end;
 end;
end;
procedure test_setup =
 timeplate tp1 ;
 cycle =
 ...
 end;
 apply load_unload_length tdi = length_val, tdo = XXXXXXXXXXXXXXXX;
 cycle =
 ...
 end;
end;

This next example uses an alias to group three tdi signals into one alias, and also adds a post
shift cycle to the load_unload_registers procedure. When this procedure is called, the data
passed to it is consumed three bits at a time, with each bit being shifted into tdi1, tdi2, and tdi3
in order. The total number of shifts applied in the “shift” block is the total length of the value
string divided by three, and then minus one for the post shift. Each shift consumes three bits,
and the final cycle adds a post shift which assigns the last three bits. The length of the value
string being passed to this procedure must be a multiple of three.

alias TDI_GRP = tdi1, tdi2, tdi3 ;
procedure load_unload_registers load_reg1 =
 timeplate tp1 ;

 cycle =
 force clk1 0 ;
 ...
 end;
 shift =
 cycle =
 force TDI_GRP # ;
 pulse tck ;
 end;
 end;
 cycle =
 force TDI_GRP # ;
 pulse tck;
 end;
end;

Test Procedure File
Serial Load and Unload DRC Rules

Tessent™ Shell User’s Manual, v2021.3 621

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This final example shows how to use a dofile commands to set up a user-defined register value
that is used to store total number of scan patterns when the final patterns are saved.

add_register_value scan_pat_count -pattern_count scan_test -width 24

Tessent™ Shell User’s Manual, v2021.3622

Test Procedure File
Notes About Using the stil2mgc Tool

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Notes About Using the stil2mgc Tool
You can use the stil2mgc tool to create a dofile and procedure file. The stil2mgc tool reads a
STIL Procedure File (SPF) and then creates a dofile and test procedure file.

The dofile defines clocks, scan chains, scan groups, and pin constraints. The test procedure file
contains a timeplate and the following standard scan procedures: test_setup, load_unload, and
shift. For more information about this tool, refer to the stil2mgc command description in the
Tessent Shell Reference Manual.

Extraction of Strobe Timing Information from STIL (SPF) . 622

The STIL ClockStructures Block. 622

Extraction of Strobe Timing Information from STIL
(SPF)

In the STIL WaveformTable, strobe window and edge strobe are indicated by which event
characters are used for the measure timing. Using the ‘H’ and ‘L’ characters indicates that the
measure is an edge strobe, while using the ‘h’ and ‘l’ character indicates a window strobe with
the length of the strobe window being determined by the following X event in the event list for
that WaveformCharacter.

If the window strobe events (‘h’ or ‘l’) are used for a measure event, then the strobe window is
calculated taking into account the strobe window indicated by these events. The shortest strobe
window calculated is the one used for the procedure file.

If “-edge_strobe_processing on” is specified to the tool, and the edge strobe events (‘H’ or ‘L’)
are used for a measure event, then the strobe window is set to 0 in the procedure file to indicate
edge strobe timing.

If the “-edge_strobe_processing” option is not used or is set to off, and edge strobe events (‘H’
and ‘L’) are used for a measure event, then the existing behavior is maintained where the strobe
window is calculated based on the next force event or the period of the Waveform table. The
strobe window is not set to 0.

The STIL ClockStructures Block
When parsing STIL Procedure Files (SPF), stil2mgc recognizes the Synopsys-defined
ClockStructures block and uses this information to create clock_control definitions. The
Latency statement within the ClockStructures block is used to control the
“set_external_capture_options” statement in the generated dofile.

Test Procedure File
Test Procedure File Commands and Output Formats

Tessent™ Shell User’s Manual, v2021.3 623

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Procedure File Commands and Output
Formats

The test procedure file is supported by a set of commands and a set of output formats.

Test Procedure File Tool Commands

The following table provides a summary of the tool commands that support the use of test
procedure files. For a detailed description of each command, refer to the corresponding
command reference page in the Tessent Shell Reference Manual.

Test Procedure File Output Formats

The test procedure file format supports the following output formats:

• Fujitsu TDL

• Mitsubishi TDL

• STIL

• TI TDL

• WGL

• TSTL2

• VERILOG

Table 10-2. Procedure File Tool Command Summary

Command Description

add_scan_groups Adds a scan group using the scan procedures in the named
procedure file.

read_procfile Reads a new procedure file in non-setup mode. Merges new
procedure and timing data with existing data loaded from
previous procedure files.

write_procfile Writes out existing procedure and timing data as the named
procedure file.

write_patterns Loads a cycle before saving patterns and merges the new data
with the existing data.

report_procedures Reports (displays) a named procedure to the screen. The -All
switch displays all procedures to the screen.

report_timeplates Reports (displays) a named timeplate to the screen. The -All
switch displays all timeplates to the screen.

Tessent™ Shell User’s Manual, v2021.3624

Test Procedure File
Test Procedure File Commands and Output Formats

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The -PROcfile switch causes the write_patterns command to get its timing information from the
procedure file. For more information, refer to the write_patterns command in the Tessent Shell
Reference Manual.

Tessent™ Shell User’s Manual, v2021.3 625

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 11
Tessent Visualizer

Tessent Visualizer is a graphical user interface for Tessent Shell. This chapter describes the
various features of Tessent Visualizer and how to work with those features. With Tessent
Visualizer, you can use schematics, browsers, tables, and other reports to analyze and
understand DFT issues. By cross-referencing between these different viewpoints of your data
and performing various analyses on them, you can more quickly arrive at solutions to those
issues.

Invoking Tessent Visualizer . 626

Framework Overview . 627

Tessent Visualizer Components and Preferences . 630
Tables . 631
Schematics . 639
Tessent Visualizer Preferences . 671
Macros . 672
Tooltips . 673
Gate Report Settings . 674
Saving and Restoring the Session State . 675
Window Title Prefixes . 675

Tessent Visualizer GUI Reference . 677
Hierarchical Schematic . 677
Flat Schematic. 682
Instance Browser. 684
Wave Generator . 686
Cell Library Browser . 688
DRC Browser . 689
Pin Data. 691
Transcript . 692
Text/HDL Viewer . 693
Diagnosis Report Viewer . 695

Search Features . 697

Using Tessent Visualizer to Debug Design Issues . 699

Accessing Tutorials for Tessent Visualizer . 703

Accessing Videos for Tessent Visualizer . 704

Tessent™ Shell User’s Manual, v2021.3626

Tessent Visualizer
Invoking Tessent Visualizer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Invoking Tessent Visualizer
You can invoke Tessent Visualizer in different ways, depending on the task you want to
perform. Tessent Visualizer can be launched directly from the Tessent Shell application or
remotely from another machine or a different terminal on the same machine.

Prerequisites

• Comply with the hardware and operating systems requirements listed under “Supported
Hardware and Operating Systems” in the Managing Tessent Software manual.

The requirements also apply to the machine providing the X Window desktop (as
defined by the DISPLAY environment variable).

• Set the DISPLAY environment variable correctly.

Procedure

1. Set a context using the set_context command.

2. Load a design using the read_verilog command.

3. Read a library using the read_cell_library command.

4. Set the current design using the set_current_design command.

Note
You can invoke Tessent Visualizer without issuing these commands, but most of the
user interface is disabled until you load a design and any required libraries, and you

specify the current design. You can also use these commands in the Transcript tab after
you invoke Tessent Visualizer.

5. Invoke Tessent Visualizer using one of the following methods:

• Invoke explicitly on the same machine Tessent Shell is running on:

ANALYSIS> open_visualizer
// Note: Tessent Visualizer client successfully started and
connected to the server.

• Invoke explicitly on a different machine.

Tessent Visualizer is a client-server application. Tessent Shell is the server, and
Tessent Visualizer is a client of that server.

To start the server in Tessent Shell, invoke the open_visualizer command with the
-server_only switch. Optionally, specify the TCP/IP port using the -tcp_port switch.
Valid port numbers are from 1024 to 65535.

Tessent Visualizer
Framework Overview

Tessent™ Shell User’s Manual, v2021.3 627

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ANALYSIS> open_visualizer -server_only
// server: started
// - hostname: server01.example.com
// - TCP/IP port: 43527
// - authorization code: 821703
// client: not connected
// Note: To connect Tessent Visualizer client to the server,
issue the following command in a Linux console:
// --

/<path>/tessent -visualizer -server server01.example.com \
-tcp_port 43527 -authorization_code 821703

// --

To start the client, use the tessent -visualizer command:

$TESSENT_HOME/bin/tessent -visualizer

This opens a remote connection dialog box that prompts for the hostname, port, and
authorization code.

The six-digit authorization code is a one-time password that is cleared upon
successful connection to a server or after five invalid attempts. To reconnect to the
same server, generate a new authorization code by invoking open_visualizer on that
server with the -authorization_code switch.

For more information, see the “tessent” command description in the Tessent Shell
Reference Manual.

Note
The IP address and port of the server must be accessible from the client machine.

• Invoke implicitly using one of the following commands:

o add_schematic_callout

o add_schematic_objects

o add_schematic_path

o add_schematic_connections

o analyze_drc_violation

o display_diagnosis_report

Framework Overview
Tessent Visualizer provides multiple tabs for viewing and debugging design and simulation data
in specialized windows.

Tessent™ Shell User’s Manual, v2021.3628

Tessent Visualizer
Framework Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Visualizer framework consists of the following:

• Windows — Windows contain one or two panes, a global top menu, and a status bar.
The menu and status bar are identical across multiple windows; only the pane content
differs.

• Panes — There are at most two panes per window. By default, one pane provides
multiple tabs. Windows can be split into two panes by dragging and dropping. Each
pane has its own tabs.

• Tabs — You can view and select multiple tabs within a pane. Each functional task in
Tessent Visualizer is placed as a tab. You can reorder the tabs by dragging and dropping,
or cycle through them with Ctrl+Tab (next tab) or Ctrl+Shift+Tab (previous tab). See
“Tessent Visualizer Keyboard Shortcuts” on page 791 for more ways to interact with
Tessent Visualizer using the keyboard.

Each window can contain two panes (separate sets of tabs). This is called a split view. To create
a split, drag one of the tabs to either side. Drag and drop a tab to move it from one side of the
split to the other. There are at most two work areas (panes) per window, as shown in
Figure 11-1.

Tessent Visualizer
Framework Overview

Tessent™ Shell User’s Manual, v2021.3 629

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-1. Tessent Visualizer Split View

You can undock any tab from a window as a separate (floating) window and redock as
necessary. Floating windows have the original window’s full functionality, with access to
features such as global settings and the capability to offer a split view. To undock a tab, double-
click the tab or drag and drop it away from the parent window. To redock, drag it back to the
parent window (or any other Tessent Visualizer window) and drop it as a tab in that window.

Tessent™ Shell User’s Manual, v2021.3630

Tessent Visualizer
Tessent Visualizer Components and Preferences

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Visualizer Components and
Preferences

Tables and schematics represent different views of pins, instances, nets, and other design
objects, as well as actions associated with those design objects. For example, a hierarchical pin
shown on a hierarchical schematic, the instance browser, or a search window can also be shown
on a flat schematic.

Tables . 631

Schematics . 639

Tessent Visualizer Preferences . 671

Macros. 672

Tooltips . 673

Gate Report Settings . 674

Saving and Restoring the Session State . 675

Window Title Prefixes . 675

Tessent Visualizer
Tables

Tessent™ Shell User’s Manual, v2021.3 631

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tables
Tessent Visualizer presents data such as tracing results, pin listings, instances, and nets in
tabular form in all windows, including schematics. These tables are configurable, and data can
be filtered dynamically.

Table Toolbar Features . 632

Columns and Filters Editor . 634

Table Filters . 635

Data Sorting . 637

Row Highlighting . 637

Tessent™ Shell User’s Manual, v2021.3632

Tessent Visualizer
Tables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table Toolbar Features
All tables used in Tessent Visualizer have several common elements, including toolbars,
dynamic headers, filter fields, and data rows and cells.

Description

Most report tables in Tessent Visualizer use a spreadsheet-like format with customizable
columns, a toolbar, and filter fields for each column. The following are additional features
common to tables:

• Customize the data types included in the table with the Columns and Filters Editor.

• Select one or more table rows in the Tessent Visualizer window and perform various
compatible actions using the popup menus available by right-clicking.

• Export table data in CSV format with the Export Table icon.

• Add line numbers to tables from the Preferences dialog box.

Figure 11-2 illustrates the locations of these items.

Figure 11-2. Common Table Toolbar Features

Objects

Object Description

Columns and Filters Editor. Controls the form and content of the table.

Tessent Visualizer
Tables

Tessent™ Shell User’s Manual, v2021.3 633

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Topics

Columns and Filters Editor

Tessent Visualizer Preferences

Automatic/Manual Column Width. Toggles between automatic and
manual mode for controlling column widths and column header wrap. In
automatic mode, column widths stretch to fit the table and column headers
wrap if necessary to accommodate narrow data.

Resize columns to contents. This fits the column widths to accommodate
the size of the displayed data.

Export table in CSV format. Alternately, use Ctrl+S.

Funnel. If present, this indicates that filtering is active. This symbol is not
displayed unless a filter is applied.

Loaded row counter. By default, the table loads up to 250 items. Change
the default threshold from the Preferences dialog box.

The “+” next to this number indicates that all data for the table has been
loaded if it appears in a gray circle. A green circle indicates that additional
data exists in Tessent Shell. Load this additional data by scrolling down or
clicking the circle.

Filter fields. These control which data are displayed in the table.

Object Description

Tessent™ Shell User’s Manual, v2021.3634

Tessent Visualizer
Tables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Columns and Filters Editor
To access: click the “Columns and Filters Editor” icon in the Tessent Visualizer toolbar.

Use the Columns and Filters Editor to control the content and format of tables.

Description

Figure 11-3 shows features of the Columns and Filters Editor:

Figure 11-3. Columns and Filters Editor

Objects

Object Description

Apply filters by typing terms in the filter fields, shown in Figure 11-3. When
a column is being filtered, the funnel icon is displayed next to the column
name in both the Column and Filters Editor and the tabbed window being
modified by the Column and Filters Editor.

Reorder columns by dragging and dropping the header items at the top of the
Columns and Filters Editor.

Tessent Visualizer
Tables

Tessent™ Shell User’s Manual, v2021.3 635

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Usage Notes

The report table content is automatically refreshed when you accept the modifications by
clicking OK.

Table Filters
Filters control the data displayed in tables by limiting that display with search criteria you
specify.

The filter field is located directly beneath the column headers, as shown in Figure 11-2 on
page 632. Tessent Visualizer uses the following filters:

• Exact match — A string literal or value, optionally prepended with an equals sign (=).
This restricts the display of data to those objects matching the string or value. String
literals containing spaces and special characters should be enclosed by single quotation
marks; for example, ‘x = y’.

• Exact inverse match — A string literal or value prepended with the not equals sign
(!=). This restricts the display of data to those objects not matching the string or value.

• Logical operators — AND, OR, and NOT. For example:

o != abc AND != xyz restricts the display of data to all objects that are not named abc
and are not named xyz.

o abc OR xyz restricts the display of data to those objects named abc or xyz.

o NOT is a special logical modifier and requires an explicit REGEXP or GLOB.

• Wildcard matching — The keyword GLOB with a single character symbol (?) or an
asterisk (*) that represents zero or more characters. For example:

o GLOB '*abc' restricts the display of data to all objects with names ending in the
string abc.

Search for specific data types by using string matching in the column for the
property name. Search results are displayed as you type.

Add or remove table columns by checking or unchecking the boxes
associated with column names.

Customize column label names by double-clicking the name representing
the column. The name change is indicated by a bold italic font in the column
and filters editor as well as the results table.

Add or edit column filters by double-clicking the filter cell.

Object Description

Tessent™ Shell User’s Manual, v2021.3636

Tessent Visualizer
Tables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o GLOB '*abc*' restricts the display of data to all objects with names that contain the
string abc.

o GLOB 'abc?xyz' restricts the display of data to all objects with seven-character
names that begin with the string abc, followed by a single character, and end with the
string xyz.

o GLOB '?*' matches any non-empty string.

Note
In GLOB filters, if there is no empty space as part of the expression, the keyword
GLOB and the single quotation marks are optional. For example: *abc*

• Numerical comparison operators — Data that includes numerical information can be
filtered using standard numerical comparison operators (<, <=, >, >=).

• Standard regular expressions — Data can be filtered using regular expressions by
using the construct REGEXP 'RE'. For example, REGEXP '.*clk_\d+$' restricts the
display of data to all objects with names ending in the string clk_ followed by one or
more decimal digits.

Note
In this filter, the keyword “REGEXP” and the single quotation marks are required.

Table 11-1. Filtering Summary

Filter Type Filter Format Examples

Exact match value

=value

abc

=xyz

=12

Exact match
(inverse)

!=value !=abc

Numerical
operators

<

<=

>

>=

>10

>20 AND <= 50

Wildcards GLOB 'expression' GLOB 'abc*'

GLOB '*xyz*'

GLOB 'abc?xyz'

GLOB 'abcdef??'

Regular
expression

REGEXP 'expression' REGEXP '^abc.*'

REGEXP '.*_\d0$'

Tessent Visualizer
Tables

Tessent™ Shell User’s Manual, v2021.3 637

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Filters applied to table columns are processed in Tessent Shell on the complete data model,
no matter how many resulting rows appear in the Tessent Visualizer tabular reports.

Data Sorting
The default order of rows in tabular data is determined by the underlying data structure in
Tessent Shell. In some tables, you can sort this data by clicking the column title cell. The
ordering cycles through each of ascending, descending, and the default ordering.

Data sorting is enabled when the number of rows loaded is less than the limit (250 by default,
but configurable in the Preferences menu). Exceptions: sorting is always enabled in the
following cases:

• A table with child instances in the Instance Browser.

• A table with modules in the Cell Library Browser.

Tip
For better performance, limit the set of visible data with filtering before using the sorting
function.

Related Topics

Tessent Visualizer Preferences

Row Highlighting
Tables in Tessent Visualizer use color coding to indicate the status of rows.

Logical
operators

AND

OR

NOT GLOB
'expression'

NOT REGEXP
'expression'

abc OR xyz

!=abc AND != xyz

NOT GLOB 'abc*'

NOT REGEXP '^abc.*'

Table 11-1. Filtering Summary (cont.)

Filter Type Filter Format Examples

Tessent™ Shell User’s Manual, v2021.3638

Tessent Visualizer
Tables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-4. Selection Colors

• Dark blue — Selected objects

• Light blue — Active cell

• Gray — Objects currently displayed in the schematic

Most popup menus operate on the selected object (dark blue). Copy and paste actions (Ctrl+C
and Ctrl+V) work only on the active cell (light blue). The gray highlighting shows which
objects are currently displayed in a schematic.

Use Shift+click to select multiple adjacent objects in a table and Ctrl+click to select multiple
nonadjacent objects.

You can also use a Boolean value in the “Displayed” column for easy filtering of objects
displayed in a schematic.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 639

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Schematics
Tessent Visualizer schematics contain features that enable you to inspect and navigate your
design.

Figure 11-6 in “Toolbar” on page 640 shows a Flat Schematic with the following GUI objects
highlighted:

• Toolbar — Controls how objects are displayed in the schematic and export schematic
objects for use by other tools.

• Address Bar — Displays the name of the currently selected object. You can also use
the address bar to add new objects to the schematic by name.

• Selection Buttons for Context Table — Select which context table you want to
display.

Figure 11-5 illustrates some additional schematic common features:

• Attributes Table for the Selected Object — Displays information about the currently
selected object. The specific types of data in this table depend on the object selected.

• Overview Pane — Shows all objects that have been added to the schematic. The
currently zoomed view is highlighted. Drag and drop the highlight rectangle to pan the
view.

• Pin Table — Displays information about the pins on the currently selected object.

Tessent™ Shell User’s Manual, v2021.3640

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-5. Schematic With Overview Pane and Attributes Table

Toolbar . 640

Schematic Symbols . 643

Context Tables . 655

Signal Net Tracing Strategies . 665

Displayed Property . 668

Tessent Shell Attributes. 668

Mouse Gestures . 670

Toolbar
There is a toolbar at the top of each Tessent Visualizer schematic.

Figure 11-6 shows the location of the schematic toolbar.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 641

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-6. Schematic Elements: Toolbar, Address Bar, and Selection Buttons

Table 11-2 summarizes the contents of the toolbar.
Table 11-2. Schematic Toolbar Actions

Tool Description

Zoom all: fit the current view of the schematic in the window.

Zoom in.

Zoom out.

Zoom selected: zoom in on and center the selected object or objects.

Undo: undo the previous action.

Tessent™ Shell User’s Manual, v2021.3642

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
When a dofile generated with the Export schematic action is executed in a future session,
the displayed schematic is re-created as closely as possible. In rare circumstances, some

objects may not be displayed or connected exactly as in the original schematic.

Redo: redo the previous action.

Redraw: refresh the schematic view.

Select all: select all objects in the schematic view.

Delete selected: delete all selected objects from the schematic view.

Delete unselected: delete all objects from the schematic view except those
currently selected. There are two exceptions:

• If a selected object is an instance that has some pins displayed, those pins
are not deleted.

• If the selected objects are pins that are connected with a net, that net
connection is not deleted.

Delete all: delete all objects from the schematic view.

Collapse callouts: collapse all callout messages to their icon
representations, or expand if currently collapsed.

Mark/Unmark: highlight the currently selected object or objects with the
selected color, or clear the highlighting on the selected object. If the color
you want to use is already active, you can use Ctrl+M to highlight the
selected object(s).

Export schematic: save the current view of the schematic in PDF or
PostScript format, or as a schematic dofile. You can run the generated
schematic dofile (or any other dofile) using the Execute dofile option under
the Open menu, or by using the dofile command in the Transcript or shell
window.

Options: set schematic-specific options (different schematic types have
different options in this submenu).

Table 11-2. Schematic Toolbar Actions (cont.)

Tool Description

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 643

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Schematic Symbols

Tessent Visualizer schematics use a variety of conventional symbols to present the structure,
objects, and connections of a design.

Object Types in Schematics . 643

Markers. 649

Buffer and Inverter Collapsing . 651

Folding and Unfolding Instances . 654

Object Types in Schematics

The object types displayed in schematics are instances, pins, ports, and nets. You interact with
these objects to explore your design, obtain information about the objects’ properties, trace nets
forward and backward, and so on.

Figure 11-7. Hierarchical Schematic Showing Pins, Ports, Instances, and Nets

Instances

Instances are individual copies of library cells, primitives, or groups of cells connected by nets
to form hierarchical instances. Both the Hierarchical Schematic and Flat Schematic tabs can
contain instances of library cells and primitives, which display as conventional logic symbols
(such as NAND, NOR, and MUX). Library cells display as rectangles in the Hierarchical
Schematic tab, but you can see their functional representation in the Flat Schematic tab.

Tessent™ Shell User’s Manual, v2021.3644

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The ordering of pins on displayed instances matches the ordering as provided by
report_gates.

Hierarchical Instances

Tessent Visualizer schematics show groupings of symbols by enclosing them in rectangles,
objects called hierarchical instances. Hierarchical instances include their pins. All instances
except those at the leaf level display with both the internal and external connections to those
pins.

Figure 11-8 depicts an instance in the Hierarchical Schematic tab. Callouts convey
information about specific design objects in certain contexts, and the schematic shows
simulation data on design pins where appropriate.

Figure 11-8. Hierarchical Instance With Callout and Pin Data

Use the right mouse button as shown in Figure 11-9 to show the internal connectivity of a
selected hierarchical instance. If the number of objects at the selected instance’s interface is
large, this option is not available. In this case, use context tables to selectively add instances and
connections to the schematic.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 645

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-9. Showing the Internal Connectivity of a Hierarchical Instance

Figure 11-10 shows an instance in the Hierarchical Schematic tab with a red callout symbol.
Hover the mouse pointer over the symbol to show the number of DRC violations, and click the
symbol to display a table of those violations.

Figure 11-10. Hierarchical Instance With DRC Callout

Hierarchical cells (HCells, defined by `celldefine and `endcelldefine in Verilog) are depicted
with a slightly lighter gray color than the library cells. You can view objects inside hierarchical
cells, but these are not annotated with gate data from the flat model.

Tessent™ Shell User’s Manual, v2021.3646

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-11. Hierarchical Cell

Figure 11-12. Hierarchical Instance Representing an Assign Statement

The code for the assign statement symbol is similar to this:

module RDS_process_rtl_tessent_buf_49(a, y);
 input a;
 output y;

 assign y = a;
endmodule

Black-Boxed Instances

A black-boxed instance is an instance with no defined model that you create with the
add_black_boxes command.

Figure 11-13 shows how the add_black_boxes command creates a blackbox from the dr_mux_i
instance within the tap_i module. The instance then becomes a BB type and displays as a solid
gray rectangle in the Hierarchical Schematic tab.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 647

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-13. Black-Boxed Instance Example

Instances in the Flat Schematic Tab

Flattening the design creates certain artificial gates, as shown in Figure 11-14.

Figure 11-14. Objects in the Flat Schematic Tab

The flattening process creates primary inputs and outputs, as well as bus instances necessary for
modeling bidirectional pins and ports. In addition, there are instances that tie a net to a fixed
value.

User-defined cells display as rectangles with a solid fill. User-added ports display with an
orange fill.

Tessent™ Shell User’s Manual, v2021.3648

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-15 shows a persistent buffer symbol in the Flat Schematic tab. The same buffer
would look like Figure 11-12 in the Hierarchical Schematic tab because you typically
implement persistent buffers using an “assign” statement.

Figure 11-15. Persistent Buffer Symbol

Pins and Ports

Pins and ports are electrical connections between an instance and a net. Both of these, along
with buses (a collection of related pins) indicate signal sources or destinations in the schematic,
and are characterized by their size and direction (input, output, or bidirectional). For bus naming
conventions, see “Buses” on page 679.

Callout Messages

Callouts are informational messages that display on a schematic, as shown in Figure 11-8 on
page 644. You can add callouts to any instance, pin, or net object that exists on the schematic
using the add_schematic_callout command.

Callouts can also display in a collapsed format, as shown as “collapsed callouts” in Table 11-3
on page 649. The table describes how to view the text of a collapsed callout. Use the “Collapse
callouts” button as described in Table 11-2 on page 641 to collapse all callouts. Use Ctrl+left
mouse button to drag and drop individual callouts.

Nets

Single nets display as thin green lines, and bus nets display as thicker green lines. When a bus
net branches to a single net, the bus index displays when the mouse pointer is hovered over the
triangular rip point symbol, as shown in Figure 11-16.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 649

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-16. Bus Index Displayed at Rip Point

Markers

Tessent Visualizer uses marker symbols in schematics to indicate additional properties of the
elements shown. Some, such as trace markers and buffer-collapsing markers, have actions
associated with them.

Table 11-3 lists a summary of marker symbols used in Tessent Visualizer schematics, and
whether they are displayed in flat or hierarchical schematics (or both).

Table 11-3. Marker Symbols

Symbol Hier Flat Description

Green diamond: pin with single connection available to display.
Click to display unambiguous connection from this pin.

Orange diamond: pin with multiple connections available to display.
Click to open the Tracer table and select the tracing destination.

Blue diamond: ambiguous bidirectional pin. When all drivers and
drains of the port are visible, the color changes to green or orange, as
appropriate. Click to open the Tracer table and select the tracing
direction and destination.

Half-filled diamond (green): single connection left on bus.
Remainder of displayed pins tied or unconnected. Click to open the
Pins context table to show the tie values on all bus pins.

Tessent™ Shell User’s Manual, v2021.3650

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Half-filled diamond (blue): one or more ambiguous bidirectional
pins on bus. Remainder of displayed pins tied or unconnected. When
all drivers and drains of the port are visible, the color changes to
green or orange, as appropriate. Click to open the Pins context table
to show the tie values on all bus pins.

Half-filled diamond (orange): multiple connections on bus, some
pins tied or unconnected. Click to open the Pins context table to
show the tie values on all bus pins.

Red triangle: pin with coercion (connection against a declared
direction). Click to open the Tracer context table and select the
tracing destination.

Blue square: RTL connection (no connection in hierarchical model).
Click to open the Text/HDL Viewer with a textual representation of
this connection.

Crossed circle (red): no connection.

Circle with 0/1/X/Z (green): tied to 0/1/X/Z. When shown on a bus
port, click to open the Pins context table to show the tie values on all
bus pins.

Circle with “a”: ambiguous tie values (mix of some or all of 0/1/X/Z)
on bus. Click to open the Pins context table to show the tie values on
all bus pins.

Diamond with “+”: collapsed buffers and inverters. Click this
symbol to expand.

• Green: no hidden fanout.
• Orange: fanout within collapsed region.

Diamond with “-”: expanded buffers and inverters. Click this symbol
to collapse.

• Green: no fanout in collapsible region.
• Orange: collapsing hides potential fanout.

Collapsed callout. The green symbol indicates that the callout was
added with the “add_schematic_callout -collapsed” command. View
the callout text as a tooltip by mouse hover. The yellow symbol is a
native callout, which you can expand with the “Collapse/Uncollapse
callout” toolbar button.

Table 11-3. Marker Symbols (cont.)

Symbol Hier Flat Description

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 651

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Buffer and Inverter Collapsing

Buffers and inverters can be collapsed and expanded in schematics to improve readability. Set
the preference for this feature in the Options (gear) menu of the schematic toolbar.

DRC violation callout. This symbol indicates that there are DRC
violations related to the marked object. View the number of DRC
violations by mouse hover. Click the symbol to open the list of
violations in the DRC Violations table.

Red scissors: cut point (input connections cut or disconnected by the
user or the tool).

Green scissors: cut point driver (single sink). Click the green scissors
symbol to show the driver or sink port.

Orange scissors: cut point driver (multiple sinks). Click the orange
scissors symbol to display a context table showing the drivers or
sinks.

Orange polygon: pseudo-port (primary output added by the user or
tool).

Note: Orange fill is also used to indicate primary input or output
pseudo-ports in the flat schematic.

Tessent Shell attributes markers with gui_marking_index set and
“set_attribute_option -display_in_gui” enabled.

• Filled circle: all displayed objects with the marker have a value
set for the associated attribute.

• Half circle: not all displayed objects with the marker have a value
set for the associated attribute.

• Empty circle: displayed in the attributes table; indicates that the
attribute is set to the default value and hence is not marked on the
schematic.

Table 11-3. Marker Symbols (cont.)

Symbol Hier Flat Description

Tessent™ Shell User’s Manual, v2021.3652

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The collapsed and expanded symbols are shown in either green or orange. Green indicates that
there are no hidden fanouts associated with the collapsed objects, as shown in Figure 11-17:

Figure 11-17. Collapsed Buffers and Inverters With No Hidden Fanout

After expanding, there is no additional fanout, as shown in Figure 11-18:

Figure 11-18. Expanded Buffers and Inverters With No Hidden Fanout

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 653

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Orange indicates that there is additional fanout hidden by the buffer/inverter collapsing, as
shown in Figure 11-19 and Figure 11-20:

Figure 11-19. Collapsed Buffers/Inverters With Hidden Fanout

Figure 11-20. Expanded Buffers/Inverters With Hidden Fanout

Tessent™ Shell User’s Manual, v2021.3654

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additional objects appear after adding the fanouts to the schematic, and the color of the markers
changes to green as shown in Figure 11-21:

Figure 11-21. Expanded Buffers/Inverters With Fanout Revealed

Note
Only buffers and inverters added implicitly to the schematic as a result of tracing are
collapsible. These are identified with a gradient fill. Buffers and inverters added explicitly

by name or gate ID are not collapsible and are identified with a solid fill.

Folding and Unfolding Instances

Cell grouping boxes in the Flat Schematic and instances in the Hierarchical Schematic can be
folded and unfolded.

Folding and unfolding grouping boxes or instances is analogous to collapsing and expanding
buffers and inverters, as described in “Buffer and Inverter Collapsing” on page 651. Double-
click the grouping box or instance to do this. Figure 11-22 shows how you can also unfold
hierarchical instances by clicking the plus sign (+) symbol at the top-left corner.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 655

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-22. Unfolding an Instance

Figure 11-23. Folded Cell Group

Figure 11-24. Unfolded Cell Group

Context Tables
Schematics include tables to display information about the objects in the schematic. The tables
take different forms depending on the current selection in the schematic.

Tessent™ Shell User’s Manual, v2021.3656

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Context tables are interactive. They display information, but you also use them to select and
manipulate objects in the schematic. The following example shows a context table listing the
data for a selected instance.

Figure 11-25. Schematic Elements: Context Table

Tracer

The context table for the tracing function provides information about the objects available to the
tracing process.

When you trace from an ambiguous point (orange trace marker) or click the Tracer button next
to the address bar when a pin is selected, the tracer context table opens. Use this table to add the
next object in the tracing path to the schematic by double-clicking the appropriate row in the
table. You can select the tracing direction and strategy, as described in “Signal Net Tracing
Strategies” on page 665.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 657

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-26. Tracer Context Table

Pins and Gate Pins

Context tables are available for instance pins in the Hierarchical Schematic and gate pins in the
Flat Schematic.

You can select an instance in the Hierarchical Schematic tab or Flat Schematic tab and click
the Pins button or the Gate Pins button near the address bar, respectively, to view information
about the pins belonging to that instance.

Tessent™ Shell User’s Manual, v2021.3658

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-27. Context Table for Instance Pins (Hierarchical Schematic)

Instances (Hierarchical Schematic)

A context table is available for instances in the Hierarchical Schematic tab.

Select an instance in the Hierarchical Schematic tab and click the Instances button near the
address bar to view information about the child instances.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 659

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-28. Context Table for Instances (Hierarchical Schematic)

Nets (Hierarchical Schematic)

A context table is available for nets in the Hierarchical Schematic tab.

Select an instance in the Hierarchical Schematic tab and click the Nets button near the address
bar to list the nets one level below that instance.

Tessent™ Shell User’s Manual, v2021.3660

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-29. Context Table for Nets (Hierarchical Schematic)

Flat Sinks (Flat Schematic)

Flat sinks are the set of primary inputs that you add to control internal pins. For example, you
can add a primary input at the output of a PLL to model the clock, while keeping the PLL black-
boxed.

The green dashed line in the following figure representing the original fanout net shows that this
replacement is complete, and that there is only one user-added primary input associated with
this fanout. The red scissors symbol indicates that a pseudo-port now drives that fanout.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 661

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-30. Fanout Replaced by User-Added Primary Input

Figure 11-31 shows the same MUX in the Flat Schematic, as well as the user-added primary
input. The primary input is added to the schematic when you click the green scissors symbol on
the MUX output.

Figure 11-31. Flat Sink

Figure 11-32 shows a Hierarchical Schematic view of the same clock MUX, but in this case it
has had all of its fanout replaced by multiple user-added primary inputs. The orange dashed line
representing the original fanout net shows that this replacement is complete, and that there is
more than one user-added primary input associated with this fanout. The red scissors symbols
indicate that pseudo-ports now drive that fanout.

Tessent™ Shell User’s Manual, v2021.3662

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-32. Fanout Replaced by Multiple User-Added Primary Inputs

Figure 11-33 shows the same MUX in the Flat Schematic, as well as the user-added primary
inputs. The primary inputs are added to the schematic when you click the orange scissors
symbol.

Figure 11-33. Multiple Flat Sinks

Clicking the orange scissors symbol displays the context table for the user-added primary
inputs, and double-clicking a row displays the flat sink.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 663

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-34. Context Table for Multiple Flat Sinks

Netlist Drivers (Flat Schematic)

Netlist drivers are the original drivers of the fanout of user-added primary inputs.

Use the following commands to add primary inputs. These are indicated by the red scissors
symbol in the Hierarchical Schematic tab.

add_primary_inputs I01/in1 -internal -pin INTERNAL_1
add_primary_inputs I01/b1/A0 -internal -pin INTERNAL_2
add_primary_inputs u1/D -internal -pin INTERNAL_3

Tessent™ Shell User’s Manual, v2021.3664

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-35. User-Added Primary Inputs

As a result, the original fanout of the pi1 pin was disconnected, as indicated by the dashed line.

Figure 11-36 shows the pi1 pin in the Flat Schematic. The circle with the red “X” shows that it
is disconnected, and the orange scissors symbol indicates that its original fanout is now driven
by multiple user-added primary inputs. Click the orange scissors symbol to display the context
table listing the flat sinks, as shown in the following figure.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 665

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-36. Netlist Driver and Context Table for User-Added Primary Inputs

Figure 11-37 shows the user-added primary inputs in the Flat Schematic. The orange fill
indicates that these are user-added, and the green scissors symbol indicates that they have a
single original driver. Clicking the scissors symbol shows the driver.

Figure 11-37. User-Added Primary Inputs (Flat Schematic)

Related Topics

Markers

Signal Net Tracing Strategies
The Flat and Hierarchical schematics feature multiple tracing strategies. They are available
when the Tracer context table is activated for a pin, either by clicking an orange trace marker in

Tessent™ Shell User’s Manual, v2021.3666

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the schematic or the Tracer button after a pin is selected. The tracing strategies are common for
both schematics.

For the green trace markers, the following tracing strategies are available in the schematics:

• Trace to decision point (default)

• Trace by one

Use the Options button () in the schematic toolbar to select an option. A decision point is
any point where a logic decision is made, such as a gate, state element, or a hierarchical pin with
multiple fanouts, as shown in Figure 11-38.

Figure 11-38. Decision Point Strategy on Hierarchy Boundary at q[6] Port

Figure 11-39. Choosing a Path From the Tracing Table

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 667

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can continue tracing from the decision point by double-clicking one of the paths in the
table.

For additional information about tracing buses, see “Buses” on page 679.

Decision Point Tracing Strategy

Decision point tracing is the default strategy. In the decision point tracing strategy, a path is
traced to the point where a logic decision is to be made. Tracing continues through buffers,
inverters, wire primitives, and hierarchical boundaries as long as there is only one fanout
(forward tracing) or fanin (backward tracing), and stops on other gates, cells, and logic
primitives.

Figure 11-40 shows the result of a trace using the Decision Point strategy. Pin A1 on the AND
gate has been traced back through the inverter to the MUX, which is the first logic decision
point.

Figure 11-40. Decision Point Strategy

Endpoint Tracing Strategy

When you use the endpoint tracing strategy, the tracing stops on any endpoint element. An
endpoint is defined as any primary input or output, or any sequential element, memory, or black
box. Tracing under the endpoint strategy traverses all buffers, inverters, logic gates, and
hierarchical boundaries between the tracing start point (the pin selected on the schematic) and
the endpoint, and the resulting paths includes those elements.

Nearest State Element Tracing Strategy

When you use the nearest state element tracing strategy, tracing stops on the first state element
encountered. State elements are sequential elements or memories. Tracing under the nearest
state element strategy includes all buffers, inverters, logic gates, and hierarchical boundaries
between the tracing start point and the state-element endpoint, and the resulting paths include
those elements.

Tessent™ Shell User’s Manual, v2021.3668

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Complete Fanin and Fanout Tracing Strategy

Complete fanin or fanout tracing performs full structural tracing. When tracing with the
complete fanin and fanout strategy, the entire input or output logic cone is included in the
results.

Stop on First Match Tracing Strategy

For the first match tracing strategy, you provide additional data in the form of a filter. The
complete fanin / fanout strategy is used, but tracing stops when the first element matching the
filter is found on the path. A single result is reported.

Trace by One Tracing Strategy

When you use the trace by one strategy, tracing stops at the next hierarchical level found in the
Hierarchical Schematic, or the next logic element found in the Flat Schematic.

Displayed Property
All objects in Tessent Visualizer have a property called “displayed.”

The “displayed” property of an object refers to the corresponding schematic for the object, and
indicates whether that object is added to the schematic. The context of being displayed is
important for pin buses because all tracer actions are run for parts of the bus being added to the
schematic. By default, the “displayed” property is indicated in tables by a distinct background
color for a row, and can also be added as a column in those tables.

Tessent Shell Attributes
Tessent Visualizer includes functionality to view Tessent Shell attributes and annotate the
objects displayed in schematics with them.

The Tessent Shell attributes for the currently selected object in the schematic are shown in a
table.

Tessent Visualizer
Schematics

Tessent™ Shell User’s Manual, v2021.3 669

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-41. Tessent Shell Attributes Table

By default, only those attributes with non-default values, or that were registered with the
“-show_default” option, are shown. You can use the Show all checkbox to show all attributes,
including those with default values.

You can double-click a cell in the GUI column to select a color in the GUI marking index and
show a corresponding marker near schematic objects that have that attribute set to a non-default
value. Hover the mouse pointer over that marker in the schematic as shown in Figure 11-41 to
show a tooltip with the attribute name and value.

Note
For Boolean attributes, the marker is only shown if the value is set to “true.”

An empty circle in the GUI column indicates that the attribute is set to the default value. A
corresponding marker is not displayed in the schematic window in this case. A half-filled circle

Tessent™ Shell User’s Manual, v2021.3670

Tessent Visualizer
Schematics

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

applies to buses only and indicates that not all of the pins composing the bus have the relevant
attribute set to nondefault values. Additionally, the “Value” column indicates “<multiple
values>” for buses where the values for this attribute of separate pins are not consistent.

Mouse Gestures
Zoom in or out within schematics using the left mouse button.

Figure 11-42 summarizes the four mouse gestures (stroke commands) available to perform a
zoom.

Figure 11-42. Mouse Gestures in Tessent Visualizer Schematics

Tessent Visualizer
Tessent Visualizer Preferences

Tessent™ Shell User’s Manual, v2021.3 671

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can also zoom in and out using the scroll wheel of your mouse.

Additional mouse gestures are available:

• Shift-click and drag with the left mouse button: area select.

• Click and drag with the scroll wheel: pan the view.

Customize the mapping of mouse gestures to specific mouse buttons and keyboard modifiers in
the Preferences dialog box. See “Tessent Visualizer Preferences” on page 671.

Tessent Visualizer Preferences
Customize Tessent Visualizer with the Preferences dialog box, which is available from the
Settings pulldown menu.

The Preferences dialog box contains several tabs:

• Schematics

• Tables

• Text viewers

• Other

Use the Schematics tab to define how schematics look and operate. Set maximum lengths for
names, set the width of net representations, redefine how the mouse works when interacting
with schematics, and choose the color theme.

There are three predefined color themes available in Tessent Visualizer schematics: light, dark,
and high-contrast. Set the color scheme with the Preferences dialog box.

Figure 11-43. Light, Dark, and High-Contrast Color Themes

Use the Tables tab to set the maximum number of rows loaded in tables and to show line
numbers in tables.

Use the Text viewers tab to set the font size and line-wrapping policy in the Text Viewer, and
to define an external text editor that can be launched from the Text/HDL Viewer tab. Choose
from several common text editors, or define your own preferred one. Use the variables “%l”

Tessent™ Shell User’s Manual, v2021.3672

Tessent Visualizer
Macros

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

(line number) and “%f” (filename) as arguments to the text editor executable. For example, this
text editor definition opens the file currently in the Text/HDL Viewer tab in the Gedit editor
with the cursor positioned at the current line:

/usr/bin/gedit +%l %f

Figure 11-44. Preferences Dialog Box (Text Viewers Tab)

Note
Tessent Visualizer invokes whichever executable you specify as the external text editor.
Ensure that valid and working options are set here.

Use the Other tab to set the global font size.

Macros
You can define a macro for any script or command that you can run in the Tessent Shell
environment.

Open the Macros menu to define or run custom macros. You can use the Macro Editor dialog
box to create new macros or modify existing macros. Figure 11-45 shows the Macro Editor with
two simple macros defined. With the Macro Editor, you can do the following:

• Add, remove, or duplicate a macro.

• Reorder the macros in the Macros menu.

• Record a keyboard shortcut for a macro.

• Undefine a macro keyboard shortcut.

Tessent Visualizer
Tooltips

Tessent™ Shell User’s Manual, v2021.3 673

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Select an icon for a macro.

Figure 11-45. Macro Editor

The following example shows the macros menu after creating the “report myType” macro in the
editor. In this example, the macro runs the report_gates command with the -type option and the
predefined variable shown in Figure 11-45 above.

Figure 11-46. Running a Macro

You can define a keyboard shortcut, for example, Shift+R, for a new macro. You can run the
macro directly from the macros menu, or from the keyboard using that shortcut. If you attempt
to record a keyboard shortcut for a macro using an existing shortcut, an error message is
reported.

Tooltips
Many Tessent Visualizer features have associated tooltips, which are informational text popups
that appear when you hover the mouse pointer over a graphical element such as an object, filter
box, or button.

Figure 11-47, Figure 11-48, and Figure 11-49 show examples of tooltips for several Tessent
Visualizer features.

Tessent™ Shell User’s Manual, v2021.3674

Tessent Visualizer
Gate Report Settings

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-47. Tooltip for a Collapsed Buffer Indicator

Figure 11-48. Tooltip for a Filter Box

Figure 11-49. Tooltip for an Action Button

Gate Report Settings
The Gate Report Settings dialog box specifies the information displayed in Tessent Visualizer
schematics.

Tessent Visualizer
Saving and Restoring the Session State

Tessent™ Shell User’s Manual, v2021.3 675

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Gate Report Settings dialog box is a GUI front end for the set_gate_report command. The
dialog box provides access to a subset of the set_gate_report options. These options are active
depending on the data models available in Tessent Shell.

Access the dialog box by clicking the Open Gate Report Settings dialog button at the
bottom of the main Tessent Visualizer window or from the Settings > Gate Report menu.

See the set_gate_report command for a description of the simulation values shown in the
schematics and tables that correspond to the values set in the dialog box.

Related Topics

set_gate_report

report_gates

Saving and Restoring the Session State
The session state, such as the tabs appearing in a window and specific user preferences, is stored
in a hidden file in your home directory. Some other specific settings such as filtering and
instance highlighting persist in memory until the Tessent Visualizer server is closed. For
example, if you close a Tessent Visualizer client and later start a new client connected to the
same server, the session appears as you left it.

You can save and restore specific configurations with Settings > Export configuration and
Settings > Import configuration. You can also start Tessent Visualizer with a specific
configuration using -import_configuration option of the open_visualizer with either the
open_visualizer command or tessent -visualizer invocation.

Window Title Prefixes
You can define a prefix to be added to the title bars of the Visualizer windows, to distinguish
between multiple sessions running on the same machine.

To define a window title prefix, invoke Tessent or open the Visualizer session with the -label
option:

% $TESSENT_HOME/bin/tessent -visualizer -label name

SETUP> open_visualizer -label name

Tessent™ Shell User’s Manual, v2021.3676

Tessent Visualizer
Window Title Prefixes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alternately, set the prefix directly in Visualizer as shown in Figure 11-50:

Figure 11-50. Setting a Window Title Prefix

The standard window table is prepended with the string you set, as shown in Figure 11-51. In
addition, “Tessent Visualizer” is added to the window title as a suffix:

Figure 11-51. Visualizer Window Label

Tessent Visualizer
Tessent Visualizer GUI Reference

Tessent™ Shell User’s Manual, v2021.3 677

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Visualizer GUI Reference
The Tessent Visualizer GUI consists of several tabbed windows that function as different views
on design data. You can look at objects as part of schematics, browse tables, view a report, or
look at different types of syntactically-highlighted text.

Hierarchical Schematic . 677

Flat Schematic . 682

Instance Browser . 684

Wave Generator . 686

Cell Library Browser. 688

DRC Browser . 689

Pin Data . 691

Transcript . 692

Text/HDL Viewer. 693

Diagnosis Report Viewer. 695

Hierarchical Schematic
This section describes features available only in the Hierarchical Schematic tab. The
Hierarchical Schematic shows a representation of the design before design flattening. Use this
feature to explore the structure of your design and the relationships between the elements
making up the design.

Note
“Schematics” on page 639 describes schematic features common to both the Hierarchical
Schematic and the Flat Schematic.

You can use the tools available from the Toolbar, or you can use the context menu to do the
following:

• Show the selected object(s) in the Flat Schematic.

• Show the HDL definition for the selected object in the Text/HDL Viewer.

• Show the HDL instantiation for the selected object in the Text/HDL Viewer.

• Show all pins, or hide unconnected pins, on the selected instance (as shown in
Figure 11-52).

• Show the internal connectivity of a hierarchical instance.

• Show an instance as parent in the Instance Browser.

Tessent™ Shell User’s Manual, v2021.3678

Tessent Visualizer
Hierarchical Schematic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Delete all selected objects from the schematic.

• Delete all unselected object(s) from the schematic.

• Trace backward.

• Report gates on selected pins.

• Copy the post-synthesis names of selected objects to the system clipboard.

• Copy the active names of selected objects to the system clipboard. Active names are
compatible with Tessent introspection commands.

Figure 11-52. Hierarchical Instances With Pins Shown and Hidden

Note
The menu items Show HDL definition and Show HDL instantiation are available only
when the Tessent Shell context is set to “dft -rtl.” The Show HDL definition menu item is

available for library cells in all contexts when the library cell file is available.

Note
By default, all pins are initially shown on an instance when it is added to the Hierarchical
Schematic if the total number of single pins and bus ports is 16 or fewer.

The following tables relate specifically to the Hierarchical Schematic:

• Instances Table — Displays information about the instances contained within a
selected instance. For more information, see “Instances (Hierarchical Schematic)” on
page 658.

• Nets Table — Displays information about the nets of a selected instance. For more
information, see “Nets (Hierarchical Schematic)” on page 659.

Tessent Visualizer
Hierarchical Schematic

Tessent™ Shell User’s Manual, v2021.3 679

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-53 shows several symbols specific to the Hierarchical Schematic:

Figure 11-53. Hierarchical Schematic Symbols

Design hierarchy is shown with rectangles surrounding the objects in a design instance, and
library cells are shown without rectangles and filled with gray. The leaf-level instance names
are displayed above each instance, and the module or cell names are displayed below them.

Buses

The Hierarchical Schematic can display either complete or partial buses, using the following
naming conventions:

• Fully displayed — Shows the full range. For example, “scan[7:0]”.

• Partially displayed — Indicates the count of displayed pins versus the total pin count.
For example, “scan[2 of 8]”.

• Single pin of a bus — The index of the displayed pin is shown. For example, “scan[3]”.

You can add or remove bus pins in the display from any table that lists hierarchical pins, such as
the Pins table in the Instance Browser or the Pins context table at the bottom of the Hierarchical
Schematic.

You can also add bus pins with the following procedure:

1. Select the instance in the Hierarchical Schematic. The instance name is displayed in the
address bar (see Figure 11-6 on page 641).

Tessent™ Shell User’s Manual, v2021.3680

Tessent Visualizer
Hierarchical Schematic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Append text to the instance name to add the bus pins. For a single pin, include the pin
index (for example, "data[3]" in "mytop/parent_module/this_instance/data[3]"). To
designate the complete bus, use the "*" wildcard character (for example, "data*").

3. Press Enter. The address bar shows both the pins and the nets. Click the pins line. The
pins are added to the instance in the schematic.

The display of bus pins affects the operation of the tracing function, because the tracer starts
from displayed bus pins. Add individual pins for tracing to the Hierarchical Schematic, or apply
filtering in the tracer table for the pins of interest.

Tessent Visualizer uses several naming and symbol conventions for buses in schematic
windows. See Figure 11-54 for examples.

Figure 11-54. Bus Tracing in the Hierarchical Schematic

Item Description

Bus-to-scalar connection with rip index (“0” in this case) shown with
mouse pointer hover over rip symbol.

Generated name for a partial bus (two bits of a three-bit bus in this
case).

Orange diamond representing multiple paths not shown from this bus
pin.

Generated name of a partial bus with a single bit displayed (bit index
2, in this case).

Tessent Visualizer
Hierarchical Schematic

Tessent™ Shell User’s Manual, v2021.3 681

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Buses can be split into sub-ranges as shown in Figure 11-55. In this case, ten bits of the 31-bit
output bus from instance s1 are merged with all ten bits of the output buses from instances s2
and s3 to form the 30-bit merged_out_bus.

Bus rip indices can also be shown directly on the hierarchical schematic by choosing this feature
from the options menu.

Figure 11-55. Bus Sub-Ranges

Note
This schematic does not indicate which ten bits of the output bus from s1 are connected. Use
the Tracer table to determine connectivity.

Other Symbols

Additional marker symbols indicate other hierarchical schematic features, such as tied-value
indicators. A tied-value indicator is displayed when a net is tied to a logic value or an unknown.
See Figure 11-56 for an example, and Table 11-3 on page 649.

Tessent™ Shell User’s Manual, v2021.3682

Tessent Visualizer
Flat Schematic

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-56. Example of a Tied-Value Marker With Associated Pin Table

Flat Schematic
The Flat Schematic shows a representation of the design after design flattening. Use the Flat
Schematic to analyze and debug issues when the details required for analysis are not available in
the Hierarchical Schematic. For example, simulation data and functional representations of
hierarchical and library cells are available in the Flat Schematic.

Library and hierarchical cells in the design appear in the Flat Schematic as gates. Cells that
consist of a single gate are displayed with the conventional symbols for those gates.
Figure 11-57 shows cells that consist of multiple gates, displayed either with or without a
bounding box showing the grouping. You can control this display option using the “Cell
grouping” checkbox in the Options menu available from the toolbar.

Tessent Visualizer
Flat Schematic

Tessent™ Shell User’s Manual, v2021.3 683

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-57. Flat Schematic (Cell Grouping On)

You can right-click the dashed-line bounding box and use the context menu to delete the
instance from the Flat Schematic, show it in the Hierarchical Schematic, or show all gates
within the grouping.

Note
In a library cell bounding box, a NAND function that has at least one (but not all) inputs
inverted is displayed as an OR symbol. A NOR function that has at least one (but not all)

inputs inverted is displayed as an AND symbol.

Note
When cell grouping is turned on, instances shown on the schematic are identified by their
module or primitive names (below the symbol) and leaf-level cell library names (above the

symbol). When it is turned off, they are identified by their module/primitive names and their
gate IDs from the flat model.

Many features of the Flat Schematic are similar to those in the Hierarchical Schematic.
However, one difference is that you cannot control the display of pins on most instances, with
the exception of RAM and ROM instances. You can add or remove pins for these instances by
using the popup menu or by dragging and dropping from the pins table.

Pin names on instances appear in quotation marks when the pin is not part of the design
hierarchy.

Tessent™ Shell User’s Manual, v2021.3684

Tessent Visualizer
Instance Browser

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Instance Browser
Use the Instance Browser to navigate your design and obtain reports about its elements. It is
analogous to a file browser.

The Instance Browser consists of four major elements:

• Tree View — A pane that shows the instances in your design hierarchy directly.

• Child Instances table — A pane that displays information about the children of the
instance currently selected in the tree view or the Address Bar.

• Address Bar — A text field that shows the instance currently selected in the tree view
and the parent instance for instances displayed in the Child Instances table. Type an
instance name in this field to select an instance without using the Tree View or Child
Instances table.

• Pins and DRC Violations tables — A table that lists the pins or DRC violations for the
instance(s) currently selected in the Child Instances table.

Note
For huge designs, it may be more efficient to select an instance and then use the filtering
functions in the Child Instances table to find objects and explore the hierarchy from the

search results.

Click an instance in the tree view to display that instance’s contents in the Child Instances table.
Double-clicking an instance in the tree view expands the node in the tree. First, the node is
selected, and it becomes the parent instance. If the double-clicked node is different than the one
previously selected, the Child Instances table is reloaded with the children of the new parent.

Select an instance of any type in the Child Instances table to display its pins or DRC violations
in the appropriate context table. Double-click, or use the Enter key, to open the next level of
hierarchy (if any) in the Child Instances table. Press the Backspace key to navigate up one level
of hierarchy.

Show instances of cells or modules in the Hierarchical Schematic, the Flat Schematic, or the
Text/HDL Viewer by right-clicking the cell or module in the tree view or Child Instances table
and choosing the appropriate option from the popup menu. Add a pin to the pin data table by
right-clicking the pin in the Pin Information table and choosing the Add to Pin Data menu
item.

Copy the active or post-synthesis name of an instance to the system clipboard by right-clicking
the name in the tree view and choosing the appropriate option from the popup menu. Active
names are compatible with Tessent introspection commands; post-synthesis names are not.

Tessent Visualizer
Instance Browser

Tessent™ Shell User’s Manual, v2021.3 685

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-58. Instance Browser Elements

The Child Instances table and Pin/DRC Violations table include toolbars that provide the
common controls described in “Tables” on page 631, as well as buttons you can use to switch
between pin information and DRC violations in the table. In addition, the Child Instances table
has a Hierarchy-Up button to navigate to the currently selected instance’s parent.

To debug directly in the instance browser, use the sorting and filtering functions as shown in
Figure 11-59 to investigate faults and design rule violations, and to discover instances with
problematic coverage statistics. In this example, the “test coverage loss” and “total DRC
violations” columns have been added and sorted, and a significant problem can be seen in the
U_3 instance.

Tessent™ Shell User’s Manual, v2021.3686

Tessent Visualizer
Wave Generator

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-59. Debugging in the Instance Browser

Wave Generator
Use the Wave Generator to export data for selected pins to value change dump (VCD) files or to
view their waveforms.

Open the Wave Generator by right-clicking pins on a hierarchical or flat schematic and
choosing Add to Wave Generator. You can also add pins to the Wave Generator from search
tabs, the Instance Browser, or from context tables showing pins or gate pins.

You can also open the Wave Generator by using the add_wave_generator_pins command or
directly from the main window dropdown menu.

Tessent Visualizer
Wave Generator

Tessent™ Shell User’s Manual, v2021.3 687

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-60. Wave Generator

Choose the Test Setup or Test End procedure, and export the waveform data to a VCD file or a
dofile from the Wave Generator toolbar. If the Test Setup or Test End procedure is not loaded
into Tessent Shell, an error message is displayed.

Run an exported dofile with the “dofile” or “source” command to restore the currently displayed
pins to the Wave Generator.

Use the Options (gear) menu of the Wave Generator toolbar to set up an external waveform
viewer (for example, GTKWave or VisWave).

To control the ordering of the waveforms in the waveform viewer from the Waveform
Generator, check the Update viewer automatically box. When you drag-and-drop the pin
names in the Waveform Generator, the ordering in the waveform viewer changes accordingly. If
you delete a pin from the Wave Generator, that pin is also deleted from the waveform viewer.

You can right-click a selected set of pin names in the Wave Generator table and choose Copy
names(s) from the context menu. This action creates a Tcl list in the system clipboard that can
be pasted elsewhere, such as into a script or to the Tessent Shell command line.

// Copy name(s) example:
[list {edt_i/edt_scan_in[0]} {edt_i/edt_scan_out[0]} edt_i/edt_clock]

You can also use the context menu to:

• Show selected pins in the Hierarchical or Flat Schematic

• Show the HDL definitions or instantiations of selected pins

• Delete selected pins

Tessent™ Shell User’s Manual, v2021.3688

Tessent Visualizer
Cell Library Browser

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-61. A GTKWave Viewer Application Invoked From Wave Generator

Note
GTKWave is an open-source third-party application. You should install the GTKWave
binary package from a native Red Hat or SUSE Linux distribution repository. You must

configure custom GTKWave installations (those built from sources) with the Tcl interpreter
enabled to communicate with Tessent Visualizer. You can verify this requirement by issuing the
gtkwave -W command.

You can also delete pins from the Wave Generator with the delete_wave_generator_pins
command.

Related Topics

add_wave_generator_pins

delete_wave_generator_pins

Cell Library Browser
Use the Cell Library Browser to debug test coverage and fault coverage loss from the
perspective of library cells.

Tessent Visualizer
DRC Browser

Tessent™ Shell User’s Manual, v2021.3 689

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Cell Library Browser consists of two panes:

• Left Pane — Lists the available cell libraries. This pane can include data such as the
module name, statistics including the number of instances in the design, and fault
coverage.

• Right Pane — Shows the instantiations of those library cells in the design. You can add
columns to display data such as the attributes of those instantiations, the hierarchical
name, the parent module, and fault information.

Figure 11-62. Cell Library Browser

Click in a row in the left pane to show the instantiation information for that cell type in the right
pane. Right-click an instance name in the table in the right pane to get access to all actions
available for hierarchical instances.

DRC Browser
The DRC Browser is a tabular reporting tool for exploring the rule violations in your design.
Customize the browser to group and filter DRC violations by various criteria.

Tessent™ Shell User’s Manual, v2021.3690

Tessent Visualizer
DRC Browser

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The DRC Browser consists of two panes. The left pane enables you to group the violation list by
rule name (the default), instance, or module.

The right pane shows specific information about the violations associated with the rule,
instance, or module selected in the left pane, such as:

• Violation name

• Description of the violation

• Indication of whether the violation is visualizable

If nothing is selected in the left grouping table, the right table displays all violations currently
registered in Tessent Shell.

Figure 11-63. DRC Browser With Data Grouped By Rule

If you group by instance or module, data for the violations in the selected instance or module is
displayed.

Tessent Visualizer
Pin Data

Tessent™ Shell User’s Manual, v2021.3 691

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can display the specifics for a visualizable rule violation in a schematic or the Text/HDL
Viewer by double-clicking a row in the right pane of the DRC Browser, or by right-clicking and
choosing the appropriate item from the popup menu. You cannot visualize all DRC violations.

Note
This method is equivalent to issuing the analyze_drc_violation command on the Tessent
Shell or Transcript command line.

Figure 11-64. Flat Schematic Showing a DRC Violation

Related Topics

analyze_drc_violation

Pin Data
The Pin Data tab contains a tabular report of specified pins in your design. Use this report to
visualize gate report information in tabular form.

Tessent™ Shell User’s Manual, v2021.3692

Tessent Visualizer
Transcript

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Add selected pins to Pin Data by right-clicking the pins and choosing Add to Pin Data.

Figure 11-65. Pin Data Tab

Related Topics

Using Tessent Visualizer to Debug Design Issues

Transcript
The Tessent Visualizer Transcript tab provides access to the Tessent Shell command line and a
record of commands used and responses to those commands.

Text in the Transcript is highlighted as shown in Figure 11-66:

• Green — informational notes

• Orange — warning messages

• Red — error messages

Tessent Visualizer
Text/HDL Viewer

Tessent™ Shell User’s Manual, v2021.3 693

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-66. Transcript Tab With an Interactive Command Line

You can issue Tessent Shell commands directly from the Transcript, with the same features as
the standard Tessent Shell command line. (For example, command history using the up and
down arrow keys, command completion using the Tab key, and multi-line commands.)
Commands are syntactically highlighted as you type them.

Press Ctrl+Enter to enable multi-line command mode. The background color of the command
entry box changes to light blue to indicate that multi-line command mode is active. Use
Shift+Enter to insert a new line and the arrow keys to navigate over the multi-line command.
Multi-line commands can be recalled with the up-arrow and edited as shown in Figure 11-66

Text/HDL Viewer
The Text/HDL Viewer enables you to examine the HDL description of your design or cell
library. The text displayed in this window includes syntax highlighting, and can be copied to the
system clipboard for use elsewhere.

Tessent™ Shell User’s Manual, v2021.3694

Tessent Visualizer
Text/HDL Viewer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Open the Text/HDL Viewer by right-clicking objects in the Instance Browser, Cell Library
Browser, or a schematic and choosing Show HDL definition or Show HDL instantiation from
the popup menu. Figure 11-67 shows the Text/HDL Viewer for an object with the appropriate
line in the HDL highlighted where the definition or instantiation was found. These actions are
available on any hierarchical instance, including library cells, and any table that lists these
instances.

Figure 11-67. Text/HDL Viewer

The files opened by the Text/HDL Viewer display on tabs at the bottom of the viewer. To open
the current file in an external text editor, right-click the tab and choose Open in external editor
from the popup menu. Use the Tessent Visualizer Preferences dialog box to specify the external
text editor.

To copy the file path of the current file to the system clipboard, right-click the tab and choose
Copy file path from the popup menu.

Tessent Visualizer
Diagnosis Report Viewer

Tessent™ Shell User’s Manual, v2021.3 695

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
When Tessent Shell is in the “dft -rtl” context, you can select a text object in the viewer and
display it in the Hierarchical Schematic. To do so, select a text fragment, right-click, and

choose Show on Hierarchical Schematic.

Diagnosis Report Viewer
Use the Diagnosis Report Viewer to open reports created with the write_diagnosis command.

Open the Diagnosis Report Viewer by choosing the Open > Diagnosis Report Viewer menu
item. Then you can open a diagnosis report using the toolbar at the top of the Diagnosis Report
Viewer or by issuing the display_diagnosis_report command. You can open multiple reports
using either of these methods. Select either text view or table view mode from the same toolbar.

In text view mode (Figure 11-68), the diagnosis report opens in the window, annotated with
hypertext links for each design object affected. These links refer to the following:

• Symptoms

• Suspects

• Sub-suspects

• Pin and net objects associated with suspects

You can click a link to show the indicated object in the Hierarchical Schematic. Right-click to
display a popup menu for other actions available to examine these objects.

Tessent™ Shell User’s Manual, v2021.3696

Tessent Visualizer
Diagnosis Report Viewer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-68. Diagnosis Report Viewer (Text View)

Figure 11-68 also illustrates text searching in the Diagnosis Report Viewer.

Figure 11-69 shows the three panes of the tabular layout for the diagnosis report. The left pane
is a list of the symptoms denoted with integer IDs. Select a symptom in this pane to display a list
of suspects in the right top table. Double-click an object in the table, or right-click and choose
Show on Hierarchical Schematic, to show it in the Hierarchical Schematic. If a suspect has
sub-suspects, the bottom table displays a list of sub-suspects.

Tessent Visualizer
Search Features

Tessent™ Shell User’s Manual, v2021.3 697

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-69. Diagnosis Report Viewer (Table View)

Search Features
From the main menu bar, open the Search menu to search for instances, pins, or gate pins in
your design.

Figure 11-70 shows a search for all instances in the design with module names that begin with
the string “nor”.

Tessent™ Shell User’s Manual, v2021.3698

Tessent Visualizer
Search Features

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-70. Search Tab: Instances

Figure 11-71 shows a search for all hierarchical pins with the string “mode” in the pin name.

Note
The search for pins in a large design can be time consuming because the tool searches across
all hierarchical instances and their pins.

Figure 11-71. Search Tab: Pins

Figure 11-72 shows a search for flat pins (gate pins) that have a hierarchical pin with a leaf
name of “Q” below the bsr_i1 instance.

Tessent Visualizer
Using Tessent Visualizer to Debug Design Issues

Tessent™ Shell User’s Manual, v2021.3 699

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-72. Search Tab: Gate Pins

You can select one or more rows in a filtered search table. Then, use the right-click popup menu
to show those objects in a schematic, add them to the pin data (pin searches), or show the HDL
definition (instance searches).

Note
The display properties for Search Instances and Search Pins are based on the Hierarchical
Schematic. The display properties for Search Gate Pins are based on the Flat Schematic

See “Tessent Visualizer Components and Preferences” on page 630 for information about
interacting with these tables in Tessent Visualizer.

Using Tessent Visualizer to Debug Design
Issues

You can use Tessent Visualizer to solve various design problems. You can view state elements
or observation points from a pin fanout, add or hide pins on an instance in the hierarchical
schematic, search for pins by name, trace the bits of a bus, and debug issues by viewing
simulation waveforms on pins.

Tessent™ Shell User’s Manual, v2021.3700

Tessent Visualizer
Using Tessent Visualizer to Debug Design Issues

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure

Perform any of the following actions:

If you want to... Do the following:

List all state elements in the
fanout of a pin.

1. Click a pin in a schematic.

The Tracer table displays below the schematic.

2. Click the “Strategy:” dropdown list and select “Nearest state
element.”

The Tracer table lists all the state elements and the distance from the
source in terms of number of pins in the traced path. The pin count
for the same traced path is higher in the Hierarchical Schematic than
in the Flat Schematic because of additional pins on hierarchical
boundaries.

Add pins to an instance on a
hierarchical schematic.

1. Select an instance on a Hierarchical Schematic, then click the
Pins button.

A table listing the pins on the selected instance displays.

2. Click the Pins button below the schematic to display a table
listing the pins on the selected instance.

3. Use the filter feature to search for the desired pin.
4. Add the pin to the schematic by double-clicking or by dragging

it onto the schematic.

Search for pins by name. 1. Choose the Search > Search - Pins menu item.
2. Filter or sort the list of pins as needed.
3. Right-click the pin name of interest in the table and choose one

of these menu items to display the pin in a schematic:
• Show on Hierarchical Schematic
• Show on Flat Schematic

Debug test setup or test end
issues using a waveform
viewer.

1. Select one or more pins on a schematic.
2. Right-click the selected pins and choose Add to Pin Data from

the popup menu.

This displays the Pin Data tab, which lists all of the added pin
names.

3. Select one or more pin names listed in the table.

4. Click the Options button () in the toolbar and select which
VCD exportable procedure to include as a waveform in the
viewer: Test Setup or Test End.

5. Launch the specified waveform viewer by clicking the external
waveform viewer button ()

Tessent Visualizer
Using Tessent Visualizer to Debug Design Issues

Tessent™ Shell User’s Manual, v2021.3 701

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results

Listing all state elements in the fanout of a pin: the Tracer table lists all the state elements and
the distance from the source in terms of number of pins in the traced path. The pin count for the
same traced path is higher in the Hierarchical Schematic than in the Flat Schematic because of
additional pins on hierarchical boundaries.

Adding pins to an instance in a hierarchical schematic: when you add an instance to a schematic
directly or by tracing to it, the schematic displays only the pins that have connections (except
for cases where there are very few pins in total). This feature simplifies the schematic to focus
on pins of interest, improving run time.

Examples

Searching for Pins by Name

The following figure shows a search for the “qai” bus, and subsequent selection of an element
of that bus, which is displayed in the hierarchical schematic. You can then trace the signal.

Trace a single bit of a bus. When tracing a single bit of a bus, the bit remains split from the bus.
When tracing a net that recombines into a bus, the bit indices
display in the schematic when you hover the mouse pointer, over
the split point as shown in the following figure:

If you want to... Do the following:

Tessent™ Shell User’s Manual, v2021.3702

Tessent Visualizer
Using Tessent Visualizer to Debug Design Issues

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-73. Searching by Name

Tracing a Single Bit of a Bus

When tracing a single bit of a bus, the bit remains split from the bus. When tracing a net that
recombines into a bus, the bit indices display in the schematic when you hover the mouse
pointer, over the split point as shown in the following figure:

Related Topics

Nearest State Element Tracing Strategy

Wave Generator

Tessent Visualizer
Accessing Tutorials for Tessent Visualizer

Tessent™ Shell User’s Manual, v2021.3 703

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Accessing Tutorials for Tessent Visualizer
Tutorial instructions and design data are available for download in an Example Kit (eKit) file.
The tutorials demonstrate some basic operations you can perform with Tessent Visualizer. The
eKit is a ZIP file containing the instructions and design data that you need to perform the
Tessent Visualizer tutorials.

Procedure

1. Log on to Support Center:

https://support.sw.siemens.com

2. Find the Tessent product page.

3. Click the Documentation link in the page banner.

4. Use the “Restrict content to version” dropdown list to specify the current Tessent
version.

5. Click the Getting Started Guide in Document Types on the left side of the page.

6. Click the link for “Try It: Tessent Visualizer Quick Start and Example Kit.”

This downloads the eKit ZIP file to your default location.

7. Move the downloaded file to a working directory that you can access with a Linux shell.

8. From a Linux shell, unpack the download file:

$ unzip <path>/tesvis_qs_ekit.zip

9. Navigate to the tesvis_qs_ekit/Docs directory and open the tesvis_quickstart.pdf file.

This file contains instructions for performing the tutorials.

Results

You are now ready to perform the Tessent Visualizer tutorials.

https://support.sw.siemens.com

Tessent™ Shell User’s Manual, v2021.3704

Tessent Visualizer
Accessing Videos for Tessent Visualizer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Accessing Videos for Tessent Visualizer
Getting Started with Tessent Visualizer is a set of two videos that show some basic operations
you can perform with Tessent Visualizer.

Part 1: Analyzing and Improving Test Coverage demonstrates how to analyze test coverage and
explore areas of the design that need coverage improvement:

• Invoking Tessent Visualizer

• Using the Instance Browser to navigate a design

• Adding data columns to a table

• Sorting and filtering data

• Examining DRC violations and locating a violation on a schematic

• Using the Cell Library Browser to examine a library module

Part 2: Troubleshooting Problems With Verilog Design Files shows how to troubleshoot a
problem with a Verilog design file, which includes the following operations:

• Examining the source of a DRC violation on a schematic

• Troubleshooting an error with scan chain insertion

• Tracing a signal path on a schematic

• Recognizing problems on a schematic and locating the problem source in HDL code

• Determining the number of times a library module is instantiated in a design

https://video.sw.siemens.com/embed/5ba9c78c-8c5e-4db4-87b2-cf2264aa1d79
https://video.sw.siemens.com/embed/68dd622f-ba55-4d8b-9993-7670d692d4c2

Tessent Visualizer
Accessing Videos for Tessent Visualizer

Tessent™ Shell User’s Manual, v2021.3 705

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3706

Tessent Visualizer
Accessing Videos for Tessent Visualizer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 707

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 12
Configuration Data Visualizer

The Configuration Data Visualizer enables you to view specifications and to modify the
configuration tree elements and their properties using a graphical interface.

Modifying the Contents of the Configuration Data Visualizer . 707

Adding a Test Data Register to a SIB Example . 708

Adding a Multiplexer to a SIB Example . 708

Customizing the DFT Specification for EDT . 710

Modifying the Contents of the Configuration
Data Visualizer

View and modify specifications with the Configuration Data Visualizer.

Prerequisites

• Tessent Shell is invoked.

Procedure

1. Open the Configuration Data Visualizer by issuing the display_specification command
to view and modify a DftSpecification. The specification can be one that was read by
using the read_config_data command, or created with the “display_specification
-create” command.

The Configuration Data Visualizer window opens and displays any existing
configuration data.

2. Select an element from the Configuration Tree and choose an Add > menu item from the
right-click popup menu.

The Add submenu displays a context-sensitive list of elements that shows the types of
elements you can add based on the element you selected.

3. Specify the parameters for the newly added element in the Configuration Options panel:

• Enter the values of the element’s listed properties. Predefined values appear when
click you the icon.

• Click Interface[+] to define parameters of the element’s interface.

• Click DataInPorts[+] and DataOutPorts[+] to define the number of ports on the
element, their names, and their connections.

Tessent™ Shell User’s Manual, v2021.3708

Configuration Data Visualizer
Adding a Test Data Register to a SIB Example

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Click Attributes[+] to define arbitrary attributes on the element’s ICL module.

4. Click Apply to update the specification.

5. When you have created and fully defined all of the elements that you want to add, click

the icon to validate the current specification and look for errors. You can also issue
the “process_dft_specification -validate_only” command, which is an equivalent action.

6. After you have validated the specification and resolved all errors, click the icon to
process the specification. You can also issue the process_dft_specification command,
which is an equivalent action.

Results

New elements have been created and defined new in your specification, and those changes have
been validated. The specified elements have been created by processing the specification.

Adding a Test Data Register to a SIB Example
Add a Test Data Register (TDR) to a SIB with the Configuration Data Visualizer.

Prerequisites

• Tessent Shell is invoked.

Procedure

1. Open the Configuration Data Visualizer from the Tessent Shell command line.

2. Select the SIB to which you want to add the TDR.

3. Right-click and choose Add > Tdr.

Change its position using the Move Up and Move Down menu items.

4. In the Configuration Options panel, enter a name in the ID text box. Type appropriate
values in any of the other displayed fields.

5. Click and and modify the value of the “count” property in
each to change the number of ports on the TDR.

6. Click Apply to update the specification.

Results

A TDR with the appropriate number of ports has been added to a SIB.

Adding a Multiplexer to a SIB Example
Add a ScanMux to a SIB with the Configuration Data Visualizer.

Configuration Data Visualizer
Adding a Multiplexer to a SIB Example

Tessent™ Shell User’s Manual, v2021.3 709

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites

• Tessent Shell is invoked.

Procedure

1. Open the Configuration Data Visualizer from the Tessent Shell command line.

2. Add a ScanMux by selecting the SIB to which you want to add it, then right-click and
choose Add > ScanMux.

Change its position using the Move Up and Move Down menu items.

a. Name the ScanMux by typing a name in the id field of the Configuration Options
panel. Specify the desired value of any of the other displayed fields.

b. Define the ScanMux connections by clicking Interface[+] and typing the connection
for the MUX select line. If a TDR is defined, you can use any TDR data output port
to control the mux select signal.

c. Click Apply to update.

3. Add the first input port to the new ScanMux by right-clicking it and choosing Add >
Input.

a. Select the new input port and type a number in the int text box of the Configuration
Options panel.

b. Click Apply to update.

c. Add a TDR that is accessed when this mux input port is selected by right-clicking
the Input port and choosing Add > Tdr.

i. Name the TDR by selecting it and typing a name in the ID field of the
Configuration Options panel.

ii. Connect the TDR to the design by doing the following:

a. Click the DataInPorts[+] button, click the Connections[+] button, and then
click the icon. Type the range that matches the design instance data bus
size into the range field (for example, “7:0”), and type the pathname to the
design instance in the pin_name field.

b. Click the DataOutPorts[+] button, click the Connections[+] button, and
then click the icon. Type the range that matches the design instance data
bus size into the range field, and type the pathname to the design instance in
the pin_name field.

4. Define the connections for the second input port of the ScanMux using the instructions
in Step 3.

Tessent™ Shell User’s Manual, v2021.3710

Configuration Data Visualizer
Customizing the DFT Specification for EDT

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results

A ScanMux has been created and the select signal has been defined. Two Input wrappers with
TDRs defined have been added to the ScanMux.

Customizing the DFT Specification for EDT
In the pre-scan DFT insertion flow, you create a DFT specification for inserting the EDT
hardware. You may need to customize the DFT specification that Tessent Shell generates to suit
your design requirements. Edit the DFT specification with the Configuration Data Visualizer.

Prerequisites

• You have created a DFT specification for inserting EDT. This procedure assumes that
you specified the create_dft_specification command with the -sri_sib_list option.

• Tessent Shell is invoked.

Procedure

1. Open a DFT specification in the Configuration Data Visualizer by invoking the
display_specification command.

2. In the Configuration Tree pane, right-click the DftSpecification wrapper and then
choose Add > EDT.

3. In the ijtag_host_interface text box, type Sib(edt), and then click Apply.

4. Right-click the EDT wrapper and choose Add > Controller.

5. Select the Controller wrapper, and then type the name of the controller in the id text box
in the Configuration Options pane.

6. In the Configuration Options pane, type values in the following text boxes to configure
how you want Tessent Shell to create the EDT controller hardware, and then click
Apply.

a. longest_chain_range (two number boxes)

b. scan_chain_count

c. input_channel_count

d. output_channel_count

7. If you are inserting EDT at the chip level (design_level chip), do the following:

a. Click the plus sign next to the Controller wrapper, right-click the Connections
wrapper, and then choose Add > EdtChannelsIn and Add > EdtChannelsOut as
many times as required for the EDT controller.

Configuration Data Visualizer
Customizing the DFT Specification for EDT

Tessent™ Shell User’s Manual, v2021.3 711

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

b. Within the Connection wrapper, select one of the input or output channels you
created, and type the pin name for the selected channel in the port_pin_name text
box in the Configuration Options pane. Click Apply.

c. Repeat the previous step to name all the input and output channels you created.

8. (Optional) View the edited DFT specification by invoking the report_config_data
command, and then invoking the read_config_data command to add the edited DFT
specification to a dofile for later reuse in an automated flow.

Results

To view the modified DFT specification, specify the report_config_data command. For
example:

report_config_data $spec

Tessent™ Shell User’s Manual, v2021.3712

Configuration Data Visualizer
Customizing the DFT Specification for EDT

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification(cpu_top,rtl2) +{

IjtagNetwork +{

HostScanInterface(sri) +{

Interface {

design_instance : cpu_top_rtl_tessent_sib_sti_inst;

scan_interface : client;

}

Sib(sri) +{

Attributes {

tessent_dft_function : scan_resource_instrument_host;

}

Tdr(sri_ctrl) {

Attributes {

tessent_dft_function : scan_resource_instrument_dft_control;

}

}

Sib(occ) {

}

Sib(edt) {

}

}

}

}

EDT +{

ijtag_host_interface : Sib(edt);

Controller(c1) +{

longest_chain_range : 65, 100;

scan_chain_count : 85;

input_channel_count : 3;

output_channel_count : 3;

Connections +{

EdtChannelsIn(1) {

port_pin_name : edt_channels_in[0];

}

EdtChannelsIn(2) {

port_pin_name : edt_channels_in[1];

}

EdtChannelsOut(1) {

port_pin_name : edt_channels_out[0];

}

EdtChannelsIn(3) {

port_pin_name : edt_channels_in[2];

}

EdtChannelsOut(2) {

port_pin_name : edt_channels_out[1];

}

EdtChannelsOut(3) {

port_pin_name : edt_channels_out[2];

}

}

}

}

}

Configuration Data Visualizer
Customizing the DFT Specification for EDT

Tessent™ Shell User’s Manual, v2021.3 713

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples

Use the read_config_data command to save the modifications to the DFT specification into a
dofile for re-use.

read_config_data -in $spec -from_string {

EDT {

ijtag_host_interface : Sib(edt);

Controller (c1) {

longest_chain_range : 65, 100;

scan_chain_count : 85;

input_channel_count : 3;

output_channel_count : 3;

Connections +{

EdtChannelsIn(1) {

port_pin_name : edt_channels_in[1];

}

EdtChannelsOut(1) {

port_pin_name : edt_channels_out[0];

}

EdtChannelsIn(3) {

port_pin_name : edt_channels_in[2];

}

EdtChannelsOut(2) {

port_pin_name : edt_channels_out[1];

}

EdtChannelsOut(3) {

port_pin_name : edt_channels_out[2];

}

}

}

}

}

Tessent™ Shell User’s Manual, v2021.3714

Configuration Data Visualizer
Customizing the DFT Specification for EDT

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Shell User’s Manual, v2021.3 715

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 13
Timing Constraints (SDC)

This chapter describes the Synopsys Design Constraints (SDC) generated by Tessent Shell, and
how you use it to constrain the test mode of the Embedded Test hardware generated by the tool.

Generating and Using SDC for Tessent Shell Embedded Test IP. 716

SDC File Generation with Tessent Shell . 716

SDC Design Synthesis with Tessent Shell . 718
Preparation Step 1: Sourcing SDC File . 718
Preparation Step 2: Setting and Redefining Tessent Tcl Variables 718
Preparation Step 3: Verifying the Declaration of Functional Clocks 720
Preparation Step 4: Redefining Other Tessent Tcl Variables . 721
Synthesis Step 1: Applying the SDC Constraints . 722
Synthesis Step 2: Preparing the DFT Logic for Synthesis . 722
Synthesis Step 3: Synthesizing Your Design . 723
Synthesis Step 4: Writing Out Your Final SDC . 723
Synthesis Step 5: Writing Out Your Final Netlist . 723

Running Layout with Tessent Shell DFT . 723

SDC for Modal Static Timing Analysis . 726
Checking Your Functional Logic Alone. 726
Checking Your Embedded Test Logic . 726

VHDL and Mixed Language Designs. 728
VHDL Generate Blocks . 728

SDC File Contents . 730
tessent_set_default_variables . 730
tessent_create_functional_clocks . 731
tessent_<design_name>_set_dft_signals . 731
<ltest_prefix>_disable . 732
tessent_set_non_modal . 732
tessent_<design_name>_kill_functional_paths . 733
IJTAG Instrument . 734
LOGICTEST Instruments. 735
MemoryBIST Instrument . 748
BoundaryScan Instrument. 751
Hierarchical STA in Tessent. 752
Mapping Procs . 756
Synthesis Helper Procs . 758

Example Scripts using Tessent Tool-Generated SDC . 760
Example Design Compiler Synthesis Script . 760

Tessent™ Shell User’s Manual, v2021.3716

Timing Constraints (SDC)
Generating and Using SDC for Tessent Shell Embedded Test IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example Genus Synthesis Script . 761
Example PrimeTime STA Script . 764

Generating and Using SDC for Tessent Shell
Embedded Test IP

We guide you through an example SDC flow, from generation of the Tessent SDC file, through
adjusting the variables used within the file, to using it in your design synthesis.

First, you learn how to generate an SDC file for your design, which may be at the chip or the
physical block level. SDCs for sub blocks are automatically merged by Tessent with the
constraints of their parent physical block.

Then we show you how to adjust variables in the SDC file to match your particular synthesis
setup or requirements. There is no need however, to ever directly edit the generated SDC files.

Next, you see how to use the generated SDC file in a step-by-step example synthesis flow,
followed by additional notes on Static Timing Analysis (STA), mixed-language and VHDL
specific issues.

Key SDC procs are then explained. These procedures are used by Tessent instruments (like
MBIST or OCC) or maybe useful to use in your own synthesis scripts.

The appendices show full examples of using and adjusting Tessent SDC files in the Synopsys
Design Compiler and Cadence Encounter synthesis environments, respectively. Also a
complete example for using Tessent SDC files for STA is given in “Example PrimeTime STA
Script” on page 764.

Note: The SDC described in this manual is to be used in conjunction with your functional SDC
for the synthesis of your design after Tessent Shell RTL insertion and the static timing analysis
of your design after synthesis. The Tessent Shell gate insertion flow uses a different set of SDC
constraints during the run_synthesis command, but the generated SDC should still be used for
layout.

SDC File Generation with Tessent Shell
You generate your design SDC file using Tessent Shell.

In the standard Tessent Shell flow, the tool creates the SDC for the current design when you
execute the extract_icl command, which does the following:

• Stores the SDC in Tcl procs

• Writes the SDC to a single file named design_name.sdc, where design_name is the name
of the current design loaded in Tessent Shell

Timing Constraints (SDC)
SDC File Generation with Tessent Shell

Tessent™ Shell User’s Manual, v2021.3 717

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The SDC file is located next to the extracted ICL, which is typically in the dft_inserted_designs
directory as follows:

${tsdb}/dft_inserted_designs/${design_name}_${design_id}.dft_inserted_design

Every instrument type (for example, MBIST, IJTAG) of the current design and all sub-blocks
that provide SDC constraints are represented by a separate proc in the SDC file. Constraints for
logictest-related instruments such as OCC, EDT, or LBIST, including logictest-related DFT
signals, are all grouped under similar placeholder “ltest” instrument procs.

There is no need to call each instrument’s individual SDC proc. Tessent Shell provides user
procs, which are customized to call all relevant SDC procs for your design.

If you encounter a problem with SDC generation preventing ICL extraction, you can
temporarily skip SDC generation by using the following command options:

extract_icl -skip_sdc_extraction

To regenerate your SDC file for a given design and to take advantage of changes in the SDC
constraints in a newer version that does not reflect a hardware change, you can extract the SDC
of your design without running ICL extraction by loading the design’s full view and executing
the Tessent Shell extract_sdc command. You should load the interface view of all physical
blocks of your design. For example:

read_design design_name -design_identifier design_id -view full

extract_sdc

When it is time to use the SDC, locating your SDC file requires the following:

• Your latest TSDB location for the design you wish to synthesize/analyze.

• Your design’s name.

• The design_id of the latest insertion pass of your design.

For example, if your design “myChip” used only a single TSDB directory, the default
“tsdb_outdir”, then your SDC files would be located in the following places:

• For the processed DftSpecification(myChip,rtl1):

tsdb_outdir/dft_inserted_designs/myChip_rtl1.dft_inserted_design/myChip.sdc

• For the processed DftSpecification(myChip,rtl2):

tsdb_outdir/dft_inserted_designs/myChip_rtl2.dft_inserted_design/myChip.sdc

Note
The latest SDC file is always a superset of the previous one. If you use a two-pass flow, you
only need to load the latest file.

Tessent™ Shell User’s Manual, v2021.3718

Timing Constraints (SDC)
SDC Design Synthesis with Tessent Shell

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SDC Design Synthesis with Tessent Shell
What follows is a list of steps you must follow during your synthesis flow to properly handle
Tessent Embedded Test IP. We use a non-modal approach to constrain the inserted test logic.
This means that we let both functional and test clocks through muxes and we do not set any
constant anywhere. This lets the synthesis tools optimize both the functional and test timing
paths simultaneously.

The following steps are run after you have loaded the functional design and applied functional
SDC. These steps do not describe the entire flow, but, rather, only highlight typical steps
affected by the presence of Tessent IP. Design Compiler commands are used as an example: see
“Example Design Compiler Synthesis Script” on page 760 and “Example Genus Synthesis
Script” on page 761 for complete example scripts.

Preparation Step 1: Sourcing SDC File . 718

Preparation Step 2: Setting and Redefining Tessent Tcl Variables 718

Preparation Step 3: Verifying the Declaration of Functional Clocks 720

Preparation Step 4: Redefining Other Tessent Tcl Variables . 721

Synthesis Step 1: Applying the SDC Constraints . 722

Synthesis Step 2: Preparing the DFT Logic for Synthesis . 722

Synthesis Step 3: Synthesizing Your Design . 723

Synthesis Step 4: Writing Out Your Final SDC . 723

Synthesis Step 5: Writing Out Your Final Netlist . 723

Preparation Step 1: Sourcing SDC File
The first step is to source the Tessent Shell tool-generated SDC file, associated to the last
insertion pass, from within your synthesis script. We suggest creating central variables for the
TSDB location and design name:

set design_name myChip
set tsdb ../../../golden_repo/${design_name}_tsdb
set design_id rtl2
source \
${tsdb}/dft_inserted_designs/${design_name}_${design_id}.dft_inserted_design \

/${design_name}.sdc

Preparation Step 2: Setting and Redefining Tessent
Tcl Variables

The Tessent Shell tool-generated SDC file makes extensive use of Tcl variables. This section
discusses the redefinition of those variables

Timing Constraints (SDC)
Preparation Step 2: Setting and Redefining Tessent Tcl Variables

Tessent™ Shell User’s Manual, v2021.3 719

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Their definitions are contained in the proc tessent_set_default_variables. You must call this
procedure to set all Tessent variables to their design dependent default value. All other Tessent
SDC-related procs make use of these variables. This procedure call is mandatory:

tessent_set_default_variables

Tessent SDC variables can and should be redefined to better suit your setup and design. For
example, you can change the TCK period from the default of 100.0ns to any value by redefining
the variable tessent_tck_period.

set tessent_tck_period 80.0

Note
The value of tessent_tck_period might depend on the maximum tck clock frequency that can
be applied to the circuit. See the “IJTAG Network Performance Optimization” section in the

Tessent IJTAG User’s Manual showing how to maximize the frequency of the IJTAG network
test clock.

You do not need to edit the Tessent Shell-generated SDC file, but rather use the “set” command
in your synthesis script to overwrite the value of the Tessent Shell tool-specific SDC variable
tessent_tck_period. Refer to “Example Design Compiler Synthesis Script” on page 760 and
“Example Genus Synthesis Script” on page 761 for synthesis script examples.

For designs with Siemens EDA Logictest IP, you possibly need to update the global Tcl
variables that reproduce your fastscan test_proc timeplate specifications, so that your SDC
constraints closely match your simulation waveforms. For more information on these Tcl
variables, see “LOGICTEST Instruments” on page 735.

When the design contains LogicBIST instruments, create the shift_clock_src of the LogicBIST
controller and indicate its name to the SDC procs by using the tessent_lbist_shift_clock_src
TCL array variable. Creating this clock and setting its name with the
tessent_lbist_shift_clock_src variable is mandatory.

Specify this variable as follows:

set tessent_lbist_shift_clock_src(lbist_inst<index>) clock_name

For example:

create_clock -name lbist_clock pll/clk_out_2 -period 20
set tessent_lbist_shift_clock_src(lbist_inst0) lbist_clock

If multiple controllers use the same clock, create the clock once only. However, you must still
specify the tessent_lbist_shift_clock_src variable for each controller with the same clock name.
Starting at 0, specify as many lbist_inst indices as the number of LogicBIST controllers in the
current design level minus one. For example, for a design with two LogicBIST controllers, set
the tessent_lbist_shift_clock_src(lbist_inst0) and tessent_lbist_shift_clock_src(lbist_inst1)
variables.

Tessent™ Shell User’s Manual, v2021.3720

Timing Constraints (SDC)
Preparation Step 3: Verifying the Declaration of Functional Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can find the mapping of the lbist_inst<index> identifier to the instance path name of the
LogicBIST controllers in the tessent_lbist_mapping TCL array variable inside the
tessent_set_default_variables SDC proc. When the clock is created with a different name than
its source, specify the name of the clock as specified with -name option of the create_clock SDC
command. Existence of this TCL variable and the clock it refers to is rule checked by the
generated SDC.

Similarly, when the design contains InSystemTest instruments, indicate the clocks to SDC by
using the tessent_ist_clock TCL array variable. You can find the mapping from the
ist_inst<index> identifier to the InSystemTest controller instance path name in the
tessent_ist_mapping variable.

Another key variable to possibly overwrite is the tessent_clock_mapping array explained in the
next section. Other, much less frequently used variables are discussed in “Preparation Step 4:
Redefining Other Tessent Tcl Variables” on page 721.

Preparation Step 3: Verifying the Declaration of
Functional Clocks

In the Tessent Shell tool’s system mode ‘setup’, you may have specified asynchronous clocks,
reference clocks and/or branch clocks. Some might be functional clock domain bases of some
instruments, namely MemoryBist. They could be used in some timing constraints.

This information is stored in the array tessent_clock_mapping. It is defined in the generated
SDC file, within the proc tessent_set_default_variables. It has the following form:

array set tessent_clock_mapping {
<TessentShell ClockLabel> <FunctionalSDC ClockLabel>
[…]

}

This array is used by the Tessent Shell tool-generated SDC constraints to refer to your
functional clocks. They do so only through a remapped “tessent_clock_mapping(<TessentShell
ClockLabel>)” array element. By default, in tessent_set_default_variables, <TessentShell
ClockLabel> and <FunctionalSDC ClockLabel> are identical.

Note
It is imperative that you examine this array and look for cases where this default mapping
must be updated. Overriding names are not necessary if you have used the “-label” option of

the add_clocks command in Tessent Shell to match the “-name” value in the SDC.

If you need to update one of the tessent_clock_mapping() array values, please do so in your
main synthesis script, immediately after the call to the tessent_set_default_variables proc. For

Timing Constraints (SDC)
Preparation Step 4: Redefining Other Tessent Tcl Variables

Tessent™ Shell User’s Manual, v2021.3 721

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

example, if you had a clock defined with a label "CK25" in Tessent Shell, but in your SDC
constraints the same clock is defined with a name "PIN_CK25", you need to specify:

set tessent_clock_mapping(CK25) PIN_CK25

The new definition of tessent_clock_mapping(CK25) overrides the default one contained in
tessent_set_default_variables.

It is important to understand that you do not need to edit the Tessent-generated SDC file, but
rather use the ‘set’ command in your synthesis script to overwrite the value of the Tessent SDC
variable array element you want to change. Alternatively, if many of your Tessent defined
clocks and respective SDC clocks have different names, you might want to redefine a block of
the array:

set tessent_clock_mapping(CLK25) pCLK25
set tessent_clock_mapping(CLK_PLL_REF) pCLK100

OR

array set tessent_clock_mapping {
CLK25 pCLK25
CLK_PLL_REF pCLK100

}

IMPORTANT: You do not need to define tessent_clock_mapping() entries for clocks that you
have not specified in Tessent Shell. Those are not used in the timing constraints.

Preparation Step 4: Redefining Other Tessent Tcl
Variables

The tessent_tck_period and tessent_clock_mapping array variables are the most important
Tessent SDC variables you should double check and overwrite as needed. Tessent SDC uses a
number of additional variables that are all defined and set to a default value in the
tessent_set_default_variables proc.

For example, you can independently change the input and output delay (from the default, 25%
of the tessent_tck_period) or change the hierarchy separator character. Please see the header of
the generated SDC file and the embedded comments in the tessent_set_default_variables proc,
explaining each such variable. Within the synthesis tool, you can use the TCL command “info
body tessent_set_default_variables” to see what variables are being defined.

Note
The value of tessent_tck_period might depend on the maximum tck clock frequency that can
be applied to the circuit. See the “IJTAG Network Performance Optimization” section in the

Tessent IJTAG User’s Manual showing how to maximize the frequency of the IJTAG network
test clock.

Tessent™ Shell User’s Manual, v2021.3722

Timing Constraints (SDC)
Synthesis Step 1: Applying the SDC Constraints

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Step 1: Applying the SDC Constraints
If you use Design Compiler, you need to set the variable
“timing_enable_multiple_clocks_per_reg” to true. This is needed to properly constrain
MemoryBIST in the presence of MemoryBIST clock muxing.

set_app_var timing_enable_multiple_clocks_per_reg true

To apply the Tessent Shell-generated SDC constraints, run the merged non_modal proc:

tessent_set_non_modal

This Tessent SDC proc in turn calls all instrument non-modal procs as needed by your design
and its sub-blocks. There is nothing else for you to do than call this one proc to apply all non-
modal SDC constraints.

Synthesis Step 2: Preparing the DFT Logic for
Synthesis

Once your design is loaded, you need to make sure to preserve instances of Tessent Shell-
inserted “persistent” cells and possibly instrument instances, depending on your downstream
needs.

Refer to “Synthesis Helper Procs” on page 758 for more information on the different options.

Persistent cells should not be optimized as Tessent Shell SDC uses them as anchor points for
layout and STA, and different instances need to be preserved depending on if you do scan
insertion with Tessent Shell or more DFT insertion. Procs are provided in the .sdc file to
generate a list of all instances that need to be preserved in different ways:
tessent_get_preserve_instances, tessent_get_optimize_instances, and
tessent_get_size_only_instances.

First you need to prevent boundary optimization of DFT objects using the proc
tessent_get_preserve_instances:

set_app_var compile_enable_constant_propagation_with_no_boundary_opt false
set preserve_instances [tessent_get_preserve_instances scan_insertion]
set_boundary_optimization $preserve_instances false
set_ungroup $preserve_instances false
set_app_var compile_seqmap_propagate_high_effort false
set_app_var compile_delete_unloaded_sequential_cells false

Then, because boundary optimization applies hierarchically, you re-enable boundary
optimization of the child instances of DFT objects using tessent_get_optimize_instances:

set_boundary_optimization [tessent_get_optimize_instances] true

Timing Constraints (SDC)
Synthesis Step 3: Synthesizing Your Design

Tessent™ Shell User’s Manual, v2021.3 723

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cells from your provided Tessent Cell Library instantiated in Tessent Shell must also be
preserved but can be resized to enable critical data path timing optimization during synthesis.
You can get them using tessent_get_size_only_instances:

set_size_only -all_instances [tessent_get_size_only_instances]

If your design contains shared bus assemblies, you can save significant area by ungrouping their
content, with the exception of the MemoryBIST controller. Refer to the “Synthesis Step 3”
portions in “Example Design Compiler Synthesis Script” and “Example Genus Synthesis
Script” for examples of the suggested procedures.

Synthesis Step 3: Synthesizing Your Design
You can now proceed with the compilation of your design:

link
check_design
compile -boundary_optimization [...]

Synthesis Step 4: Writing Out Your Final SDC
Use the write_sdc command after this step to export the merged SDC (Functional and Tessent
Shell) for use with your layout tool:

write_sdc ${design_name}.merged_sdc

Synthesis Step 5: Writing Out Your Final Netlist
You can now proceed with writing out your synthesized netlist.

write -format verilog -output ${design_name}.vg ${design_name} -hier

Running Layout with Tessent Shell DFT
There exist a few possible ways to apply your Tessent SDC constraints in layout.

Note
This section uses the following convention to shorten proc names:

<ltest_prefix> := tessent_set_ltest

You can do either of the following:

• Use the SDC that you wrote out in previous synthesis Step 5 and feed it directly to your
layout tool, or

Tessent™ Shell User’s Manual, v2021.3724

Timing Constraints (SDC)
Running Layout with Tessent Shell DFT

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Define all your functional SDC constraints and add Tessent DFT constraints, like you
previously did in synthesis, by repeating the steps:

o Define your functional constraints.

o Set your global TCL tessent variables.

o Call tessent_set_non_modal.

You also must preserve your Tessent DFT persistent cells from further layout logic
optimization. Get the list of these cells by calling your SDC file proc
tessent_get_size_only_instances.

That is all you must do if your design does not feature Tessent logictest DFT. If you used 3rd-
party scan insertion tools, please refer to their instructions as to how to constrain that mode. The
rest of this section details what you must do in layout with Tessent logictest DFT.

Clock Tree Synthesis With Tessent On-Chip Clock Controllers (OCCs)

If your design includes Tessent OCC IP, you may need to instruct your clock tree synthesis
command to stop balancing the inner flop clock pins of your OCC with the leaves of the
functional domain clock tree that the OCC controls. This balancing adds a significant amount of
latency to the OCC flop clocks, which causes a drastic reduction to the setup margin of the
internal fast_clock_en and slow_clock_en timing paths of the OCC to the OCC clock gaters at
the root of the controlled functional domain tree.

Locate the tessent_get_cts_skew_groups_dict inside the output .sdc file from the extract_sdc
command, and follow the instructions provided in the banner of that proc to disable this
balancing.

Loading SDC Constraints in Layout With Tessent Logictest

In layout, some issues may limit one's ability to constrain the logictest DFT simultaneously with
all other logic. For instance:

1. Letting scan_en=X, unblocks a large number of false at-speed path between neighboring
flops on the same scan chains, unless you have your own custom way to globally disable
these paths in your own design environment and flow.

2. As opposed to synthesis, where all clocks are ideal, propagating test_clock with
scan_en=X in layout may enable false cross-domain paths between unbalanced
functional domains. Those paths become single-cycle paths of test_clock which, if
test_clock is unbalanced, may cause both setup and hold false timing violation.

3. Some false at-speed capture paths might get unblocked between test-only dedicated
wrapper cells and functional logic.

If your layout flow provides custom methods to work around these issues, you can run layout
using only one global set of constraints that covers both your functional and DFT modes. In

Timing Constraints (SDC)
Running Layout with Tessent Shell DFT

Tessent™ Shell User’s Manual, v2021.3 725

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

such a case, you would only need to call the tessent_set_non_modal proc with no argument, or
use the extracted .sdc file from synthesis. If not, then you need to use the multi-mode feature of
your layout tool and sequentially load the following modal SDC constraints:

Mode 1:

• Set your functional SDC constraints.

• Call tessent_set_non_modal with the argument “off”, like in:

tessent_set_non_modal off

This adds all Tessent DFT constraints, but disables all logictest DFT paths.

Mode 2:

• Call proc <ltest_prefix>_modal_shift

• This forces the “shift” mode over your design, asserting scan_en to 1 creating scan mode
clocks and taking care of DFT signals, OCC, and EDT logic setup. This covers all of
your scan chain and EDT channels paths, as well as any pipelining flop timing along the
way.

• Run layout incrementally, so as to fix any leftover timing paths that were blocked in the
first pass.

Mode 3:

• Call proc <ltest_prefix>_modal_edt_slow_capture. This proc does the following:

o Creates test_clock and propagates it across the design.

o Lets scan=X, which enables covering the timing of that signal as well as some
leftover timing paths inside Tessent’s OCC clock gating circuit.

o Disables same-edge paths from test_clock to test_clock, leaving only retimed cross-
domain paths enabled, so as to prevent false timing violations across functional
domains. Intra domain paths are assumed covered more tightly by the functional
mode constraints.

o Enables capture paths across your design’s top ports as single-cycle paths of
test_clock.

• Run layout incrementally again.

To save time and resources, you can choose to skip mode #3 if you know you are running scan
mode at a very slow clock speed and that all your capture paths are guarded with extra cycles of
test_clock.

Tessent™ Shell User’s Manual, v2021.3726

Timing Constraints (SDC)
SDC for Modal Static Timing Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SDC for Modal Static Timing Analysis
The following are guidelines to help you perform static timing analysis of the embedded test
hardware that was inserted by Tessent Shell.

Checking Your Functional Logic Alone . 726

Checking Your Embedded Test Logic . 726

Checking Your Functional Logic Alone
If you want to only focus on functional logic and completely disable all Tessent Shell embedded
test IP, include the following steps in your primary functional STA script.

First, if flops in your cell library do not propagate constant settings through their set or reset pin
to their data output pin, you need to set a PrimeTime variable:

set case_analysis_sequential_propagation always

This enables disabling all embedded test modes with just a few asserts of the TAP’s reset port.

For example:

... loading your functional constraints
set case_analysis_sequential_propagation always
Hold the DFT in reset and kill TCK to make sure only functional logic is
active.
set_case_analysis TRST 0
set_case_analysis TCK 0

You also need to disable your scan circuit timing by forcing your scan_enable pin to its inactive
value, and by issuing a set_false_path to/from all your lockup cells and your pipeline flops.
Those can normally be found with regular expressions such as:

[get_pins -hier <standard naming>*/d]
[get_pins -hier <standard naming>*/q]

You might also have to turn your BISR clock or reset pin off, if present, like in:

set_case_analysis bisr_clk 0
set_case_analysis bisr_reset 0

Checking Your Embedded Test Logic
You can find a self-documenting example script of how to run STA using Tessent Shell
generated hardware.

Timing Constraints (SDC)
Checking Your Embedded Test Logic

Tessent™ Shell User’s Manual, v2021.3 727

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Refer to “Example PrimeTime STA Script” on page 764. Carefully read the instructions in this
script before proceeding.

The script executes the following:

• Loads the generated SDC file and initializes some Tcl variables used by Tessent Shell
SDC constraints.

• Sets some PrimeTime control variables to their required value.

• Sources user input files if present in the same directory as follows:

o user_timing_data.tcl

o user_remapping_procs.tcl

o load_design.pt

• Loads your final netlist.

• Sequentially runs all EmbeddedTest modes present in your design, each separated by a
“reset_design” command.

• Runs an example “report_constraints” command for each mode and redirects its output
to a file.

Tessent™ Shell User’s Manual, v2021.3728

Timing Constraints (SDC)
VHDL and Mixed Language Designs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

VHDL and Mixed Language Designs
Synthesis tools have similar but sometimes different internal representations of elaborated
designs. Here are some instructions on how to deal with those differences to be able to use the
SDC constraints generated by Tessent Shell.

VHDL Generate Blocks. 728

VHDL Generate Blocks
Required tool settings and other mixed-language issues.

Synopsys Design Compiler

Constraints applying to cells and pins in VHDL generate loops are problematic to apply in
dc_shell. The default naming scheme of the internally synthesized design is different for
Verilog and VHDL. To illustrate, here is a Verilog path of an instance within 2 nested generate
for loops: blk[0].jblk[0].i0. The equivalent configuration in VHDL would be changed during
dc_shell’s GTECH pre-synthesis and would be named i0_0_0. Because Tessent Shell’s SDC
does not “flatten” generate loops, if you have VHDL generate loops in your design, you must
use the following setting in dc_shell to restore the loop naming:

set_app_var hdlin_enable_upf_compatible_naming true

This variable ill restores VHDL generate loop naming to follow Verilog style: blk(0)/jblk(0)/i0

Cadence Encounter and Genus

There are no special steps for these two synthesis tools to be able to apply Tessent Shell
generated SDC constraints to a mixed language design.

Oasys

Use the following commands in Oasys to generate a naming scheme for generate loops (Verilog
and VHDL) that is compatible with the Tessent SDC constraints:

set_parameter generate_naming_style %s[%d]
set_parameter if_generate_naming_style %s

Dealing with Unrolled VHDL Generate for Loops

Tessent Shell tries to minimize unrolling of generate loops. If VHDL generate loops are
unrolled then one “if-generate” block is generated for each loop iteration. The trailing closing
square brace, that would normally be changed to an underscore, has to be truncated because of
VHDL language restrictions. This means that functional SDC constraints pointing to cells or
pins within those generate blocks do not match even if special characters are mapped to

Timing Constraints (SDC)
VHDL Generate Blocks

Tessent™ Shell User’s Manual, v2021.3 729

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

wildcards. Ex: the instance path blk[0].i0 which would need to be unrolled would be written out
as blk_0.i0.

For this reason, you should use the provided procs tessent_get_pins and tessent_get_cells They
are able to match your functional instance path “blk[0].i0” to blk_0.i0 using a caching algorithm
that searches for generate blocks in the path and tries to match with our unrolling strategy if the
path does not match outright. Refer to the “Mapping Procs” on page 756 to see the procs’
description.

Tessent™ Shell User’s Manual, v2021.3730

Timing Constraints (SDC)
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SDC File Contents
This section describes the procs contained in the generated SDC file. Note that many of these
procs are called automatically by other procs in the file. You do not need to call all of these
procs.

Note
This section uses the following convention to shorten proc names:

<ltest_prefix> := tessent_set_ltest

tessent_set_default_variables . 730

tessent_create_functional_clocks . 731

tessent_<design_name>_set_dft_signals . 731

<ltest_prefix>_disable . 732

tessent_set_non_modal . 732

tessent_<design_name>_kill_functional_paths . 733

IJTAG Instrument . 734

LOGICTEST Instruments . 735

MemoryBIST Instrument . 748

BoundaryScan Instrument . 751

Hierarchical STA in Tessent . 752

Mapping Procs . 756

Synthesis Helper Procs . 758

tessent_set_default_variables
This proc defines the initial/default value of all global variables used in all procs of the sdc file.
The variables contained in this proc are there for you to customize the constraints without
having to edit the constraints themselves. A good example of this would be the variable
“tessent_tck_period”. It currently defaults to 100.0 (nanoseconds). If your TCK clock has a
different period than 100ns, you can overwrite the value of this variable after having called the
proc tessent_set_default_variables but before calling the constraint procs.

Note
The value of tessent_tck_period might depend on the maximum tck clock frequency that can
be applied to the circuit. See the “IJTAG Network Performance Optimization” section in the

Tessent IJTAG User’s Manual showing how to maximize the frequency of the IJTAG network
test clock.

Timing Constraints (SDC)
tessent_create_functional_clocks

Tessent™ Shell User’s Manual, v2021.3 731

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The mapping between LogicBIST and InSystemTest controller IDs and their instance path
names is available in this proc. Use the mapping information to indicate the clocks of these
instruments to the other ltest SDC procs as described in “Preparation Step 2: Setting and
Redefining Tessent Tcl Variables” on page 718.

This proc must always be the first proc to be run.

tessent_create_functional_clocks
This proc is generated for your convenience. It contains the SDC create_clock and
create_generated_clock commands to define the various functional clocks needed by the
instruments constrained by the SDC procs. Typically, your functional clocks would already be
defined by your functional SDC. If that is the case, you should override the default values of the
tessent_clock_mapping array to match the clock names you used in the definition of your
clocks.

This proc would typically not be called in your synthesis SDC.

Required clocks are determined with ICL tracing. create_clock constraints are added for all
clock sources like top level ClockPort ports and source ToClockPort ports (embedded crystals).
create_generated_clock constraints are added for all generated clocks (add_clocks -reference),
branch clocks and unidentified ICL ToClockPort ports (typically PLLs). If your design contains
an ICL instrument with a ToClockPort that should not require a new generated clock, please set
the exclude_from_sdc attribute on the port.

tessent_<design_name>_set_dft_signals
This procedure forces all your specified static dft_signal sources to either reset or get their
default value during all_test, depending on the proc's argument.

argument mode :== reset | logic_off

• logic_off — Recommended argument for running non-logictest STA modes such as
memoryBIST. But if you added Siemens EDA TestKompress, your sdc file ill also gets
the proc <ltest_prefix>_disable. You then only need to call that proc for running the
other non-logictest modes such as modal memoryBIST.

• reset — Disables all DFT-inserted logic.

If you are using functional-only mode, you can optionally call the proc with the “reset”
argument under one of the following circumstances:

1. Many static dft signals come from top-level ports.

2. Although all static dft signals sourced by the Siemens EDA IJTAG Test Data Registers
(TDR) reset when the IJTAG reset port is asserted, the timing tool would not propagate

Tessent™ Shell User’s Manual, v2021.3732

Timing Constraints (SDC)
<ltest_prefix>_disable

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

that assert through the TDR flops. That may happen in Synopsys PrimeTime when the
control variable “case_analysis_sequential_propagation” is set to “never”.

<ltest_prefix>_disable
This proc disables all Logictest logic in your design. You call this proc when setting up
exclusive STA mode for your IJTAG, BoundaryScan or MemoryBIST, and you do not want to
bother about ltest logic and scan chains timing at the same time.

This proc is invoked by proc tessent_set_non_modal when called with the logictest argument
set to “off”. Specifying “on” would invoke proc tessent_set_ltest_non_modal proc instead. You
would typically use “on” during pre-layout synthesis and “off” during layout. In layout, you
would then need to apply two different mode scripts in your layout tool. The second mode
would time logictest-only shift logic, for which you would invoke the proc <ltest_prefix>_shift.
For more information about this proc, see “<ltest_prefix>_modal_shift” on page 741.

You can call the proc with or without an argument:

• <ltest_prefix>_disable — Disables logictest controller and forces the all_test dft signal
active. Use this when setting up the membist STA mode. For an example, see “Example
PrimeTime STA Script” on page 764.

• <ltest_prefix>_disable all_test_x — Disables the logictest controller but does not force
the all_test dft signal. Use this when constraining your design for synthesis or for layout.
For more information, see “tessent_set_non_modal” on page 732

tessent_set_non_modal
This proc contains calls to the non_modal procs of all constrained instruments, which are
documented in the sections that follow. For synthesis, this is the only constraint proc you need
to call.

You can call this proc with no argument, or with the argument “off”:

tessent_set_non_modal off

The argument “off” disables logictest circuitry by asserting dft_signal source pins and prevents
adding any non-modal logictest clocks or constraints. The default is to call the proc
tessent_set_ltest_non_modal.

Timing Constraints (SDC)
tessent_<design_name>_kill_functional_paths

Tessent™ Shell User’s Manual, v2021.3 733

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is an example of the tessent_set_non_modal proc using the design “blka”:

proc tessent_set_non_modal {{logictest "on"}} {
 tessent_set_ijtag_non_modal
 tessent_set_memory_bisr_non_modal
 tessent_set_memory_bist_non_modal
 if {$logictest eq "on"} {
 tessent_set_ltest_non_modal
 } else {
 tessent_set_ltest_disable all_test_x
 }
}

For an example of how to use the proc, see “Single-Mode vs Dual-Mode Constraining in
Synthesis/Layout” in “<ltest_prefix>_non_modal” on page 744.

tessent_<design_name>_kill_functional_paths
This procedure disables all timing paths involving non-Tessent flops. It enables running test-
only timing analysis without having to fix functional path violations with your own functional
SDC constraints. It helps making functional mode STA and Siemens EDA DFT mode STA
fully orthogonal, and reduces the Siemens EDA DFT mode STA run-time.

Caution
Do not call this procedure for any logic test STA modes. It is only intended for use in the
Siemens EDA DFT mode, as shown in “Example PrimeTime STA Script” on page 764.

You can optionally run this procedure when you know that your functional logic has many
intra-domain timing paths that cannot meet default single-cycle path timing with the clocks
being set by tessent_create_functional_clocks and tessent_set_* procs.

Disabling some sequential cells in your design might accidentally block the test clocks feeding
your inserted instruments. Examples of such cells are Integrated Clock Gating (ICG) cells or
flops that belong to clock dividers. You can fix this by specifying those cells either by module
name or by instance names.

By module name:

set ClockSeqCellModuleRegExp "<regularExpression>"

Note
This only finds library cells that match this module name pattern. If your module is
hierarchical and the cells you are trying to preserve are below it, use the instance name

option described in the following.

Tessent™ Shell User’s Manual, v2021.3734

Timing Constraints (SDC)
IJTAG Instrument

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By instance name:

set ClockSeqCellInstanceRegExp "<regularExpression>"

Note
This expression is tested against the full hierarchical instance paths. A pattern that would
match a hierarchical instance preserves all cells within it.

The procedure optionally creates a report file containing a sorted list of all disabled flops
instance names. To enable this option, you need to define the following variable prior to calling
tessent_kill_functional_paths:

set CreateDisabledFlopsReport 1

IJTAG Instrument
Tessent IJTAG provides a single proc:

• tessent_set_ijtag_non_modal

o This proc would typically not be called directly in your synthesis script, it is called
as part of tessent_set_non_modal.

This proc contains the clock creation for your TCK clock and configurable input and output
delays for created ports at the sub_block and physical_block design levels.

It also creates an asynchronous clock group with all TCK clocks. It is used to prevent synthesis
from balancing paths between TCK and functional clocks. This clock group could be recreated
with additional clocks if your design contains Tessent BoundaryScan or Tessent OCC
hardware. This is managed via the “tessent_tck_clock_list” global variable. This variable is
built from different procs (ijtag and jtag_bscan) and used to create an asynchronous clock
group. If you have your own TCK generated clocks that are not used in the Tessent Shell SDC
constraints, we suggest adding their name to this list right after calling
tessent_set_default_variables.

tessent_set_default_variables
lappend tessent_tck_clocks_list my_tck_generate_clock

At the sub-block and physical block levels, constraints are added to reflect the timing of the
IJTAG protocol. The IJTAG reset port is declared a false path and the IJTAG select port’s hold
paths are declared false and its setup paths are given two cycles with a multicycle_path
constraint.

The select signal source of all non-scan SIBs (part of the SRI network) is relaxed to MCP setup
2 hold 2. This is to reflect the protocol and allow really deep combinational paths to close
timing. The SIBs part of the STI network were not included in this constraint as those should be
local to each physical region and it should be easier for timing tools to close timing. If you

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 735

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

experience problems with scan-testable SIB select signals, you can add those to the list of SIBs
that are relaxed, however, this will have an adverse impact on scan patterns.

LOGICTEST Instruments
The section lists the logic test-based procs. LogicBIST and InSystemTest-related procs listed in
the following are included only when LogicBIST and InSystemTest controllers are present in
the design.

Note
This section uses the following convention to shorten proc names:

<ltest_prefix> := tessent_set_ltest

1. Non-modal constraints, to be merged with other DFT instrument constraints, for
synthesis or layout. See this proc description for a discussion on single-mode synthesis/
layout vs multi-mode synthesis/layout flow:

o <ltest_prefix>_non_modal

o tessent_set_in_system_test_non_modal

2. Modal procs, used for signoff STA and optionally for synthesis or layout constraining:

o <ltest_prefix>_modal_shift

o <ltest_prefix>_disable

o <ltest_prefix>_modal_lbist_shift

3. Procs only for per-mode signoff STA constraints:

o <ltest_prefix>_edt_shift

o <ltest_prefix>_bypass_shift

o <ltest_prefix>_single_bypass_chain_shift

o tessent_set_edt_slow_capture

o <ltest_prefix>_edt_fast_capture

o <ltest_prefix>_modal_lbist_shift

o <ltest_prefix>_modal_lbist_capture

o <ltest_prefix>_modal_lbist_setup

o <ltest_prefix>_modal_lbist_single_chain

o <ltest_prefix>_modal_lbist_controller_chain

Tessent™ Shell User’s Manual, v2021.3736

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4. Procs sub-invoked by the preceding procs.

o <ltest_prefix>_create_clocks

o <ltest_prefix>_set_pin_delays

<ltest_prefix>_create_clocks

This proc creates the slow-speed test clocks for use during scan mode. There are a few possible
clock configurations:

• tessent_test_clock — This is a DFT signal in Tessent Shell. It should be your tester's
synchronous clock and is used to create the shift_capture_clock and the edt_clock.

• tessent_edt_clock — This clock can either be a primary input port or it can be generated
from the test_clock and is used to time the shift paths of the EDT logic.

• tessent_shift_capture_clock — This clock can either be a primary input port or it can
be generated from the test_clock and is the main scan mode clock propagating to your
functional logic through the OCCs.

• tessent_virtual_force_pi and tessent_virtual_measure_po — Two virtual clocks of
the same frequency as the preceding tessent_test_clock, used to time all top-level ports
that directly interface with your EDT controllers and your scan chains, through the
“set_input_delay” and “set_output_delay” constraints.

• tessent_lbist_shift_clock_src — This clock is typically an internally generated free-
running clock used as the source for LogicBIST tests.

When using LogicBIST, the clock gaters (CGC) shown in the following figure for
tessent_edt_clock and tessent_shift_capture_clock are located inside the LogicBIST controller,
and the clock source automatically updates to this new location. This clock is created by the
user outside of the Tessent-generated SDC.

This proc is also called by every SDC proc that propagates the edt_clock or shift clocks,
specifically:

• <ltest_prefix>_non_modal

• <ltest_prefix>_shift

• <ltest_prefix>_modal_slow_capture

• <ltest_prefix>_modal_lbist_shift

• <ltest_prefix>_modal_lbist_capture

The following is an example of the created clocks you would get if you ran the following
commands:

add_dft_signals test_clock -source_nodes [get_ports test_clock]

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 737

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_dft_signals {edt_clock shift_capture_clock} -create_from_other_signals

set slow_clock_period [expr $tessent_slow_clock_period * $time_unit_multiplier]

set sc_rise_time [expr $tessent_shift_clock_edge1_percentage/100. * $slow_clock_period]

set sc_fall_time [expr $tessent_shift_clock_edge2_percentage/100. * $slow_clock_period]

set sc_waveform "$sc_rise_time $sc_fall_time"

set force_pi_rise [expr $tessent_force_pi_percentage/100. * $slow_clock_period]

et measure_po_rise [expr $tessent_measure_po_percentage/100. * $slow_clock_period]

set min_width [expr 0.25 * $slow_clock_period]

set force_pi_waveform "$force_pi_rise [expr $force_pi_rise + $min_width]"

set measure_po_waveform "$measure_po_rise [expr $measure_po_rise + $min_width]" #

test_clock:

create_clock [tessent_get_ports test_clock] \

-add -period $slow_clock_period -waveform $sc_waveform\

-name tessent_test_clock # edt clock: create_generated_clock -source

[tessent_get_ports test_clock] \ [tessent_get_pins tessent_persistent_cell_edt_clock/

GCK] -divide_by 1 \ -name tessent_edt_clock \ -add -master_clock tessent_test_clock

Virtual force_pi clock, to comply with your timeplate "force_pi" specifications \

create_clock \

-period $slow_clock_period -waveform $force_pi_waveform \

-name tessent_virtual_force_pi # Virtual measure_po clock, to comply with your

timeplate "measure_po" specifications \

create_clock \

-period $slow_clock_period -waveform $measure_po_waveform \

-name tessent_virtual_measure_po

Figure 13-1. tessent_test_clock and tessent_shift_capture_clock Creation

Tessent Slow Clocks Waveform Definitions

To maintain consistency of the scan clocks and scan ports timing between your SDC and your
backannotated scan simulations, you need to define the following variables based on your
Fastscan timeplate specifications. These variables shape the waveforms of the

Tessent™ Shell User’s Manual, v2021.3738

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tessent_test_clock, tessent_virtual_force_pi, and tessent_virtual_measure_po clock definitions
in your SDC. The variables are as follows:

• tessent_slow_clock_period

Tessent slow clock period (the same for all clocks).

Default: 40ns.

• tessent_shift_clock_edge1_percentage

Timeplate position of the shift clock rising edge as a percentage of its period.

Default: 50.

• tessent_shift_clock_edge2_percentage

Timeplate position of the shift clock falling edge as a percentage of its period.

Default: 75.

• tessent_force_pi_percentage

Timeplate position of the force_pi point as a percentage of the shift clock period.

Default: 0.

• tessent_measure_po_percentage

Timeplate position of the measure_po point as a percentage of the shift clock period.

Default: 25.

Using percentages instead of absolute time values enables you to quickly modify the
tessent_slow_clock_period specification without also having to update the other Tcl variables.

The defaults described in the preceding reflect the Tessent FastScan timeplate default
specifications, that is:

 timeplate gen_tp1 =
 force_pi 0 ;
 measure_po 10 ;
 pulse_clock 20 10 ;
 period 40 ;
 end;

resulting into the following default clock definitions:

create_clock <port> -add -period 40. -waveform {20 30} -name tessent_test_clock

create_clock -period 40. -waveform {0 10} -name tessent_virtual_force_pi

create_clock -period 40. -waveform {10 20} -name tessent_virtual_measure_po

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 739

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Finally, two more global Tcl variables might be necessary to specify the timing budget of the
scan data paths outside of the current module:

• tessent_scan_input_delay

Default value: 0.

• tessent_scan_output_delay

Default value: 0.

Update these variables if you plan to retarget your test vectors from a higher level module and
you budgeted some propagation delay for your scan signals in that module. Here is how the
variables are used:

set_input_delay $tessent_scan_input_delay -clock tessent_virtual_force_pi <port>

set_output_delay $tessent_scan_output_delay -clock tessent_virtual_measure_po <port>

Currently, the extract_sdc command assumes that timeplate specified values are identical for
both load_unload and capture phases, which is the Tessent FastScan default. Although, the
“non_modal” ltest proc has to use only one set of specifications, modal shift and capture STA
may have to run with different timeplate specifications. If it is your case, you can do it by
updating the preceding Tcl variables prior to calling the selected shift or capture modal proc.
The fast_capture modal proc ignores those values, because it uses your functional waveform
specifications.

<ltest_prefix>_edt_fast_capture

This proc must be called in your STA to constrain the EDT in fast capture mode. Logictest fast
capture mode is the one that detects your at-speed transition faults. It counts on user SDC to
provide the capture clocks and timing exceptions that would actually time the capture paths.
Typically this would be your original functional SDC constraints, but those might still require
some adjustments if your test conditions (clock frequencies, false paths) slightly differ from
what they are in functional mode. Obviously, you also need to remove any constraint that resets
the IJTAG network or ties the scan_enable or test_enable control pins to zero.

If present, the following dft signals are turned off:

• scan_enable (putting the circuit in capture mode)

• control_test_point_en (these hold during capture)

The proc also enables you to check that some dft signals such as x_bounding_en,
memory_bypass_en, observe_testpoint_en are doing their isolation job correctly. You can
optionally force them to a known value by setting global Tcl variables prior to calling the proc.

Tessent™ Shell User’s Manual, v2021.3740

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following demonstrates how this is done (annotations are in red):

global memory_bypass_en_value <<< set this variable if needed in
 your primary script
if {[info exists memory_bypass_en_value]} {
 set_case_analysis $memory_bypass_en_value \
 [tessent_get_pins elt1_mbist_tessent_tdr_sri_ctrl_inst/
tessent_persistent_cell_memory_bypass_en/Y]
 }
global x_bounding_en_value <<< set this variable if needed in
 your primary script
 if {[info exists x_bounding_en_value]} {
 set_case_analysis $x_bounding_en_value \
 [tessent_get_pins elt1_dft_tessent_tdr_sri_ctrl_inst/
tessent_persistent_cell_x_bounding_en/Y]
 }
global observe_test_point_en_value <<< set this variable if needed
 in your primary script
if {[info exists observe_test_point_en_value]} {
 set_case_analysis $observe_test_point_en_value \
 [tessent_get_pins elt1_dft_tessent_tdr_sri_ctrl_inst/
tessent_persistent_cell_observe_test_point_en/Y]
 }

Finally, the proc also disables any other timing paths that are ignored during capture, such as
those going through the EDT channel pins.

tessent_set_edt_slow_capture

This proc must be called in your STA to constrain the EDT in slow capture mode.

The proc does the following:

• Forces the test_enable dft signals on.

• Declares the test_clock and lets your scan_en dft signal toggling, so that it can be timed
and relaxed with your number of dead cycles specification.

• Disables same-edge paths from test_clock to test_clock, leaving only retimed cross-
domain paths enabled, so as to prevent false timing violations across functional
domains. Intra domain paths are assumed covered more tightly by the functional mode
constraints; enables capture paths across your design’s top ports as single-cycle paths of
test_clock.

• Disables ignored timing paths.

• Sets an MCP for your scan_en signal, using your global TCL variables
tessent_scan_en_setup_extra_cycles and tessent_scan_en_hold_extra_cycles.

• Set an MCP for your edt_update signal, if present, using your global variables
tessent_edt_update_setup_extra_cycles and tessent_edt_update_hold_extra_cycles.

• Enables capture paths across your design’s top ports as single-cycle paths of test_clock.

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 741

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Just as with the preceding <prefix>shift_ltest_non_modal proc, propagating test_clock may
create false capture timing paths across asynchronous domains as single-cycle paths of

test_clock. This may or may not be a problem, given that test_clock fanout is balanced and
running at slow speed. By default, this proc assumes that all valid intra-domain hold timing
paths were already covered by your functional modes STA, and therefore sets a multicycle_path
of 1 hold to all paths from test_clock to itself. Remember that all scan mode shift paths are
properly covered for both setup and hold by the “xxx_ltest_shift” mode proc defined in the
preceding. If you need to, you can still force the proc to revert to zero-hold constraint by setting
the Tcl variable tessent_time_hold_in_slow_capture to value 1 in your calling script.

<ltest_prefix>_modal_shift

This proc sets the circuit in scan shift mode. It covers both EDT shift modes and all available
bypass modes, assuming you run them all with the same shift clock frequency. If you need more
specific timing analysis, you can choose to apply the following procs in separate STA runs.
These procs sub-invoke the <ltest_prefix>_shift proc:

• <ltest_prefix>_edt_shift

• <ltest_prefix>_bypass_shift

• <ltest_prefix>_single_bypass_chain_shift

The <ltest_prefix>_shift proc applies a set of common constraints required for shifting. Then
they only need to complete their mode setting by forcing the edt_bypass and
single_chain_bypass signals to the required constant value.

The proc <ltest_prefix>_shift does the following:

• Creates the shift clocks.

• Applies set_input/output_delays to scan control pins.

• Forces dft signals ltest_en and scan_en to 1.

• Applies any LogicBIST mode constraints as applicable.

Note
You can save on total STA time and flow complexity if you already plan to apply the same
test_clock (with the same period) for all shift and bypass modes. In this case you only need

to call the <ltest_prefix>_shift proc directly in place of all of the three procs defined in the
preceding.

Tessent™ Shell User’s Manual, v2021.3742

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
If you plan to feed your synthesis or layout tool with two separate mode scripts (functional/
dft and logictest), the <ltest_prefix>_shift proc is the one you need to apply for the logictest

mode. That way, all possible shift paths are timed, and because scan_enable is forced active, it
prevents the existence of a potentially large number of false capture timing paths across your
functional logic. It also covers all of your possible scan chain configurations at once, including
the internal and external mode for cores. See later discussion on logictest single-mode or dual
mode usage—see <ltest_prefix>_non_modal.

<ltest_prefix>_modal_lbist_shift

You can configure timing analysis for this mode to run with either shift_clock_src or test_clock.
The default is shift_clock_src. Add the optional test_clock argument when calling this SDC
TCL proc to analyze timing with test_clock.

The proc does the following:

• Adds multi-cycle path exceptions on dynamic signals from the LogicBIST controller to
design scan cells and hybrid EDT blocks. These include LogicBIST mode scan enable,
prpg_en, misr_en, and LogicBIST synchronous reset for the hardware default mode of
operation.

• Adds case analysis on the mux, which chooses between the top-level scan enable for
ATPG and the LogicBIST controller-generated scan enable to enable only the
LogicBIST mode paths.

• Adds case analysis to set lbist_en to active.

• Disables single chain mode scan chain concatenation paths.

• Disables paths from edt_chain_mask masking registers to the scan cells. This constraint
is required because even though this register is configured using tck as the source, the
clock net connected to the edt_lbist_clock signal carries both edt_clock and
shift_clock_src clocks.

<ltest_prefix>_modal_slow_capture and <ltest_prefix>_modal_fast_capture

You get these procs in your SDC file only under the following conditions:

• You added the following dft signals in your current design level: scan_en, test_clock, or
(edt_clock and shift_capture_clock).

• And you did not insert a Tessent logictest-related controller, such as EDT or logicbist in
that same level.

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 743

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

These two procs properly assert all static dft signals, such as scan_en and ltest_en. They are the
“no-EDT” version of the following two procs:

• <ltest_prefix>_modal_edt_slow_capture

• <ltest_prefix>_modal_edt_fast_capture

Because no EDT is present in the current design, extract_sdc does not generate these procs:

• <ltest_prefix>_edt_bypass_shift

• <ltest_prefix>_edt_single_chain_shift

However, if your design meets all of the following conditions:

• Your core instances actually do support edt_bypass chain or single_chain modes.

• You intend to run these modes at a test_clock frequency that differs from their EDT
mode.

• You intend to use core-extracted timing models in a hierarchical STA flow.

Then you should load a per-mode core timing model, and then run the
<ltest_prefix>_modal_shift proc as a general setup for the top-level. For each such STA run,
you must properly set the global Tcl variable tessent_slow_clock_period value.

For <ltest_prefix>_modal_edt_fast_capture, all edt_bypass and edt_chain_bypass asserts are
skipped by default. If you do not want to skip these asserts, define the
“tessent_block_edt_bypass_in_fast_capture” global variable.

<ltest_prefix>_modal_lbist_capture

This mode is similar to <ltest_prefix>_modal_lbist_shift, except that the LogicBIST mode scan
enable is constrained to off.

<ltest_prefix>_modal_lbist_setup

This mode propagates tck through the IJTAG network within the LogicBIST controller and
hybrid EDT blocks to time the LogicBIST test_setup paths that initialize registers such as PRPG
and edt_chain_mask, as well as test_end paths that read the MISR signature.

This mode does not propagate tck to the design scan cells because it is only intended to check
the IJTAG network paths.

<ltest_prefix>_modal_lbist_single_chain

This mode is available when single chain mode logic that enables LogicBIST diagnosis is
enabled during IP generation. This mode propagates tck through the IJTAG network paths and
design scan cells, including the concatenation of the internal scan chains for single-chain

Tessent™ Shell User’s Manual, v2021.3744

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

shifting. The LogicBIST scan enable is constrained to 1 to time only the shift paths in the design
with the tck signal.

<ltest_prefix>_modal_lbist_controller_chain

This mode is available when controller chain mode (CCM) logic is enabled during IP
generation. When CCM is present, all of the previously described LogicBIST modes disable the
controller chain logic by constraining the ccm_en signal to off. This mode tests the CCM paths
by constraining the ccm_en signal to on. The clock for this mode is either tck or test_clock, as
specified during IP creation.

This mode only tests the LogicBIST and hybrid EDT controller blocks; clocks are not
propagated to design scan cells.

Paths that are normally disabled during the LogicBIST operation modes described in the
preceding become valid single-cycle paths in CCM and are timed accordingly.

• Signals such as lbist_en are not constrained to 1 because paths from the TDR register in
the LogicBIST controller to the hybrid EDT blocks that use this signal are tested with
ATPG in CCM. Paths from static signals—such as x_bounding_en, test_point_en, and
capture_per_cycle—to the design scan cells are correctly excluded because no clocks
are propagated to the scan cells.

• Paths from dynamic control signals that are declared as multi-cycle for other modes—
such as scan_en, prpg_en, and misr_en—that go from the LogicBIST controller to the
EDT blocks are tested as valid single-cycle paths.

• Paths from IJTAG network nodes such as SIBs are timed as valid single-cycle paths of
the CCM clock.

• Input and output pin delays from top-level ports to EDT blocks and CCM scan I/O ports
are included for this mode. This differs from the LogicBIST shift and capture modes,
which do not have any active paths from or to design ports.

<ltest_prefix>_non_modal

This procedure provides SDC timing constraints to add to your combined functional-dft non-
modal timing scripts for one-pass synthesis or layout. Its contents is merged with both your
functional constraints and all other Tessent controller's non-modal constraints. It is called by the
umbrella proc “tessent_set_non_modal” proc.

The procedure calls the previously described procs:

• <ltest_prefix>_create_clocks

• <ltest_prefix>_set_pin_delays

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 745

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

It also:

• Defines a specific clock group (using 'set_clock_groups') for all logictest slow clocks,
isolating them from your declared functional clocks.

• Adds 'set_false_path' constraints from each of your primary ports assigned to a static dft
signals such as 'all_test', 'ltest_en' 'edt_mode'. If the same signals come instead from an
internal IJTAG Test Data Register (TDR), then the “set_clock_groups” command
between tessent_tck and the scan clocks replaces the individual set_false_path
commands in the following.

• Provides constraints to prevent “tck” and your functional clocks to propagate to
unwanted paths inside your Siemens EDA OCCs, as well as constraints that prevent
false timing violations on the select pin of clock muxes inside that OCC.

• Provides constraints that disable automatic clock gating checks across input pins of the
Siemens EDA OCC clock multiplexers, because all OCC clock selection is either
performed statically during test setup or at slow speed in a glitchless way during scan.

• Adds an optional set_multicycle_path constraint from your primary 'scan_en' port and
“edt_update” signal, based on your setting of the global variables:

o tessent_scan_en_hold_extra_cycles

o tessent_scan_en_setup_extra_cycles

o tessent_edt_update_hold_extra_cycles

o tessent_edt_update_setup_extra_cycles

which all default to zero, meaning single-cycle paths of slow clock.

• When using LogicBIST, includes a 3-to-1 shift_clock_select mux at the clock structure
root of the LogicBIST controller. This mux enables any one of three clocks—
shift_clock_src, test_clock or tck—to be used as the source clock for LogicBIST test.

o Blocks tck propagation through the shift_clock_select mux into the design scan
cells. This removes analysis of the slowest LogicBIST mode of operation using tck
to reduce timing analysis run time.

o Propagates both shift_clock_src and test_clock to the design scan cells, but all
interactions between them are blocked.

• Adds the following LogicBIST-related exceptions:

o Declares multi-cycle paths from LogicBIST scan enable generation logic to the
design scan cells. The number of cycles are based on the pre_post_shift_dead_cycles
IP generation parameter and defaults to eight.

o Declares multi-cycle paths from logic that generates the prpg_en, misr_en, and
LogicBIST synchronous reset for hardware default mode operation signals to the

Tessent™ Shell User’s Manual, v2021.3746

Timing Constraints (SDC)
LOGICTEST Instruments

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

hybrid EDT blocks. The number of cycles are based on the
pre_post_shift_dead_cycles IP generation parameter.

o Disables paths from static control registers in the LogicBIST controller—such as
lbist_en and x_bounding_en—to design scan cells and hybrid EDT blocks. This is
implicitly performed by declaring tck as asynchronous to other clocks in the IJTAG
non-modal proc. When CCM is implemented with the EDT clock as the CCM clock,
explicit false paths are added to disable such paths.

• Excludes single chain mode logic scan chain concatenation paths through case analysis
on the single bypass chain control TDR output.

• When CCM is implemented with test_clock as the CCM clock, the test_clock
propagates to all IJTAG scan elements on the tck domain. Constraints are added to
disable such paths to the tessent_lbist_shift_clock_src clock.

Single-Mode vs Dual-Mode Constraining in Synthesis/Layout

Important: As it stands in the current release, leaving the scan_enable signal free to toggle in
this proc is known to create false shift_clock-frequency timing paths across your functional
design, which may or may not affect timing closure or quality of results in layout. Siemens EDA
customers’ experience greatly varies on this front. Here are some examples of such false paths:

1. Scan chains intra-domain shift-only paths are constrained at the speed of the functional
clock.

2. As a result of creating only one shift_capture_clock source and letting it propagate to all
functional clock domains, all cross-domain capture paths become single-cycle of the
shift clock, regardless of whether they are asynchronous in functional mode or not.

This said, these new timing paths do not instantly condemn your layout or physical synthesis
tool to fail timing closure or perform a bad P&R job, knowing that clock tree synthesis also
balances the test_clock fanout by default. Non-physical synthesis is generally not a problem.

On the other hand, re-constraining of all those bogus timing paths would typically require a very
large number of design-dependent timing exceptions, which extract_sdc is not able to provide at
this point. Applying them could also slow down some layout tools considerably.

The alternative to single-mode constraining is to apply individual mode scripts at different times
in the synthesis or layout tool. It is a well-known solution that has been applied by most
Siemens EDA customers historically.

1. Functional/Dft mode:

o Apply your functional constraints

o Invoke proc constrain_<design_name>_non_modal off

Timing Constraints (SDC)
LOGICTEST Instruments

Tessent™ Shell User’s Manual, v2021.3 747

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Logictest-only mode, covering all EDT scan configurations, such as EDT shift and EDT
bypass shift:

o Invoke proc <ltest_prefix>_modal_shift

3. If your design contains hybrid EDT/LBIST, another logictest-only mode to cover the
LBIST shift configuration:

o Invoke proc <ltest_prefix>_modal_lbist_shift

This script cannot be combined with EDT scan configuration script because these modes
are not compatible; they propagate different shift clocks, have different case analysis
constraints on the lbist_en signal, and have different timing requirements for scan enable
with respect to the shift clock.

<ltest_prefix>_set_pin_delays

This procedure assigns the clock “tessent_virtual_slow_clock” to your top-level ports that
directly interface with your EDT controllers or your scan chains during scan or EDT mode,
using the “set_input_delay” and “set_output_delay” timing constraints.

This proc is called by every SDC proc which propagate the EDT or shift clocks, that is:

• <ltest_prefix>_non_modal

• <ltest_prefix>_shift

• <ltest_prefix>_modal_slow_capture

Input/Output Pin Delay Constraints

Input and output delay constraints are declared for the EDT control and channel pins. For
example:

channel_input:
set_input_delay $tessent_scan_input_delay \

 -clock tessent_virtual_slow_clock \
 [get_ports {my_edt_channels_in[0]}]
channel_output:

set_output_delay $tessent_scan_output_delay \
-clock tessent_virtual_slow_clock \

 [get_ports {my_edt_channels_out[0]}]

edt_update:
 set_input_delay $tessent_scan_input_delay \

-clock tessent_virtual_slow_clock \
 [get_ports edt_update]

Tessent™ Shell User’s Manual, v2021.3748

Timing Constraints (SDC)
MemoryBIST Instrument

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT Signals Handling in ltest STA Procs

All EDT-related modal STA procs in the following force these dft signals, when present, to their
active value:

• all_test (active in all tests)

• ltest_en (active in logictest only)

For example:

set_case_analysis 1 [get_ports all_test]
set_case_analysis 1 [get_ports ltest_en]

The same procs leave all other logictest-related dft signals toggling, and add a false_path
constraint if they come from a primary port. For example:

set_false_path -from [get_ports async_set_reset_static_disable]
set_false_path -from [get_ports control_test_point_en]
set_false_path -from [get_ports ext_ltest_en]
set_false_path -from [get_ports ext_mode]

If the same signals come instead from an internal IJTAG Test Data Register (TDR), then the
“set_clock_groups” command between tessent_tck and the scan clocks replaces the individual
set_false_path commands.

Procedure “tessent_set_ltest_edt_fast_capture”, on the other hand, optionally asserts some of
these dft_signals under control of a user-declared variable.

MemoryBIST Instrument
Tessent MemoryBIST provides the following procs:

• tessent_set_memory_bist_non_modal for chip synthesis

o This proc would typically not be called in your synthesis script, it is called as part of
tessent_set_non_modal.

• tessent_set_memory_bist_modal for STA

o This proc must be called in your STA script if you want to constrain the MemoryBist
mode.

• tessent_<design_name>_top_set_dft_signals logic_off

Specify this call if your design also feature logictest-based dft signals that need to be
turned off in membist STA mode.

• tessent_mbist_set_ai_timing_mode

Timing Constraints (SDC)
MemoryBIST Instrument

Tessent™ Shell User’s Manual, v2021.3 749

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This procedure assures all functional clocks are defined and properly propagated, but
leaves the asynchronous interface free of constraints so they can be formally analyzed
by procedure tessent_mbist_report_controller_ai_timing. This proc will not be present
or needed if none of the controllers being constrained utilize an asynchronous interface.

• tessent_mbist_report_ai_timing [-verbose 1|0] [-tck_period time_in_ns]

This procedure runs tessent_mbist_report_controller_ai_timing once for every
MemoryBIST controller in the current design. This proc will not be present or needed if
none of the controllers being constrained utilize an asynchronous interface.

• tessent_mbist_report_controller_ai_timing [-verbose 1|0] [-controller_id id]
[-tck_period time_in_ns]

This procedure accurately measures the BAP AI timing paths to the specified
MemoryBIST controller. The covered AI signals are: BIST_SHIFT, BIST_SI,
BIST_SO, and BIST_HOLD.

Because of the asynchronous nature of this interface, the signals listed in the preceding
cannot be accurately timed with SDC constraints. Although the circuit is designed to
always work with a low TCK frequency, this procedure validates that it works at the
frequency you specified.

Each AI signal timing margin depends on a combination of the TCK period, the
controller’s BIST_CLK period, and the skew related to the TCK branch reaching that AI
TCK transition detector. We recommend running this procedure only once with your
worst case operating conditions. In most cases, AI signal timing is expected to largely
exceed their setup timing requirements. Hold timing is never a problem because of the
design of the interface.

This proc will not be present or needed if none of the controllers being constrained
utilize an asynchronous interface.

They contain many multicycle path constraints to and from controller registers aiming to
minimize the impact of the MemoryBIST DFT on your timing closure.

Multi-Clock Memories

Additional timing exceptions were added for synthesis if you have multi-port memories
functionally driven by multiple clocks. A mux is inserted in the memory interface to enable both
clock ports of the memory to be driven using a single clock during the Memory BIST mode.
The insertion of this clock multiplexer adds different timing modes between functional and test
modes which must be described correctly in the SDC file.

Tessent™ Shell User’s Manual, v2021.3750

Timing Constraints (SDC)
MemoryBIST Instrument

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
If you wish to skip the memoryBIST constraints of clock muxing (creating the generated
clock and false paths) for multi-clock memories, set the variable

tessent_apply_mbist_mux_constraints to “0” in the tessent_set_default_variable proc. This
variable should be set to “0” in two cases:

• For synthesis: When the BIST clock used by the MemoryBIST tests is declared as false
path with the memory’s functional clock in the user’s SDC script.

• For STA: When verifying the timing of the scan modes.

In the following, we explain key points of the MemoryBist constraints to handle these modes
harmoniously. Suppose the situation where CLKA and CLKB are two of your functional clocks
that drive two clock ports of a single memory. The MemoryBIST logic is inserted and runs on
CLKA. CLKA is multiplexed onto the CLKB branch of the memory during tests.

Figure 13-2. Generated Clock Muxed Multi-Clock Memories

First, we need to create a generated clock on the input of the clock mux. In our example, this
clock is called mbist1_m0_mux0.

create_generated_clock [tessent_get_pins
$tessent_memory_bist_mapping(mbist1_m3)/tessent_persistent_cell_MUX1/b] \
-name mbist1_m0_mux0 \
-source [get_ports CLKA] \
-add -master_clock $tessent_clock_mapping(CLKA) \
-divide_by 1

Creating this clock at the input of the clock mux (instead of the output) enables all input clocks
to propagate through the mux and times the following interactions precisely:

• Timing paths between the memory BIST logic and the memory

• Timing paths between the functional flops and the memory

Timing Constraints (SDC)
BoundaryScan Instrument

Tessent™ Shell User’s Manual, v2021.3 751

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

With the mbist1_m0_mux0 defined, we can now define clock-based exceptions to declare as
false any interaction between CLKB and the memory BIST flops, and between
mbist1_m0_mux0 and the functional flops on CLKB. Those false paths are described using the
following SDC commands:

set nonMBISTclocks [remove_from_collection [all_clocks] [get_clocks
"$tessent_clock_mapping(CLKA) mbist1_m0_mux0 "]]
set_false_path -from [get_clocks mbist1_m0_mux0] \
-to $nonMBISTclocks
set_false_path -from $nonMBISTclocks \
-to [get_clocks mbist1_m0_mux0]
set_false_path -from [get_clocks $tessent_clock_mapping(CLKB)] \
-to [tessent_get_cells [concat \
$tessent_memory_bist_mapping(mbist1_m3)/SCAN_OBS_FLOPS* \
$tessent_memory_bist_mapping(mbist1_m3)/MBISTPG_STATUS/GO_ID_REG* \
$tessent_memory_bist_mapping(mbist1_m3)/FREEZE_STOP_ERROR*]]
set_false_path -from [tessent_get_cells [concat \
$tessent_memory_bist_mapping(mbist1_m3)/Q1_SCAN_IN* \
$tessent_memory_bist_mapping(mbist1_m3)/Q2_SCAN_IN* \
$tessent_memory_bist_mapping(mbist1_m3)/BIST_INPUT_SELECT*]] \
-to [get_clocks $tessent_clock_mapping(CLKB)]
set_false_path -from [tessent_get_cells [concat \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_PORT_COUNTER/PORT_COUNTER* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_FSM/STATE* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_POINTER_CNTRL/
EXECUTE_OP_SELECT_CMD** \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_SIGNAL_GEN/JCNT* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_SIGNAL_GEN/OPSET_SELECT_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_DATA_GEN/WDATA_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_DATA_GEN/X_ADDR_BIT_SEL_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_DATA_GEN/Y_ADDR_BIT_SEL_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_ADD_GEN/AX_ADD_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_ADD_GEN/AY_ADD_REG* \
$tessent_memory_bist_mapping(mbist1)/MBISTPG_OPTION/BIST_EN_RETIME2* \
$tessent_memory_bist_mapping(mbist1)/MEM_SELECT_REG*]] \
-to [get_clocks $tessent_clock_mapping(CLKB)]

By making these timing exceptions, we are precisely timing the memory BIST interaction with
the memory using CLKA reaching the two-clock ports of the memory and the functional logic
to memory interaction using the CLKB reaching the memory clock port. The added logic is
precisely timed to simplify timing closure. These constraints make physical design tools aware
of the mux on the clock port of the memory and they place the mux in a location where it does
not affect timing.

BoundaryScan Instrument
Tessent BoundaryScan provides the following proc:

• tessent_set_jtag_bscan_non_modal

o This proc would typically not be called directly in your synthesis script, it is called
as part of tessent_set_non_modal.

Tessent™ Shell User’s Manual, v2021.3752

Timing Constraints (SDC)
Hierarchical STA in Tessent

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

It creates generated clocks from each BoundaryScan interface and relaxes the timing between
them.

Hierarchical STA in Tessent
This section explains how to use Tessent-generated SDC constraint procs to run the hierarchical
STA flow with Siemens EDA DFT. This flow runs STA separately on each individually laid-
out physical block. If a block instantiates other lower-level physical blocks, partial or full back-
annotated netlists or extracted models of those physical blocks are loaded. The procs enable you
to cover all Siemens EDA DFT timing paths crossing the lower physical block boundaries,
including those related to the IJTAG interface, BISR register interface, bscan interface, and
logictest scan/capture paths, while preventing interference and false violations from irrelevant
functional paths inside these physical blocks.

When the following conditions occur, the extract_sdc command creates a few callable SDC
timing procs to help with the hierarchical STA flow:

• The current DFT-inserted design instantiates lower-level physical blocks.

• Physical blocks have been DFT-inserted with Siemens EDA IP, using add_dft_signals
commands, along with the DftSpecification flow.

• For “xxx_ltest_xxx” procs, lower-level physical blocks are assumed to have the
following:

o One or more EDT controllers.

o Optional Tessent OCCs.

o An external logictest mode, controlled with DFT signals ext_ltest_en and optionally
int_ltest_en.

Note
This hierarchical STA flow is not the same as running flat logictest STA on a full design
netlist with multiple physical levels. Running flat STA would require an extra layer of

complexity for the needed constraints, especially if you intend to run each level with a different
test_clock frequency. Tessent Shell currently generates no SDC procs to support this type of
procedure.

The extract_sdc command provides the following hierarchical STA procs:

• tessent_set_modal_lower_pbs — Enables all Siemens EDA DFT non-logictest timing
paths through physical block pins and disables all paths through the rest of the same
physical block pins.

• tessent_set_ltest_pb_external_mode — Enables the external logictest mode on an
isolated physical block, forcing its dedicated wrapper cells to select the boundary logic.

Timing Constraints (SDC)
Hierarchical STA in Tessent

Tessent™ Shell User’s Manual, v2021.3 753

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Call this proc before extracting your current physical block design timing model, for use
at the next level up.

• <ltest_prefix>_lower_pbs_external_mode — Configures the instantiated lower
physical blocks of the parent design in their external mode, enabling running parent
logictest modes with loaded lower physical block full or partial netlists.

The extract_sdc command generates the <xxx>_mentor_modal_lower_pbs proc even when the
Logictest IP comes from non-Siemens EDA sources. The command only generates the other
two if the IP comes from Tessent TestKompress.

Hierarchical STA Procs Descriptions

The following describe the hierarchical STA procs in detail.

tessent_set_modal_lower_pbs

The tool creates this proc only for parent designs instantiating lower-level physical blocks.

The proc provides STA coverage of the Siemens EDA non-logictest DFT timing path going
across the physical block pins while blocking all other paths. Call it along with either the non-
modal constraints of the current design or the modal DFT STA constraints (membist, BISR,
bscan, IJTAG, with disabled logictest). You need to load some timing models for your lower
physical block instances.

The proc does the following:

• Disables timing through your physical block interface pins, except those active used
Siemens EDA non-logictest DFT, such as the IJTAG pins, the BISR register pins, or the
embedded boundary scan control pins. All Siemens EDA logictest IP related pins are
also disabled.

• Relaxes some paths in physical block’s IJTAG network.

• Blocks TCK from propagating to physical block logic through the eventual Siemens
EDA OCC muxes.

Assuming that your current hierarchical STA flow methodology may require loading a mix of
black boxes from lower physical blocks, extracted timing models, or backannotated netlists, the
proc always checks whether a physical block’s internal pin is actually loaded in memory before
attempting to apply a constraint to it. As a result, the call to the proc never errors out because of
unloaded lower physical block logic.

Disabling timing on all your physical block input’s clock pins purposely kills their non-DFT
internal functional timing paths. Likewise, physical block scan logic does not require any
additional SDC constraints, because of the following:

• The global scan_enable control signal is assumed already off in their parent design,
leaving all scan flops in functional mode.

Tessent™ Shell User’s Manual, v2021.3754

Timing Constraints (SDC)
Hierarchical STA in Tessent

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• All physical block relevant logic (such as controllers, functional scan flops, LogicBist)
receives no clock.

The proc is called along with current level <xxx>_non_modal or Siemens EDA DFT modal
constraints procs to complete timing coverage of both non-modal synthesis and pre/post-layout
modal STA steps.

The following is a typical example:

<load your current design files>
<load your lower physical blocks timing models or annotated netlist>
<link your design>
source ${tsdb}/dft_inserted_designs/.../${design}.sdc
tessent_set_default_variables
<override global variable values if needed>

The following example includes non-modal constraints (*):

<define your functional clocks and your timing exceptions>
tessent_set_non_modal <arg>
tessent_set_modal_lower_pbs
update_timing

Note
The <arg> value is required only if your design contains Siemens EDA logictest IP.

The following example includes Tessent MemoryBIST modal constraints (*):

tessent_create_functional_clocks
tessent_set_ijtag_non_modal
tessent_set_jtag_bscan_non_modal
tessent_set_memory_bisr_non_modal
tessent_set_memory_bist_modal
tessent_kill_functional_paths
tessent_set_modal_lower_pbs
update_timing

(*) IJTAG constraints are always present in any design. The presence of all other procs are
design-dependent.

tessent_set_ltest_pb_external_mode

The tool creates this proc only for isolated physical blocks with the “ext_ltest_en” DFT signal
present. It forces ext_ltest_en active and int_ltest_en (if present) inactive. Use this call after a
previous call to one of the xxx_ltest_modal_xxx procs, to select the external mode version of
your shift, bypass, or capture modes. The proc merely forces the lower physical block’s
ext_ltest_en and int_ltest_en DFT signals to their external mode requirements. You should
always call this proc when extracting your physical block’s timing model for later use in your
parent ltest STA modes, because it prevents ambiguous timing paths in your extracted model
timing arcs.

Timing Constraints (SDC)
Hierarchical STA in Tessent

Tessent™ Shell User’s Manual, v2021.3 755

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Current-level <xxx>_ltest_modal* STA procs aim to cover both internal and external mode test
paths in the same STA run, despite that letting ext_ltest_en toggling may introduce a few false
paths that could affect your design timing closure. For most cases, it is a risk worth taking,
because merging multiple STA modes together is highly desirable for minimizing your total
number of STA runs.

The following shows an example of this proc:

<load your current design files>
<link your design>
source ${tsdb}/dft_inserted_designs/…/${design}.sdc
tessent_set_default_variables
<override global variable values if needed>

Extract one timing model per ltest mode
Under some conditions, you can merge edt_shift and bypass_shift into
"shift".
foreach mode {edt_shift bypass_shift edt_slow_capture} {
 reset_design
 tessent_set_ltest_modal_${mode}
 tessent_set_ltest_pb_external_mode
 set_propagated_clock [all_clocks]
 update_timing
 # SYNOPSYS PrimeTime-specific command
 extract_model -output $design_name}_ext_${mode}_etm -format lib -library
}

<ltest_prefix>_lower_pbs_external_mode

The extract_sdc command writes this proc only for designs instantiating lower-level physical
blocks featuring the DFT signal ext_ltest_en, implying physical block wrapper isolation logic.
The objective of this proc is to set all lower physical blocks into external mode when running
one of the logictest STA modes at the parent level, which covers logictest mode timing paths
through the boundary pins of these physical blocks. Path coverage includes all logic between
the physical block pins and their wrapper cells, in addition to the wrapper chains shift mode
paths.

Assuming that your current hierarchical STA flow methodology may require loading a mix of
black boxes from lower physical blocks, extracted timing models, or back-annotated netlists,
the proc always checks whether a physical block’s internal pin is actually loaded in memory
before attempting to apply a constraint on it. As a result, the call to the proc never errors out
because of unloaded lower physical block logic.

Such constraints include:

• Preventing logictest slow clock reconvergent timing paths inside the physical block
OCC logic.

• Asserting the ltest_en dft_signal.

• Asserting and deasserting the ext_ltest_en and int_ltest_en dft_signals.

Tessent™ Shell User’s Manual, v2021.3756

Timing Constraints (SDC)
Mapping Procs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Deasserting the lbist_en dft_signal, if present.

• Conditionally asserting or deasserting the following dft_signals:

o edt_mode, int_edt_mode, ext_edt_mode, edt_bypass

o memory_bypass_en

o async_set_reset_static_disable

• Preventing false timing checks within the physical block OCC clock multiplexing logic.

The following shows an example of this proc:

<load your current design files>
<load your lower physical blocks timing models or netlist>
<link your design>
source ${tsdb}/dft_inserted_designs/…/${design}.sdc
tessent_set_default_variables
<override some global tessent TCL variables value if needed>
foreach mode {shift edt_shift bypass_shift edt_slow_capture} {
 reset_design
 tessent_set_ltest_modal_${mode}
 tessent_set_ltest_lower_pbs_external_mode
 set_propagated_clock [all_clocks]
 update_timing
 <report_timing and other checks>
}

Mapping Procs
Because you can use the Tessent SDC constraints both pre- and post-synthesis, the tool must
perform some mapping to find all pins and cells with the pre-synthesis instance path.

The mapping is accomplished with the following procs:

• tessent_get_ports

• tessent_get_pins

• tessent_get_cells

• tessent_get_flops

• tessent_map_to_verilog

• tessent_remap_vhdl_path_list

The procs tessent_get_ports, tessent_get_pins, and tessent_get_cells are wrapper procs of the
original SDC commands get_ports, get_pins, and get_cells, and they are used throughout the
Tessent SDC. These wrapper procs use the tessent_map_to_verilog and
tessent_remap_vhdl_path_list procs as required. Use these mapping procs (as opposed to
get_ports, get_pins, and get_cells) in your functional SDC if you have a design with unrolled

Timing Constraints (SDC)
Mapping Procs

Tessent™ Shell User’s Manual, v2021.3 757

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

VHDL generate loops, and you have problems applying your functional SDC to the RTL. See
“Dealing with Unrolled VHDL Generate for Loops” on page 728 for more information.

The tessent_get_flops proc runs the tessent_get_cells proc and then filters the result collection
for sequential elements. The proc uses a filtering method appropriate for the current tool.

The tessent_map_to_verilog proc adds wildcarding to pre-synthesis instance paths to match
post-synthesis instance paths for layout and STA. For example, the instance path core_inst/
my_reg[0] would return the pattern core_inst/my_reg?0?. This is to be able to match both the
RTL instance path and the post-synthesis path core_inst/my_reg_0_ even if “change_names
-rules Verilog” was used. It also maps the slash (/) coming from Tessent Shell instance paths to
any user-defined “tessent_hierarchy_separator”. This proc is called by tessent_get_cells and
tessent_get_pins. You should not need to call this proc directly.

The tessent_remap_vhdl_path_list proc is used when the instance path cannot be found with the
simple mapping. It should only be needed when Tessent Shell has unrolled some VHDL
generate loops to do uniquified insertion in the instances within them. See “Dealing with
Unrolled VHDL Generate for Loops” on page 728 for more information. The proc supports
finding cells/instances that have a trimmed last character, for example a closing brace or a
question mark. This proc is called by tessent_get_cells and tessent_get_pins if needed. You
should not need to call this proc directly. You can also use the proc in the unlikely event that
your synthesis tool changed the names of cells in an unexpected way such as trimming any
trailing closing brace, for example “my_reg[0]” changed to “my_reg_0” instead of the expected
“my_reg_0_”

If you require additional mapping capabilities, the tessent_map_to_verilog proc provides a
method for custom mapping of regular expressions/substitutions that run prior to the tool’s
mapping process. To use this, you must add your own mapping by defining the global array
variable.

For example:

global tessent_custom_mapping_regsub
array set tessent_custom_mapping_regsub {
 {\](/| |$)} {\1}
}

This example maps all RTL instance paths from the SDC file to remove any closing bracket
preceding a hierarchy separator (/) or at the end of the path (space for end of list element, $ for
end of list). You would need this mapping expression during your STA run if the synthesis tool
was trimming the closing brace of registers after a change_name. For example, my_reg[0] ->
my_reg_0 instead of my_reg_0_ as expected.

Tessent™ Shell User’s Manual, v2021.3758

Timing Constraints (SDC)
Synthesis Helper Procs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Helper Procs
To be able to apply Tessent Shell SDC constraints on your post-synthesis netlist, some steps are
required to preserve the boundary of certain instruments as well as to preserve certain
“persistent” cells, which must not be optimized away.

Three procs are provided to return the design instances which need to be boundary preserved,
shall be optimized or must be entirely preserved:

• tessent_get_preserve_instances preservation_intent

• tessent_get_optimize_instances

• tessent_get_size_only_instances

tessent_get_preserve_instances preservation_intent returns a collection of instances whose
boundaries must be preserved. It must be provided an argument to establish the future use of the
netlist and determine which instances need to be preserved. The “select” value you need to
choose depends on whether you intend to use your post-synthesis netlist with our tools. Here are
the valid values for the “select” argument, in increasing order of inclusiveness:

• add_core_instances

This usage selection returns instances that need to be preserved for applying SDC
constraints for STA to your post-synthesis design, and instances required for the TCD
automation flow with ATPG.

• scan_insertion

This usage selection returns all instances of the previous selection, plus any instance of
modules having existing scan segments described in a TCD scan file and non-scan
instances (ICL attribute keep_active_during_scan_test=true). This selection is required
if you intend to do scan insertion on your design with Tessent Shell or a third party tool.

• icl_extract

This usage selection returns all instances of the two previous selections, plus any
instance of modules providing an ICL definition. This context is needed if you intend to
go through the DftSpecification flow again, this time with your gate level netlist. ICL
extraction requires that all ICL instances be present and traceable in the design.

If persistent cells added by Tessent Shell are RTL constructs (RTL cells or wrappers from the
cell library), they are returned by tessent_get_preserve_instances. If they are library leaf cells,
they are not returned by tessent_get_preserve_instances. Use the
tessent_get_size_only_instances proc to obtain these (see following).

The tessent_get_optimize_instances proc returns a collection of child instances within Tessent
instruments whose boundaries can be optimized. This should be used when your synthesis tools
propagates boundary optimization attributes downward hierarchically.

Timing Constraints (SDC)
Synthesis Helper Procs

Tessent™ Shell User’s Manual, v2021.3 759

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tessent_get_size_only_instances proc returns a collection of instances of all persistent cells,
although the collection may be empty under certain conditions. These cells are required to be
intact to apply SDC constraints for layout and STA. However, the synthesis tool can change the
size of the driving stage as needed.

Tessent™ Shell User’s Manual, v2021.3760

Timing Constraints (SDC)
Example Scripts using Tessent Tool-Generated SDC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example Scripts using Tessent Tool-
Generated SDC

This section provides example scripts for use when using Tessent Shell tool-generated SDC.

Example Design Compiler Synthesis Script . 760

Example Genus Synthesis Script . 761

Example PrimeTime STA Script . 764

Example Design Compiler Synthesis Script
The following is an example synthesis script to use with Design Compiler.

Prerequisite: Functional Synthesis Script
<load your functional design and constraints here, including all clock
definitions and functional timing exceptions>
#source ${design_name}.dc_shell_import_script
#elaborate $design_name
#create_clock [get_ports pCLK25] –name pCLK25 –period 25.0
#create_clock [get_ports pCLK100] –name pCLK100 –period 100.0

Preparation Step 1: Sourcing SDC File
set design_name top
set tsdb ../tsdb_outdir

source \
${tsdb}/dft_inserted_designs/${design_name}_rtl.dft_inserted_design/ \
${design_name}.sdc

Preparation Step 2: Setting and Redefining Tessent Tcl Variables
tessent_set_default_variables
set tessent_tck_period 80.0

Uncomment the following line if you wish to skip the memoryBIST
constraints of clock muxing for multi-clock memories:
#set tessent_apply_mbist_mux_constraints 0

Preparation Step 3: Verifying the Declaration of Functional Clocks
Set clock names in mapping array

array set tessent_clock_mapping {
CLK25 pCLK25
CLK_PLL_REF pCLK100

}
Preparation Step 4: Redefining Other Tessent Tcl Variables

set tessent_input_delay [expr 0.3 * $tessent_tck_period]

Synthesis Step 1: Applying the SDC Constraints
set_app_var timing_enable_multiple_clocks_per_reg true
tessent_set_non_modal

Timing Constraints (SDC)
Example Genus Synthesis Script

Tessent™ Shell User’s Manual, v2021.3 761

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Step 2: Preparing the DFT Logic for Synthesis
set_app_var compile_enable_constant_propagation_with_no_boundary_opt false
set preserve_instances [tessent_get_preserve_instances icl_extract]
set_boundary_optimization $preserve_instances false
set_ungroup $preserve_instances false
set_app_var compile_seqmap_propagate_high_effort false
set_app_var compile_delete_unloaded_sequential_cells false

set_boundary_optimization [tessent_get_optimize_instances] true

set_size_only -all_instances [tessent_get_size_only_instances]

 # shared bus assembly ungrouping
foreach_in_collection assembly \
 [get_designs -hierarchical *_tessent_mbist_*_shared_bus_assembly] { \
 current_design $assembly \
 set_ungroup \
 [get_cells -filter "ref_name!~*_tessent_mbist_*_controller*"] true \
}
current_design $design_name

Synthesis Step 3: Synthesizing Your Design
link
check_design
compile -boundary_optimization

Synthesis Step 4: Writing Out Your Final SDC
write_sdc ${design_name}.merged_sdc

Synthesis Step 5: Writing Out Your Final Netlist
write -format verilog -output ${design_name}.vg ${design_name} -hier

Example Genus Synthesis Script
This section provides an example synthesis script to use with Genus.

Proposed global settings
foreach {attrName attrValue} {
 hdl_bidirectional_assign false
 bus_naming_style {%s(%d)}
 uniquify_naming_style {%s_%d}
 hdl_auto_async_set_reset true
 init_blackbox_for_undefined false
 write_vlog_top_module_first true
 remove_assigns false
 minimize_uniquify true
 continue_on_error false
 log_command_error true
 report_tcl_command_error true
 } {
 dict set global_attributes_dict $attrName $attrValue
 set_db $attrName $attrValue
}

Tessent™ Shell User’s Manual, v2021.3762

Timing Constraints (SDC)
Example Genus Synthesis Script

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisite: Functional Synthesis Script
<load your functional design and constraints here, including all
clock definitions and functional timing exceptions>

Preparation Step 1: Sourcing SDC File
set design_name top
set tsdb ../tsdb_outdir
source ${tsdb}/dft_inserted_designs/ \
${design_name}_rtl.dft_inserted_design/${design_name}.sdc

Preparation Step 2: Setting and Redefining Tessent Tcl Variables
tessent_set_default_variables
set tessent_tck_period 80.0
Uncomment the following line to skip the memoryBIST constraints
of clock muxing for multi-clock memories:
#set tessent_apply_mbist_mux_constraints 0

Preparation Step 3: Verifying the Declaration of Functional Clocks
Set clock names in mapping array.
The array keys are the names Tessent Shell knew of the clocks.
The array values are the names of those clocks in your current SDC.
array set tessent_clock_mapping {
 CLK25 pCLK25
 CLK_PLL_REF pCLK100
}

Preparation Step 4: Redefining Other Tessent Tcl Variables
set tessent_input_delay_factor 0.3
set tessent_hierarchy_separator "_"

Synthesis Step 1: Applying the SDC Constraints
tessent_set_non_modal

Timing Constraints (SDC)
Example Genus Synthesis Script

Tessent™ Shell User’s Manual, v2021.3 763

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Step 2: Preparing the DFT Logic for Synthesis
proc do_set_boundary_optimization { instances_collection state } {
 if { [sizeof_collection $instances_collection] == 0 } { return }
 puts "Modules of the instances"
 set modules_collection [get_db $instances_collection .module]
 puts " [join [get_db $instances_collection .module] "\n "]"
 # Preserve all instances, even those on which boundary optimization
 # is requested.
 set_db $instances_collection .ungroup_ok false
 # Boundary optimization is avoided by preserving the footprint (pins).
 if { !$state } {
 # Boundary optimization is avoided for all modules of the instances.
 # - Preserve the footprint of all the pins
 # - Do not propagate constant inputs while optimizing internal logic
 # - Do not consider any input of opposite polarity
 set_db $modules_collection .boundary_opto strict_no
 }
}
proc do_set_size_only { instances_collection } {

if { [sizeof_collection $instances_collection] == 0 } { return }
 foreach {preserveValue isSequential} [list map_size_ok \
 true size_ok false] {
 set instancesFiltered [filter_collection \
 $instances_collection "is_sequential==$isSequential"]
 if { [llength $instancesFiltered] == 0 } { continue }
 puts "\nSetting preserve attribute '$preserveValue' to \
 '$isSequential' on:"
 set_db $instancesFiltered .preserve $preserveValue
 }
}

set preserveInstances [tessent_get_preserve_instances icl_extract]
do_set_boundary_optimization $preserveInstances false
set optimizeInstances [tessent_get_optimize_instances]
do_set_boundary_optimization $optimizeInstances true
set set_size_only_collection [tessent_get_size_only_instances]
do_set_size_only $set_size_only_collection

Ungroup shared bus assemblies if any are present
set sb_mods [vfind . -subdesign *_tessent_mbist_*_shared_bus_assembly]
set sb_insts [get_db $sb_mods .instance]
foreach sb_inst $sb_insts {
 # ungroup everything in the assembly but the controller
 ungroup [get_db $sb_inst -depth {1 1} -invert -if \
 {.module =~ *_tessent_mbist_*_controller}]
}

Synthesis Step 3: Synthesizing Your Design
syn_generic
syn_map
syn_opt
Synthesis Step 4: Writing Out Your Final SDC
write_sdc $design_name > ${design_name}.merged_sdc
Synthesis Step 5: Writing Out Your Final Netlist
write_hdl $design_name > $design_name.vg

Tessent™ Shell User’s Manual, v2021.3764

Timing Constraints (SDC)
Example PrimeTime STA Script

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example PrimeTime STA Script
The following section provides an example STA script to use with PrimeTime.

RunAndReport
#
proc RunAndReport { mode } {

update_timing
redirect violations_${mode}.report {report_constraint -all_violators}

}
set tsdb ./tsdb_outdir
set design_name top
set design_id rtl
set netlist ${design_name}.vg
Allow asserts on flop reset pins to propagate to their Q output.
set case_analysis_sequential_propagation always

Disable timing through the enable side of clock gating cells,
so as to prevent clock reconverging paths.
set timing_clock_gating_propagate_enable false

Source Tessent Shell generated sdc file and set default variables
source \
 ${tsdb}/dft_inserted_designs/${design_name}_${design_id}.dft_inserted_design \
 /${design_name}.sdc
tessent_set_default_variables

Optionally override the above TCL variables values using "set" commands. For
example:
set tessent_slow_clock_period 20
set tessent_tck_period 50
array set tessent_clock_mapping {
tessent_tck my_tck
CLK3 CLK_F300
}

Change your hierarchy separator variable if not appropriate
set tessent_hierarchy_separator "/"

Override data in above "tessent_set_default_variables" by creating your
own timing data file and placing it at the same level as this script.
if {[file exists user_timing_data.tcl]} {

source user_timing_data.tcl
}

Timing Constraints (SDC)
Example PrimeTime STA Script

Tessent™ Shell User’s Manual, v2021.3 765

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can provide your own path remapping procedures file
(tessent_get_xxx). You only need to copy and edit the procedures you
want to change and put them in file ./user_remapping_procs.tcl.
if {[file exists user_remapping_procs.tcl]} {

source user_remapping_procs.tcl
}

If you have fake cells or cells that are not part of your library
you can provide this file to load them.
if {[file exists load_lib_cells.tcl]} {

source load_lib_cells.tcl
}

Create the script "load_design.pt" only if you need to load your design
with a different command than the "read_verilog" below.
if {[file exists load_design.pt]} {

source load_design.pt
} else {

read_verilog $netlist
}
current_design $design_name
link_design

##
#
Tessent DFT Mode
#
##
echo "\n\n\nAnalysis in Tessent DFT mode.************************ \n" ;
DFT mode covers all Tessent-inserted DFT IP (ijtag network, bscan, memoryBist,
BISR), but NOT scan or edt mode.
reset_design
LoadBackAnnotationData

Apply constraints for STA.
tessent_create_functional_clocks
tessent_set_ijtag_non_modal
tessent_set_memory_bist_modal
tessent_set_memory_bisr_non_modal
tessent_set_jtag_bscan_non_modal
tessent_set_ltest_disable

tessent_kill_functional_paths

RunAndReport TESSENT_DFT_MODE

The following block is only needed for v2020.3 and earlier designs that incorporate the
MemoryBIST Asynchronous Interface. Designs from v2020.4 and later incorporate the
Enhanced MemoryBIST Access hardware.

Tessent™ Shell User’s Manual, v2021.3766

Timing Constraints (SDC)
Example PrimeTime STA Script

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

##
For v2020.3 and earlier designs only, formally check your BAP Asynchronous
interface timing paths
##
if {[info procs tessent_mbist_report_ai_timing] ne ""} {
 echo "\n\nChecking your BAP asynchronous interface paths timing********** \n" ;
 echo "See the results in output report file AITiming.report"
 reset_design
 tessent_set_default_variables
 tessent_mbist_set_ai_timing_mode
 update_timing
 # set "-verbose" to 1 for a more detailed timing report
 # change the "-tck_period" value for analysis of different shift speeds
 redirect AITiming.report { tessent_mbist_report_ai_timing /
 -tck_period $tessent_tck_period -verbose 1 }
}

The following steps assume you have EDT IP in your design:

##
Combined Edt Shift Modes
##
reset_design
LoadBackAnnotationData
tessent_set_ltest_modal_shift
set_propagated_clock [all_clocks]
RunAndReport SHIFT

##
EDT Slow CaptureMode
##
reset_design
LoadBackAnnotationData
set tessent_time_hold_in_slow_capture 1
set tessent_scan_en_setup_extra_cycles 1
set tessent_scan_en_hold_extra_cycles 1
set tessent_edt_update_setup_extra_cycles 1
set tessent_edt_update_hold_extra_cycles 1
tessent_set_ltest_modal_edt_slow_capture
set_propagated_clock [all_clocks]
RunAndReport SLOW_CAPTURE

Timing Constraints (SDC)
Example PrimeTime STA Script

Tessent™ Shell User’s Manual, v2021.3 767

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

##
EDT Fast Capture Mode
##
Important: The following variable setting is important in order to allow
at-speed coverage of your Tessent OCC's internal shift register and clock gaters
paths with scan_enable=0:
set case_analysis_sequential_propagation never
reset_design
LoadBackAnnotationData
<load your functional constraints here, including all clock definitions and
functional timing exceptions>
set memory_bypass_en_value 1
set x_bounding_en_value 1
set observe_test_point_en_value 0
tessent_set_ltest_modal_edt_fast_capture
set_propagated_clock [all_clocks]
RunAndReport FAST_CAPTURE

The LogicBIST modes described in the following are required when using the hybrid TK/
LBIST flow.

You can execute LogicBIST tests using one of three test clock sources chosen at pattern
generation time: shift_clock_src, test_clock, or TCK. Because TCK is a slow clock, STA
verification is not performed explicitly when using this clock source for LogicBIST; the tool
verifies all paths with one of the other two clocks, except for the clock network differences prior
to the LogicBIST controller.

The default clock is shift_clock_src, which is typically connected to an internally generated,
free-running clock because this is the most suitable source for running LogicBIST in-system
test.

If you generate LogicBIST patterns to run with test_clock as the LogicBIST clock source,
specify “test_clock” as an argument in the following procs:

tessent_set_ltest_modal_lbist_shift test_clock
tessent_set_ltest_modal_lbist_capture test_clock

The tool supports the values ltest_clock and edt_clock as aliases for “test_clock”.

If you generate two sets of LogicBIST patterns to run LogicBIST tests, execute the LogicBIST
shift mode proc described in the following twice: first with the shift_clock_src argument and
second with test_clock argument.

For LogicBIST shift mode and LogicBIST capture mode using the shift_clock_src argument,
create the shift_clock_src clock in the timing tool and indicate its name using the Tessent SDC
TCL variable tessent_lbist_shift_clock_src, as mentioned in “Preparation Step 2: Setting and
Redefining Tessent Tcl Variables” on page 718.

Tessent™ Shell User’s Manual, v2021.3768

Timing Constraints (SDC)
Example PrimeTime STA Script

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

##
LogicBIST Shift Mode
##
reset_design
LoadBackAnnotationData
tessent_set_ltest_modal_lbist_shift
set_propagated_clock [all_clocks]
RunAndReport LBIST_SHIFT

Unlike EDT, which uses separate fast and slow capture modes, LogicBIST uses a combined
capture mode. The NCPs and fault type used during fault simulation determine whether
LogicBIST test targets stuck-at or transition faults. These NCPs can use single or multiple clock
pulses sourced from either the LogicBIST clock or functional clock, as determined by the
NcpIndexDecoder and OCC settings. Similar to the shift mode, use either one or both of
shift_clock_src and test_clock arguments for analysis. The value for observe_test_point_en
should reflect the setting used during fault simulation. Control test points are typically enabled
for both stuck-at and transition tests.

##
LogicBIST Capture Mode
##
reset_design
LoadBackAnnotationData
tessent_set_ltest_modal_lbist_capture
<when LogicBIST test targets transition faults, load your functional constraints
here, including all clock definitions and functional timing exceptions>
set memory_bypass_en_value 1
set x_bounding_en_value 1
When observe_test_points are disabled for transition test:
set observe_test_point_en_value 0 ;
set_propagated_clock [all_clocks]
RunAndReport LBIST_CAPTURE

The following proc analyzes timing for the IJTAG network paths used to initialize the BIST
controller and read the MISR values after test is complete. This mode uses TCK.

##
LogicBIST Setup (IJTAG Network Paths)
##
reset_design
LoadBackAnnotationData
set_propagated_clock [all_clocks]
tessent_set_ltest_modal_lbist_setup
RunAndReport LBIST_SETUP

The following proc analyzes timing for the single chain-based diagnosis mode. This mode uses
TCK for reading all the scan cells through the IJTAG network.

Timing Constraints (SDC)
Example PrimeTime STA Script

Tessent™ Shell User’s Manual, v2021.3 769

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

##
LogicBIST Single Chain Diagnosis
##
reset_design
LoadBackAnnotationData
set_propagated_clock [all_clocks]
tessent_set_ltest_modal_lbist_single_chain
RunAndReport LBIST_SINGLE_CHAIN

When you implement the optional controller chain mode (CCM), the following proc analyzes
timing for CCM. In this mode, the tool removes timing exceptions between the LogicBIST
controller and the hybrid TK/LBIST blocks (as seen in the shift and capture modes) to reflect
CCM pattern generation setup.

##
LogicBIST Controller Chain Mode
##
reset_design
LoadBackAnnotationData
set_propagated_clock [all_clocks]
tessent_set_ltest_modal_lbist_controller_chain
RunAndReport LBIST_CONTROLLER_CHAIN

Tessent™ Shell User’s Manual, v2021.3770

Timing Constraints (SDC)
Example PrimeTime STA Script

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix A
The Tessent Tcl Interface

The Tessent Shell tool provides a Tcl-based command interface.

General Tcl Guidelines in Tessent Shell . 771

Guidelines for Modifying Existing Dofiles for Use with Tcl . 773

Special Tcl Characters. 775

Custom Tcl Packages in Tessent Shell . 777

Tcl Resources . 778

General Tcl Guidelines in Tessent Shell
If Tcl procedures are available in separate files, you can source these files from within the tool
or dofiles. You can also place Tcl procedures in a .tool_startup file so that they are available for
use. Tcl file input/output is also supported.

You should be aware of the following guidelines and behaviors when using Tcl in Tessent
Shell:

• You can use Tcl variables interchangeably with legacy Tessent tool variables and
environment variables.

• You should use Tcl syntax for setting and referencing variables, including using
$env(ENVARNAME) for accessing environment variables.

For example, if the value of environment variable “foo” equals “mode1” ($foo =
mode1), you can compare this value to a Tcl variable value using the following syntax:

set bar mode2
if {$env(foo) == $bar} {puts Match} else {puts "No match"}

Note
Use Tcl namespaces to avoid creating procedures that conflict with existing tool or
Tcl commands.

• When processing comments within a dofile, the tool does not write comments preceded
with “//” characters to the transcript. However, the tool does write comments that are
preceded with a pound sign (#) (the Tcl comment delimiter) to the transcript.

• If a variable can contain a command string or be empty, attempting to execute by
referencing $variable results in an error if the variable is empty.
Tessent™ Shell User’s Manual, v2021.3 771

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
General Tcl Guidelines in Tessent Shell
• When a tool command error occurs, the command interpreter prints the error message
and does not return anything.

• You can use the catch_output command to issue a specified tool command line and
prevent command errors from aborting an enclosing dofile or Tcl proc. The
catch_output command can optionally capture the output of a command or the returned
result.

• When a command error occurs nested inside a Tcl construct or Tcl proc, you can obtain
additional information about the error by issuing the following command:

> set errorInfo

This command prints the value of the $errorInfo Tcl variable, which may contain a
traceback of the nested Tcl calls so that you can determine the root cause of the error.

Difference Between the Dofile Command and the Tcl Source Command

You normally use the tool's dofile command to execute a file of tool commands. The Tcl
“source” command also executes a file of commands, but you should only use it to load Tcl
procs, set Tcl variables, or do other strictly Tcl commands.

You should use the dofile command to execute a command file containing tool commands for
the following reasons:

• The dofile command is affected by the set_dofile_abort command which provides you
with the ability to specify whether the tool aborts when an error condition is detected.
The Tcl “source” command is not affected by the set_dofile_abort command.

• The dofile command transcripts the commands to the shell and logfile. The Tcl “source”
command always stops execution if any command in the file encounters an error.

Example 1

In this example, the add_scan_chains command defines every scan chain in the design. This
command is sometimes used hundreds of times and makes the dofile very long. Using Tcl, you
can shorten the dofile substantially by using a loop construct as shown here:

for {set xx 1} {$xx < 257} {incr xx} {
 add_scan_chains int chain$xx group1 /top/edt_si$xx /top/edt_so$xx
}

For the values of xx from 1 up to 256, the tool executes a separate add_scan_chains command
for each value. The transcript and logfile contains all 256 add_scan_chains commands
(preceded with “// subcommand: ”).
Tessent™ Shell User’s Manual, v2021.3772

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Guidelines for Modifying Existing Dofiles for Use with Tcl
Example 2

The following example controls the flow of creating test patterns and uses a variable to execute
different commands based on the variable’s value:

if {$mode == stuck} {
 set_fault_type stuck
 . . .
} elseif {$mode == transition} {
 set_fault_type transition
 set_pattern_type -sequential 2
 . . .
}

Example 3

Module hierarchies may become ungrouped through either synthesis or layout and ATPG may
operate on a flattened view of the design. Automated DRCs find and trace the EDT IP and
subsequently find and trace the flattened scan chains automatically. In the following example,
we are capturing the output of the report_scan_chains command and placing it into the variable
“rsc” by using the catch_output command. The foreach loop iterates on the report_scan_chains
output, capturing the chain name, group name and input and output connections in the variables
“chain”, “group”, “input”, and “output,” respectively. This information is written into the file
add_chains.txt.

set out [open "add_chains.txt" w]
catch_output {report_scan_chains} -output rsc
set rsc1 [split $rsc "\n"]

foreach a $rsc1 {
 puts "NEWLINE =\t$a"
 regexp {.*chain = (.*)\s+group = (.*)\s+input = \'(.*)\'\s+output = \
'(.*)\'\s+.*} $a match chain group input output
 puts $out "add_scan_chains -internal $chain $group \{$input\} \{$output\
}"
}

close $out

Guidelines for Modifying Existing Dofiles for
Use with Tcl

When using an existing dofile with the Tcl interface, you should evaluate the dofile for issues
that could cause incorrect evaluation by the Tessent Tcl interpreter.

Table A-1 provides guidance for correcting common dofile issues.

The most common issues you can run across with an existing dofile is accounting for Tcl special
characters. For more information, refer to Table A-2 on page 775, which provides a list of
typically-used Tcl special characters.
Tessent™ Shell User’s Manual, v2021.3 773

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Guidelines for Modifying Existing Dofiles for Use with Tcl
Table A-1. Common Dofile Issues and Solutions

Dofile Issue Solution

Stopping dofile execution at a
specific point

Use the native Tcl “error” command to stop execution of a
dofile at any point. The “error” command requires a
message string which the tool outputs. But to avoid any
message you can use an empty string:

error ""

Escaping Tcl special characters Use the following techniques to escape Tcl special
characters:

• Double quotes (" ") group tokens but enable $variable
and [command] evaluations.

• Braces ({}) also group tokens and disable $variable and
[command] evaluations.

• Brackets ([]) implement command substitution and are
used to nest or embed commands.

• A backslash (\) escapes the next character. Use this to
tame a Tcl special character such as $, [, {, or ".

Using dollar signs in pathnames A dollar sign ($) specifies variable substitution. In some
netlists, pathnames (for example, foo/pin$p7) can contain
the dollar sign. When using pathnames with dollar signs,
enclose the pathname with braces ({ }) to prevent the tool
from substituting the value as shown in the following
example:

report_gates {foo/pin$p7}

Escaping quotation marks In Tcl, quotation marks (" ") instruct the Tcl interpreter to
treat the enclosed words as a single argument. For example:

puts " Hello World "

If embedded quotes are required, you must use backslashes (
\) to escape the embedded double quotes. For example:

puts " Hello \"World\" "

Otherwise, the tool issues an error message.

Using brackets Brackets ([]) implement command substitution and are used
to nest or embed commands. A command and its arguments
enclosed in square brackets is evaluated and its result
inserted in place in the enclosing command.
Tessent™ Shell User’s Manual, v2021.3774

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Special Tcl Characters
Special Tcl Characters
In Tcl scripts, you often see characters used for special purposes. For a complete list of special
characters, you should consult a Tcl resource.

Table A-2 lists and describes the more common special characters you can encounter when
reading the examples in this manual. See the additional resources described in “Tcl Resources”
on page 778.

Optional single quotes Optional single quotes (' ') are no longer valid for Tessent
commands. For example, the following produces an error:

set_design_sources '-v MODB.v -v MODC.v'

Correct this by using no quotes, double quotes, or braces:

set_design_sources -v MODB.v -v MODC.v

set_design_sources "-v MODB.v -v MODC.v"

set_design_sources {-v MODB.v -v MODC.v}

Environment variables You should use Tcl syntax for setting and referencing
variables, including using $env(ENVARNAME) for
accessing environment variables. For example, if the value
of environment variable “foo” equals “mode1” ($foo =
mode1), you can compare this value to a Tcl variable value
using the following syntax:

set bar mode2
if {$env(foo) == $bar}

{puts "Match"}
else

{puts "No match"}

Table A-2. Common Tcl Characters

Character Description

; The semicolon terminates the previous command, enabling you to place more than
one command on the same line.

\ Used at the end of a line, the backslash continues a command on the following
line.

\$ The backslash with other special characters, like a dollar sign, instructs the Tcl
interpreter to treat the character literally.

\n The backslash with the letter “n” instructs the Tcl interpreter to create a new line.

$ The dollar sign in front of a variable name instructs the Tcl interpreter to access
the value stored in the variable.

Table A-1. Common Dofile Issues and Solutions (cont.)

Dofile Issue Solution
Tessent™ Shell User’s Manual, v2021.3 775

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Special Tcl Characters
[] Square brackets group a command and its arguments, instructing the Tcl
interpreter to treat everything within the brackets as a single syntactical object.
You use square brackets to write nested commands. For example:

set chain_report [report_scan_chains -subchains -verbose]

{ } Curly braces instruct the Tcl interpreter to treat the enclosed words as a single
string. The Tcl interpreter accepts the string as is, without performing any variable
substitution or evaluation. For example, to create a string that contains special
characters such as $ or \:

set my_string {This book costs $25.98.}

" " Quotes instruct the Tcl interpreter to treat the enclosed words as a single string.
However, when the Tcl interpreter encounters variables or commands within
string in quotes, it evaluates the variables and commands to generate a string. For
example, to create a string that displays a final cost calculated by adding two
numbers:

set my_string “This book costs \$[expr $price + $tax]”

Table A-2. Common Tcl Characters (cont.)

Character Description
Tessent™ Shell User’s Manual, v2021.3776

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Custom Tcl Packages in Tessent Shell
Custom Tcl Packages in Tessent Shell
Tessent Shell supports several standard techniques for adding your own Tcl packages with the
Tcl “package require” command, which you can issue from Tessent Shell.

You can use any of the following ways to specify directory locations of Tcl packages. Any
directory that contains a Tcl package must also contain a pkgIndex.tcl file within its hierarchy.

The pound sign (#) indicates a comment and directs the Tcl compiler to not
evaluate the rest of the line. When using the pound sign, you must use it where a
command starts, and at the beginning of a command, not within a command. Be
aware of the following:

• Evaluate does not equal parse. Despite the pound sign, the following comment
gives an error because Tcl detects an open lexical clause.

if (some condition) {
if { new text condition } {
...
}

• The apparent beginning of a line is not always the beginning of a command:
This is a comment

In the following code snippet, the line beginning with “# -type” is not a comment,
because the line immediately above it has a line continuation character (\). In fact,
the “#” confuses the Tcl interpreter, resulting in an error when it attempts to create
the tk_messageBox.

tk_messageBox -message "The diagnosis report was successfully
written."\
-type ok

and this is also a comment. This one spans \
multiple lines, even without the # at the beginning \
of the second and third lines.

In general, it is good practice to begin all comment lines with a #. Be aware that
the beginning of a command is not always at the beginning of a line. Usually, you
begin new commands at the beginning of a line. That is, the first non-space
character is the first character of the command name. However, you can combine
multiple commands into one line using the semicolon “;” to designate the end of
the previous command:

set myname “John Doe” ; set this_string “next command”
set yourname “Ted Smith” ; # this is a comment

Table A-2. Common Tcl Characters (cont.)

Character Description
Tessent™ Shell User’s Manual, v2021.3 777

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Tcl Interface
Tcl Resources
The following methods are listed in order of the precedence in effect if there is more than one
package with the same name:

• Default location for Tessent Shell Tcl packages. You can place your package underneath
a directory named tessent_plugin/packages that is located at the top of your Tessent
install tree. When Tessent Shell finds a package in this directory upon invocation, it
appends the directory path to tessent_plugin/packages to the auto_path Tcl global
variable, if it exists.

• TESSENT_PLUGIN_PATH environment variable. You can set this variable to a colon-
separated list of directory paths that contain Tcl packages in a packages subdirectory.
When Tessent Shell finds a package, it appends the directory path to packages to the
auto_path Tcl global variable, if it exists.

• auto_path Tcl global variable. You can issue the following command in Tessent Shell to
specify a package location:

> lappend auto_path pathToTclPackageDir

• TCLLIBPATH environment variable. You can set this variable to a space-separated list
of directory paths that contain Tcl packages. A packages subdirectory is not required
under any of the paths.

Note
Tessent Shell ignores the TCL_LIBRARY environment variable.

Tcl Resources
The following website is a place to start in your search for the reference material that works best
for you. It is not an endorsement of any book or website.

http://www.tcl.tk/
Tessent™ Shell User’s Manual, v2021.3778

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

http://www.tcl.tk/

Appendix B
Synthesis Guidelines for RTL Designs with

Tessent Inserted DFT

This appendix provides guidelines for you to use when synthesizing your design with Tessent
created IP RTL with a third-party synthesis tool, specifically Synopsys DC Ultra™.

You may experience problems with synthesis optimization using DC Ultra caused by
propagating constants even if the boundary optimization is false. This synthesis optimization
results in some of the DFT logic that is not connected until scan insertion being optimized away,
and the ports being kept. This creates a situation where some of the necessary Tessent logic is
eliminated during optimization, which breaks the design.

Figure B-1. Problem Occurrence Creating the Gate Level Netlist

This problem does not appear to be present with the basic DC compile command; it seems to
only be an issue when using the compile_ultra command in certain tool versions.

DFT Insertion With Tessent . 780

Synthesis Guidelines . 781

SystemVerilog and Port Name Matching . 783
Tessent™ Shell User’s Manual, v2021.3 779

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
DFT Insertion With Tessent
DFT Insertion With Tessent
When the Tessent tools create the IP logic to add to the design, the logic includes some
persistent instances that are used as anchor points for items such as clocks, control signals,
constraints, and so on. For automation, the tool uses modules and port matching, and,
consequently, requires that some specific modules be preserved after synthesis and place and
route.

There are two types of persistent instances for synthesis:

• Cells

o Requires the use of a set_size_only command

• Design Modules

o Requires ungroup to be set to off

o Requires boundary optimization to be set to off

Boundaries of all instances of modules with Tessent Core Descriptions (TCDs) need to be
preserved, which means the following:

• No boundary optimization.

• No ungrouping.

• No new ports.

• No logic optimization.

The logic test module types that require this include EDT, LBIST, OCC, STI SIB, Bscan
interface, and any module with tcd_scan (pre-existing scan chain). ICL extraction uses modules
and ports of ICL modules so they also need to be preserved. You can avoid preserving the
IJTAG instance boundaries, which enables the synthesis tool to obtain a better optimization
result. You can use the ICL file from RTL in post synthesis and place and route.

The boundary optimization option during synthesis is global in the sense that it applies to every
design hierarchy on and below the specified module or instance. Hence, if you want to globally
optimize your design, you specify it on the root (top) module and then boundary optimization
runs through the entire design doing its work (assuming that there are no “don’t touch” cores,
which were already synthesized earlier). The problem is that valid constrained or not (yet)
connected ports or nets get optimized away. To prevent this, tell the DC tool not to apply this
boundary optimization to selected modules or instances.

DC has two compilation modes:

• Basic compile (using the compile command):

o Problems are avoided because the tool does not ungroup and optimize boundaries.
Tessent™ Shell User’s Manual, v2021.3780

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
Synthesis Guidelines
o Constants are not optimized away.

• Optimization On (using compile_ultra command):

o The synthesis tool does its best to remove any dead logic (either because of
constraints propagation or missing loads or unused).

o DC propagates constraints even if boundary optimization is set false for design
instances.

As this issue is becoming more prevalent, there is an informational message from DC Ultra
when using the compile_ultra command that reports the following:

Information: Starting from 2013.12 release, constant propagation is
enabled even when boundary optimization is disabled. (OPT-1318)

If you receive this message, you may not fully understand the ramifications or how to correctly
synthesize the Tessent IP in this environment. If not properly handled, you may see additional
information messages from the tool similar to the following:

Information: Removing unused design ‘corea_rtl_tessent_occ_shift_reg_1’.
(OPT-1055)
Information: The register
‘corea_rtl_tessent_occ_clka_inst/occ_control/scan_out_reg’ is a constant
and will be removed. (OPT-1206)
Information: Ungrouping hierarchy tessent_persistent_cell_edt_clock
before Pass 1 (OPT-776)

Synthesis Guidelines
When synthesizing a design for Tessent DFT, certain considerations must be taken into account
to avoid issues later in the flow.

When using Cadence Genus, set the attribute hdl_flatten_complex_port to “true” for any
designs that include complex ports declared using unions to facilitate post-synthesis port name
matching.

When using any of the Synopsys Design Compiler family of synthesis tools, declare the ranges
of any ports declared as SystemVerilog interface arrays be declared as follows to facilitate post-
synthesis port-name matching:

<interface_type> <port_name> [0:<positive right index>]

When using DC Ultra, there are two key commands to be aware of to synthesize correctly with
the Tessent IP.

• Turn off constant propagation with no boundary optimization by setting an application
variable. This variable works globally and is used with the following syntax:

set_app_var compile_enable_constant_propagation_with_no_boundary_opt false
Tessent™ Shell User’s Manual, v2021.3 781

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
Synthesis Guidelines
• For instance level control, use the following compile directive before using the
compile_ultra command to turn off the constant propagation for cells:

set_compile_directives -constant_propagation false [get_cells <hier-cell-
name>]

Or for pin-level granularity, use the following command:

set_compile_directives -constant_propagation false [get_pins <hier-pin-
name>]

Other means of restricting the synthesis tool from changing and optimizing instances and levels
of hierarchy include the set_size_only command and ungrouping. When set_size_only is used
for a specified list of leaf cells, the tool can only change their drive strength, or sizing. The
ungroup, group, set_ungroup, and uniquify commands can be used to control how the tool
removes (or not) levels of hierarchy and how reused blocks are uniqified during synthesis. The
dont_touch attribute is also effective for adding to designs, sub designs, and cells to prevent
them from being ungrouped during optimization.

Note
During the synthesis of MemoryBIST logic, there are two types of warnings that may be
issued by synthesis tools that are related to the optimization of registers. These warnings

may be ignored as synthesis tools are very reliable. Additionally, formal verification can be
used to confirm the functionality is not affected. The warning types are:

• Registers with no fanout are removed, along with the combinatorial logic driving the
inputs.

• Registers with inputs and outputs that are always identical are merged.

Different guidelines apply to the type of flow you are using, whether a bottom-up synthesis
flow, or a top-down approach.

Bottom-Up Flow Using DC Ultra

1. Read full design in synthesis tool.

2. Set current design to each DFT IP and compile.

3. Set don’t touch or set size only to all the DFT IP.

4. Set current design TOP.

5. Read functional SDC.

6. Read DFT SDC.

7. Set ungroup false to all DFT IP and persistent modules.

8. Set boundary optimization false to all DFT IP and persistent modules.
Tessent™ Shell User’s Manual, v2021.3782

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
SystemVerilog and Port Name Matching
9. Set size only to all persistent cells.

10. Disable constant propagation during boundary optimization.

11. Compile ultra.

Top-Down Flow Using DC Ultra

1. Read full design in synthesis tool.

2. Read functional SDC.

3. Read DFT SDC.

4. Set ungroup false to all DFT IP and persistent modules.

5. Set boundary optimization false to all DFT IP and persistent modules.

6. Set size only to all persistent cells.

7. Disable constant propagation during boundary optimization.

8. Compile ultra.

SystemVerilog and Port Name Matching
Any ports declared as interface arrays in a SystemVerilog RTL design should be declared as
follows:

<interface_type><port_name>[0:N]

“N” is a positive integer that represents the size of the array minus 1. You can use this method to
properly map the port names in a netlist generated by any of the Design Compiler family of
tools.
Tessent™ Shell User’s Manual, v2021.3 783

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
SystemVerilog and Port Name Matching
Tessent™ Shell User’s Manual, v2021.3784

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix C
Clocking Architecture Examples

The clocking architecture in designs may vary, and they play a role during test planning,
especially for hierarchical test.

This appendix provides examples of common clocking architectures and how to insert the on-
chip clock controllers (OCCs) given those architectures. The examples assume that you are
performing hierarchical test as described in “DFT Architecture Guidelines for Hierarchical
Designs” on page 95”.

For information about the OCCs supported by Tessent, refer to “Tessent On-Chip Clock
Controller” in the Tessent Scan and ATPG User’s Manual.

Clocks Driven by Primary Inputs . 785

Clock Generators Outside the Cores . 786

Clock Generators Inside the Cores . 786

Clock Sourced From A Core With Embedded PLL. 787

Clock Mesh Synthesis . 788

Clocks Driven by Primary Inputs
In the following figure, coreA and coreB are wrapped cores, and the clk_r and clk_g clocks are
asynchronous to each other. Insert standard OCCs inside coreA and coreB for both clk_r and
clk_g. At the chip-level, insert standard OCCs on the clk_r and clk_g ports.

Figure C-1. OCCs for Clocks Driven by Primary Inputs
Tessent™ Shell User’s Manual, v2021.3 785

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture Examples
Clock Generators Outside the Cores
During intest mode for the wrapped cores, the OCCs inside the cores are active and the OCCs
outside the cores are inactive. During extest, the OCCs outside the cores are active and the
OCCs inside the cores are inactive.

Clock Generators Outside the Cores
In the following figure, coreA and coreB are wrapped cores, and a clock generator at the chip
level divides the clock frequency by half to generate the green clock. The red and green clocks
are asynchronous to each other. Insert standard OCCs inside coreA and coreB for both the red
and green clocks. At the chip-level, insert standard OCCs on both the red and green clocks
generated at the output of the clock generator.

Figure C-2. OCCs With Clock Generators at Chip Level, Asynchronous Clocks

Clock Generators Inside the Cores
In the following example, coreA and coreB are wrapped cores and a clock generator is located
inside coreA. The red and green clocks are asynchronous to each other inside coreA, so you
would insert standard OCCs inside coreA. In addition, the red and purple clocks are
asynchronous to each other, so you insert standard OCCs for these clocks inside coreB as well
as at the chip-level.
Tessent™ Shell User’s Manual, v2021.3786

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture Examples
Clock Sourced From A Core With Embedded PLL
Figure C-3. OCCs With Clock Generators Inside the Cores, Asynchronous
Clocks

During intest mode for the wrapped cores, the OCCs inside the cores are active, and the OCCs
outside the cores are inactive. During extest, the OCCs outside the cores are active, and the
OCCs inside the cores are inactive.

Clock Sourced From A Core With Embedded
PLL

In the following figure, coreA and coreB are wrapped cores, and coreB contains an embedded
PLL module. coreB sources the clock that feeds both coreA and the chip. In this case, you
would retarget coreA and coreB at the same time.

Figure C-4. Clock Sourced From A Core With Embedded PLL, With MUX
Tessent™ Shell User’s Manual, v2021.3 787

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture Examples
Clock Mesh Synthesis
When you are retargeting coreA and coreB at the same time, you must add a mux. Use a clock
net before reaching the OCC inside coreB as a clock to feed the OCC inside coreA to avoid
having back-to-back OCCs. To retarget both coreA and coreB at the same time, the OCCs
inside coreA and coreB must be active at the same time.

Insert standard OCCs inside the cores. The standard OCC inside the core with the embedded
PLL (coreB) gets promoted so that it is also included in the external chains. When in external
mode, the OCC inside coreB can be reused. For details, refer to “How to Handle Clocks
Sourced by Embedded PLLs During Logic Test” on page 494.

During intest, the standard OCCs inside coreA and coreB are active. The mux is set to 1 to avoid
cascading OCCs. During extest, only the promoted standard OCC within coreB is active, and
the mux is held at 0.

In the following example, you are retargeting coreA and coreB in separate runs, so there is no
need to insert a mux. During intest of coreA, only coreA’s OCC is active, and then during intest
of coreB, only coreB’s OCC is active. During extest of the cores, only the promoted standard
OCC within coreB is active.

Figure C-5. Clock Sourced From A Core With Embedded PLL, Without MUX

Clock Mesh Synthesis
The most common method for clock balancing is clock tree synthesis. However, you can also
use clock mesh synthesis to balance the clocks. For clock mesh, rather than standard OCCs, use
parent OCCs at the chip level and child OCCs inside the wrapped cores. In the following figure,
coreA and coreB are wrapped cores, and the clk_r and clk_g clocks are asynchronous to each
other.
Tessent™ Shell User’s Manual, v2021.3788

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture Examples
Clock Mesh Synthesis
Figure C-6. Clock Mesh Synthesis

Core-level child OCCs have additional timing requirements because a single clock on the
boundary of the wrapped core is used for shift as well as for slow and fast capture. For details,
refer to “Core OCC Recommendation” in the Tessent Scan and ATPG User’s Manual. Using
SDC for timing closure is described in “Timing Constraints (SDC)” on page 715.

During intest of coreA and coreB, the child OCCs are active, and the parent OCCs are in parent
mode. During extest of coreA and coreB, the parent OCCs are in standard mode and the child
OCCs are inactive.
Tessent™ Shell User’s Manual, v2021.3 789

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking Architecture Examples
Clock Mesh Synthesis
Tessent™ Shell User’s Manual, v2021.3790

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix D
Tessent Visualizer Keyboard Shortcuts

A number of keyboard shortcuts are available for Tessent Visualizer.

Table D-1. Global Shortcuts

Shortcut Action

Ctrl+Shift+H Open Hierarchical Schematic

Ctrl+Shift+F Open Flat Schematic

Ctrl+Shift+B Open Instance Browser

Ctrl+Shift+W Open Waveform Generator

Ctrl+Shift+L Open Cell Library Browser

Ctrl+Shift+D Open DRC Browser

Ctrl+Shift+P Open Pin Data

Ctrl+Shift+V Open Text/HDL Viewer

Ctrl+Shift+R Open Diagnosis Report Viewer

Ctrl+Shift+T Open Transcript

Ctrl+Shift+Q Quit Tessent Visualizer

Ctrl+Shift+W Close Current Tab

Ctrl+Shift+Tab
or Ctrl+PgUp

Go To Previous Tab

Ctrl+Tab or
Ctrl+PgDown

Go To Next Tab

Table D-2. Schematic Shortcuts

Shortcut Action

Ctrl+0 Zoom all

Ctrl++ Zoom in

Ctrl+- Zoom out

Ctrl+Z Undo

Ctrl+Shift+Z Redo

Ctrl+A Select all
Tessent™ Shell User’s Manual, v2021.3 791

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Visualizer Keyboard Shortcuts
Note
The Ctrl+G and Ctrl+Shift+G keyboard shortcuts are not supported in all desktop
environments.

Del Delete selected

Ctrl+M Mark with chosen color

Ctrl+S Export schematic (also: export table)

Arrow Keys Move schematic

Esc Clear selection

Ctrl+R Report gates

Table D-3. Instance Browser Shortcuts

Shortcut Action

Enter Go down in hierarchy

Backspace Go up in hierarchy

Arrow Keys Move to the chosen cell

Table D-4. Filter Editing Shortcuts

Shortcut Action

Tab Next filter

Shift+Tab Previous filter

Enter Accept filters

Esc Discard changes to the current filter

Table D-5. Text Search Shortcuts

Shortcut Action

Ctrl+F Open text find function

Esc Close text find function

Ctrl+G Find next

Ctrl+Shift+G Find previous

Table D-2. Schematic Shortcuts (cont.)

Shortcut Action
Tessent™ Shell User’s Manual, v2021.3792

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix E
Formal Verification

Tessent™ Shell-based products currently do not generate scripts for use with Synopsys®
Formality® or Cadence® Conformal®. You can, however, set constraints in your design that are
used with these tools.

Constraints for Formality Scripts . 793

Constraints for Conformal Scripts. 794

Constraints for Formality Scripts
Use the following guidance to create a script for use with Formality.

Golden RTL Versus DFT-Inserted RTL

Set the following:

• Set the circuit to functional mode in order to hold the IJTAG network or TAP in reset.

• If you are at the chip level, set a constant 0 on TRST. If you are at the sub_block or
physical_block level, set a constant on the ijtag_reset ports to their active value. This is
typically 0.

• If your design has DftSignals coming from ports in both the chip and design levels, these
ports must be held at their reset values. The reset automatically handles DftSignals from
the TDR.

• If you are at the sub_block or physical_block level, suppress the verification of ports
created by Tessent Shell to prevent reporting violations.

• Assert the ijtag_reset pins to their active values on all instruments and SIBs inserted by
Tessent tools.

• Because the ICL network may already be present, the SIBs could result in mismatches
on the ICL network scan path. Set the SIB scan in/outs as “don’t verify” point.

• Use the “Consistency” mode for the verification passing mode rather than the “Equality”
mode by setting the following:

set verification_passing_mode Consistency

The default verification passing mode of Formality is the “Consistency” mode.
Tessent™ Shell User’s Manual, v2021.3 793

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Formal Verification
Constraints for Conformal Scripts
• If you want to use the “Equality” mode for verification, add the following setting to deal
with clock gating logic inserted by Tessent:

set_app_var verification_clock_gate_hold_mode any

Pre-Layout Versus Post-Layout

Ensure that the layout step did not affect DFT functionality. You should ignore violations
caused by scan chain reordering. Also set the scan_en signal to a constant low, but do not
constrain anything else on the inserted DFT.

After scan chain reordering, during layout, you may see mismatches on the lockup latches that
Tessent Shell adds that become stop/anchor points in the scan DEF file. That is, during Tessent
Shell scan insertion, lockup elements are inserted at the end of the scan chains and marked as
stop points in the scan DEF file, which means that they are not reordered.

GPIO_2/\p2out_reg[1] (IN SI) (OUT Q)
+ STOP GPIO_2/ts_1_lockup_latchn_clkc6_intno266_i D\

When this occurs and you perform formal verification on the pre- versus post-layout, the tool
issues warnings that these lockups are no longer connected to the same functional flop as
previously. This is not an issue with the other scan flops because you can disable the scan path
by setting the scan enable to 0. However, the lockup is a flop/latch without scan-in.

If you encounter this situation, use the following workaround: Specify set_dont_verify_point
for the retiming flops in both the reference and implemented designs to see if Formality passes.
To find the retiming flops, introspect the design in Tessent Shell. For example:

get_instances ts_1_lockup*

EDT

Constraining scan_en to 0 is sufficient to proceed with equivalence checking. The formal
verification tool reports some unmatched nodes like the newly added EDT pins (clock/update/
bypass/low_power/channel) and registers inside the EDT logic.

OCC

If the OCC has an IjtagInterface, or if the test_mode pin of the OCC is connected to an
IjtagNetwork, then keeping the ijtag network in reset state is sufficient for OCC. If the
test_mode port is connected to a top-level port, this port needs to be constrained to 0.

Constraints for Conformal Scripts
Use the following guidance to create a script for use with Conformal.
Tessent™ Shell User’s Manual, v2021.3794

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Formal Verification
Constraints for Conformal Scripts
Embedded Boundary Scan at the Physical Block Level

Most signals are blocked by bscan_select, but you should also set the following explicitly:

• add_pin_constraints 0 bscan_select -golden

• add_pin_constraints 0 bscan_select -revised

• add_ignored_outputs bscan_scan_out -golden

• add_ignored_outputs bscan_scan_out -revised

• add_pin_constraints 0 bscan_force_disable -both

• add_pin_constraints 0 bscan_select_jtag_output -both

• add_pin_constraints 0 bscan_clock -both

• add_pin_constraints 0 bscan_select_jtag_input -both
Tessent™ Shell User’s Manual, v2021.3 795

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Formal Verification
Constraints for Conformal Scripts
Tessent™ Shell User’s Manual, v2021.3796

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix F
Transitioning from the Classic Point Tools

This appendix provides information to help you make the optional transition from the classic
Tessent point tools to Tessent Shell. The point tool application commands are forward-
compatible, so your dofiles work properly in Tessent Shell with only minor modifications. The
main differences involved in using Tessent Shell is that you have to set the context before doing
anything else, and then you must load the netlist and library.

The classic Tessent point tools are available in the current release, so all of your existing dofiles
and startup scripts continue to work as before. However, Siemens Digital Industries Software
recommends that you start planning your transition now because each release of Tessent Shell
contains additional features not available in the classic point tools, and future releases of
Tessent Shell continues to add new features that are not available in the classic point tools.

For information about specific point tools refer to the following sections:

Transitioning from the Classic FastScan Point Tool . 797

Transitioning from the Classic TestKompress Point Tool. 798

Transitioning from the Classic DFTAdvisor Tool . 799

Transitioning from the Classic Diagnosis Tool . 800

Transitioning from the Classic FastScan Point
Tool

Beginning with the v2012.3 release, you can optionally transition from the classic FastScan
point tool to Tessent Shell. Tessent Shell provides all of the commands available in the classic
FastScan point tools (invoked with the “fastscan” shell command) plus additional features.

The classic Tessent point tools are available in the current release, so all of your existing dofiles
and startup scripts continue to work as before. However, Siemens Digital Industries Software
recommends that you start planning your transition now because each release of Tessent Shell
contains additional features not available in the classic point tools, and future releases of
Tessent Shell continues to add new features that are not available in the classic point tools.
Tessent™ Shell User’s Manual, v2021.3 797

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transitioning from the Classic Point Tools
Transitioning from the Classic TestKompress Point Tool
If you are already familiar with classic FastScan, the main differences involved in using Tessent
Shell is that you have to set the context before doing anything else, and then you must load the
Verilog netlist and library:

set_context patterns -scan
read_verilog netlist_name
read_cell_library library_name
set_current_design

Another difference with using Tessent Shell is that several system modes used with classic
FastScan (atpg, good, fault) have been replaced with a single system mode (called analysis).
This means that “set_system_mode atpg” invocations (as well as transitions to good or fault
modes) are replaced by “set_system_mode analysis.” To facilitate your transition to Tessent
Shell, the set_system_mode command continues to accept the atpg/good/fault arguments, but
the tool actually switches to analysis mode.

Also, it is highly recommended for any simulation to replace the old “set_pattern_source
external” and “run” commands with the new read_patterns and simulate_patterns commands.
Unlike the “run” command, which has slightly different behavior in the good/fault/atpg system
modes, the simulate_patterns command enables you to explicitly control which pattern set to
simulate and which patterns (if any) to store in the internal pattern set.

Transitioning from the Classic TestKompress
Point Tool

Beginning with the v2012.3 release, you can optionally transition from the classic
TestKompress point tool to Tessent Shell. Tessent Shell provides all of the commands available
in the classic point tool (invoked with the “testkompress” shell command) for EDT IP creation
and test pattern generation plus additional features.

The classic Tessent point tools are available in the current release, so all of your existing dofiles
and startup scripts continue to work as before. However, Siemens Digital Industries Software
recommends that you start planning your transition now because each release of Tessent Shell
contains additional features not available in the classic point tools, and future releases of
Tessent Shell continues to add new features that are not available in the classic point tools.

The following list describes how Tessent Shell is different from the classic TestKompress tool
for creating EDT IP:

• Before issuing any commands, set the context to “dft -edt”:

set_context dft -edt

Once you have set the context, all commands in setup mode of classic TestKompress are
available in the setup mode of Tessent Shell. All commands available in atpg mode of
classic TestKompress (IP creation phase) are available in analysis mode of Tessent
Shell.
Tessent™ Shell User’s Manual, v2021.3798

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transitioning from the Classic Point Tools
Transitioning from the Classic DFTAdvisor Tool
• Use the existing write_edt_files command to generate all EDT files, including RTL,
dofiles, the test procedure file, and synthesis and timing verification scripts. You can
issue this command only when in analysis mode. The write_edt_files command does not
write out the EDT IP netlist, so you must do this with the write_design command.

• For internal IP location flow-based EDT insertion with classic TestKompress, the tool
writes out all EDT files, inserts EDT IP into the design, and automatically changes to
insertion mode. You then have the ability to further edit the netlist, but you must
explicitly save changes with the write_design command.

Unlike classic TestKompress, Tessent Shell does not automatically exit after executing a
write_edt_files command, so you must explicitly exit when ready. This is so that after IP
insertion into the design, you can perform further design editing before writing out the
design, or configure how to write out the design using the write_design command. Also,
Tessent Shell does not write out the netlist as part of the write_edt_files command, so
you must write out the netlist using the write_design command.

• The classic TestKompress command write_edt_files has a switch named “-insertion tk.”
In Tessent Shell, this switch is renamed “-insertion ts.”

The following list describes how Tessent Shell is different from the classic TestKompress tool
for generating patterns:

• Before generating compressed patterns, set the context to “patterns -scan”:

set_context patterns -scan

Once you’ve set the context, all commands in the setup mode of classic TestKompress
are available in setup mode of Tessent Shell. And all commands available in the atpg
mode of classic TestKompress (Test Pattern Generation phase) are available in the
analysis mode of Tessent Shell.

Transitioning from the Classic DFTAdvisor
Tool

Beginning with the v2012.3 release, you can optionally transition from the classic DFTAdvisor
point tool to Tessent Shell. Tessent Shell and Tessent Scan provide all of the commands
available in the classic DFTAdvisor tool (invoked with the “dftadvisor” shell command), plus
additional features.

The classic Tessent point tools are available in the current release, so all of your existing dofiles
and startup scripts continue to work as before. However, Siemens Digital Industries Software
recommends that you start planning your transition now because each release of Tessent Shell
contains additional features not available in the classic point tools, and future releases of
Tessent Shell continues to add new features that are not available in the classic point tools.
Tessent™ Shell User’s Manual, v2021.3 799

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Transitioning from the Classic Point Tools
Transitioning from the Classic Diagnosis Tool
The following lists the differences between the classic DFTAdvisor tool and Tessent Scan:

• You no longer need to use the “run” command. Analysis that was previously done using
the “run” command is now done automatically after DRC or as part of the
analyze_wrapper_cells and insert_test_logic commands.

• After issuing insert_test_logic in analysis mode, the tool updates the design and then
changes to insertion mode. This enables you to optionally perform further design editing
before writing out the netlist with the write_design command.

• There is no longer a system mode called Dft. Use analysis mode instead.

• Before you issue any of the classic DFTAdvisor commands, you must first set the
context:

set_context dft -scan

Transitioning from the Classic Diagnosis Tool
Beginning with the v2012.3 release, you can optionally transition from the classic Diagnosis
point tool to Tessent Shell. Tessent Shell provides all of the commands available in the classic
Diagnosis tool (invoked with the “tessent -diagnosis” shell command), plus additional features.

The classic Tessent point tools is available in the current release, so all of your existing dofiles
and startup scripts continue to work as before. However, Siemens Digital Industries Software
recommends that you start planning your transition now because each release of Tessent Shell
contains additional features not available in the classic point tools, and future releases of
Tessent Shell continues to add new features that are not available in the classic point tools.

After invoking Tessent Shell with the “tessent -shell” command, at a minimum, you must
perform the following operations in sequence to enable scan diagnosis in Tessent Shell:

1. Set the context before doing anything else:

set_context patterns -scan_diagnosis

2. Read the flat model of your design:

read_flat_model flat_model_name

Previously, you specified the flattened design with the “tessent -diagnosis” command.
Now you must use the read_flat_model command.
Tessent™ Shell User’s Manual, v2021.3800

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix G
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending
on your need, help is available from documentation, online command help, and Siemens EDA
Support.

The Tessent Documentation System . 801

Global Customer Support and Success . 802

The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML
content. From the InfoHub, you can access all locally installed product documentation, system
administration documentation, videos, and tutorials. For users who want to use PDF, you have a
PDF bookcase file that provides access to all the installed PDF files.

For information on defining default HTML browsers, setting up browser options, and setting the
default PDF viewer, refer to the Siemens® Software and Mentor® Documentation System
manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a
Tessent tool with the -manual invocation switch.

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — You can get contextual online help within most Tessent
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command
description.
Tessent™ Shell User’s Manual, v2021.3 801

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Getting Help
Global Customer Support and Success
Global Customer Support and Success
A support contract with Siemens Digital Industries Software is a valuable investment in your
organization’s success. With a support contract, you have 24/7 access to the comprehensive and
personalized Support Center portal.

Support Center features an extensive knowledge base to quickly troubleshoot issues by product
and version. You can also download the latest releases, access the most up-to-date
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login,
register here:

https://support.sw.siemens.com/register
Tessent™ Shell User’s Manual, v2021.3802

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

https://support.sw.siemens.com
https://support.sw.siemens.com/register

Index
Index

— Symbols —
#include statement, 539

— A —
Alias statements, 543
Always block, 556
Always block example, 557
Always block statements

always_statement, 557
force, 557
pulse, 557

Always block syntax, 557

— C —
Clock_run procedure, 591
Cycle statements

bidi_force_off, 565
bidi_force_pi, 564
bidi_measure_po, 564
condition, 566
expect, 566
force, 566
force_pi, 564
force_sci, 564
force_sci_equiv, 564
initialize, 566
measure, 566
measure_po, 564
measure_sco, 564
observe_method, 566
pulse, 566
pulse_capture_clock, 565
pulse_read_clock, 565
pulse_write_clock, 565
restore_bidi, 565
restore_pi, 564

— E —
Environment Variables

TESSENT_LICENSE_ORDER, 32

Environment variables
application-specific, 32
MGCDFT_STARTUP, 32

external capture procedure, 593

— I —
Include statement, 539

— N —
Named capture procedure, 593

— P —
Procedure statements

apply, 562
cycle, 557
label, 562
scan_group, 560
timeplate, 560

— S —
Set statement, 540
Set statements

default_timeplate, 542
strobe_window time, 541
time scale, 540

Shift procedure, 580
alternate, 582

Sub_procedure, 602

— T —
Tessent Visualizer tutorials, 703
Test procedure file

defined, 534
DRC checking, 534
statements, 540
timing variables, 545

Test procedures
capture, 593
clock_po, 598
clock_sequential, 599
init_force, 599
803Tessent™ Shell User’s Manual, v2021.3

load_unload, 583
master_observe, 588
shadow_control, 586
shadow_observe, 589
shift, 580
skew_load, 589
sub_procedure, 602
test_end, 600
test_setup, 577

Test_end procedure, 600
Time scale

setting, 540
Timeplate statements

bidi_force_pi, 549
bidi_measure_po, 550
force, 550
force_pi, 549
measure, 550
measure_po, 550
offstate, 549
period, 552
pulse, 550
pulse_clock, 551

tscale, 540
Tutorials for Tessent Visualizer, 703
804 Tessent™ Shell User’s Manual, v2021.3

Third-Party Information

Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

	InfoHub
	Bookcase
	Revision History ISO-26262
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Tessent Shell Introduction
	What Is Tessent Shell?
	What Can You Do With Tessent Shell?
	Tessent Shell Tcl Interface
	Command Conventions
	Command Completion
	Dofile Transcription
	Tcl Command Registration

	Chapter 2 Tool Invocation, Contexts, Modes, and Data Models
	Tool Invocation
	Contexts and System Modes
	Contexts
	System Modes
	Context and System Mode Combinations
	Design Levels

	Design Data Models
	Flat Design Data Model
	Hierarchical Design Data Model
	ICL Data Model
	Object Attributes

	Chapter 3 Design Introspection and Editing
	Design Introspection
	Object Specification Format
	Collections
	Design Introspection Examples
	Design Introspection Command Summary
	Bundle Object Introspection
	Bundle Object
	Bundle Object Data Model
	Introspection
	Bundle Object Introspection Examples
	Fanin and Fanout Tracing of Complex Signals and Bundle Object Tracing
	Connectivity Through Complex Signals

	Design Editing
	Design Editing Examples
	Design Editing Command Summary

	Simulation Contexts
	Simulation Context Overview
	Introspection and Analysis Using Simulation Contexts

	Automatic Design Mapping
	ICL and TCD Post-Synthesis Update
	Updating ICL Attributes From the Design
	Matching Rules for Port Names in Post-Synthesis Update
	Controlling the Name Mapping

	ICL Objects vs. Design Objects Introspection

	Chapter 4 DFT Architecture Guidelines for Hierarchical Designs
	Hierarchical DFT Overview
	Physical Layout Regions in Hierarchical Test
	Pattern Retargeting
	Wrapped Cores and Wrapper Cells
	Internal Mode and External Mode
	On-Chip Clock Controller
	Graybox Model

	Top-Down Planning Before Bottom-Up Implementation
	Clocking Architecture
	Resource Availability
	Test Scheduling
	Specific Tasks That May Require Planning
	Sample DFT Planning Steps

	DFT Implementation Strategy

	Chapter 5 Tessent Shell Workflows
	Tessent Shell Flow for Flat Designs
	Overview of the RTL and Scan DFT Insertion Flow
	First DFT Insertion Pass: Performing MemoryBIST and Boundary Scan
	Second DFT Insertion Pass: EDT, Hybrid TK/LBIST, and OCC
	Loading the Design
	Specifying and Verifying the DFT Requirements
	Creating the DFT Specification
	Generating the EDT, Hybrid TK/LBIST, and OCC Hardware
	Extracting the ICL Module Description
	Generating ICL Patterns and Running Simulation

	Performing Synthesis
	Performing Scan Chain Insertion (Flat Design)
	Performing ATPG Pattern Generation
	Simulating LBIST Faults
	Considerations for Using Gate-Level Verilog Netlists

	Tessent Shell Flow for Hierarchical Designs
	Hierarchical DFT Terminology
	How the DFT Insertion Flow Applies to Hierarchical Designs
	RTL and Scan DFT Insertion Flow for Physical Blocks
	First DFT Insertion Pass: Performing Block-Level MemoryBIST
	Second DFT Insertion Pass: Inserting Block-Level EDT and OCC
	Specifying and Verifying the DFT Requirements: DFT Signals for Wrapped Cores
	Performing Scan Chain Insertion: Wrapped Core
	Verifying the ICL Model
	Performing ATPG Pattern Generation: Wrapped Core
	Running Recommended Validation Step for Pre-Layout Design Sign Off

	RTL and Scan DFT Insertion Flow for the Top Chip
	Top-Level DFT Insertion Example
	First DFT Insertion Pass: Performing Top-Level MemoryBIST and Boundary Scan
	Second DFT Insertion Pass: Inserting Top-Level EDT and OCC
	Top-Level Scan Chain Insertion Example
	Top-Level ATPG Pattern Generation Example
	Performing Top-Level ATPG Pattern Retargeting

	RTL and Scan DFT Insertion Flow for Sub-Blocks
	DFT Insertion Flow for the Sub-Block
	DFT Insertion Flow for the Next Parent Level

	RTL and Scan DFT Insertion Flow for Instrument Blocks
	DFT Insertion Flow for the Instrument Block
	Instrument Block DFT Insertion Flow for the Next Parent Level

	RTL and DFT Insertion Flow With Third-Party Scan
	DFT Insertion Flow With Third-Party Scan Insertion
	Wrapped Core DFT Insertion With Third-Party Scan
	Perform Two-Pass DFT Insertion and Synthesis for Wrapped Cores
	Third-Party Scan Insertion for Wrapped Cores
	Writing the Design Back to the TSDB
	Make Pre-ATPG Connections with Third-Party Scan for Wrapped Cores
	Performing Wrapped Core Graybox Generation and ATPG Pattern Generation

	Top Chip DFT Insertion with Third-Party Scan
	Perform Two-Pass Insertion and Synthesis for Top Chip
	Third-Party Scan Insertion for Top Chip
	Make Pre-ATPG Connections with Third-Party Scan for Top Chip
	Perform Top Chip Graybox Generation, ATPG Pattern Generation, and Wrapped Core Pattern Retargeting

	Tessent Shell Post-Layout Validation Flow
	Overview of the Post-Layout Validation Flow
	Soft Link TSDB and Post-Layout Netlist
	Verify MemoryBIST, Boundary Scan and IJTAG Patterns
	Verifying the Scan-Inserted ATPG Patterns
	Post-Layout Validation When You Have Ungrouped IJTAG/OCC/EDT Logic

	Test Bench Generation and Simulation in RTL Mode
	Simulation Wrapper Creation
	Test Bench Examples

	Hybrid TK/LBIST Flow for Flat Designs
	RTL and Scan DFT Insertion Flow With Hybrid TK/ LBIST
	Perform the First DFT Insertion Pass: Hybrid TK/ LBIST
	Perform the Second DFT Insertion Pass: Hybrid TK/ LBIST
	Perform Test Point Insertion
	Perform Scan Chain Insertion (Hybrid Flow)
	Performing ATPG Pattern Generation: Hybrid TK/ LBIST
	Performing LogicBIST Fault Simulation
	Perform LogicBIST Pattern Generation

	Running Multi-Load ATPG on Wrapped Core Memories with Built-In Self Repair
	Overview of Multi-Load ATPG on Memories for Wrapped Cores With Built-in Self Repair
	Performing Multi-Load ATPG Pattern Generation
	Performing Multi-Load Top-Level ATPG Pattern Retargeting

	Built-in Self Repair in Hierarchical Tessent MemoryBIST Flow
	Performing Block Level BISR Insertion
	Performing Chip Level BISR Insertion
	Functional Repair Clock
	Connection of the BISR Controller to Existing BISR Chains
	Connection of the BISR Controller to an External Fuse Box
	Connection of the BISR Controller to System Logic

	Verification of Block and Chip Level BISR

	Chapter 6 Tessent Shell Automotive Workflow
	Introduction to Tessent Automotive
	Test Case Overview and Objective
	Core-Level DFT Insertion for Automotive
	DFT Insertion Flow for the Processor Core Physical Block
	First DFT Insertion Pass: processor_core
	Second DFT Insertion Pass: processor_core
	Test Point, X-Bounding, and Scan Insertion: processor_core
	ATPG Pattern Generation: processor_core
	LogicBIST Fault Simulation: processor_core
	LogicBIST Pattern Generation: processor_core
	Interconnect Bridge/Open UDFM Generation: processor_core
	Cell-Neighborhood UDFM Generation: processor_core
	Automotive-Grade ATPG Pattern Generation: processor_core
	Automotive-Grade Topoff ATPG Pattern Generation
	Automotive-Grade ATPG Pattern Generation Using Only UDFMs

	DFT Insertion Flow for the GPS Baseband Physical Block
	DFT Insertion Pass With In-System Test: gps_baseband
	LogicBIST Fault Simulation With One NCP: gps_baseband
	Interconnect Bridge/Open UDFM Generation: gps_baseband
	Cell-Neighborhood UDFM Generation: gps_baseband
	Automotive-Grade ATPG Pattern Generation: gps_baseband

	Top-Level DFT Insertion for the Automotive Flow
	First DFT Insertion Pass: Top with MemoryBIST, BISR, and Boundary Scan
	Second DFT Insertion Pass: Top with EDT, OCC, and In-System Test
	Scan Insertion for the Top Design
	ATPG Pattern Generation for the Top Design
	ATPG Pattern Retargeting for the Top Design
	Interconnect Bridge/Open UDFM Generation for the Top Design
	Cell-Neighborhood UDFM Generation for the Top Design
	Automotive-Grade ATPG Pattern Generation for the Top Design
	UDFM Generation for Cell-Aware ATPG
	TCA Based Pattern Sorting

	Functional Mode Fault Tolerance for Static IJTAG Signals

	Chapter 7 TSDB Data Flow for the Tessent Shell Flow
	Core-Level or Flat TSDB Data Flow
	Top-Level TSDB Data Flow

	Chapter 8 Streaming Scan Network (SSN)
	Tessent SSN Workflows
	Block-Level SSN Insertion and Verification
	First DFT Insertion Pass: Performing Block-Level MemoryBIST
	Second DFT Insertion Pass: Inserting Block-Level EDT, OCC, and SSN
	Synthesis for Block-Level Insertion
	Creating the Post-Synthesis TSDB View (Block-Level)
	Performing Scan Chain Insertion With Tessent Scan (Block-Level)
	Verifying the ICL-Based Patterns After Synthesis (Block- Level)
	Generating Block-Level ATPG Patterns

	Top-Level SSN Insertion and Verification
	First DFT Insertion Pass: Performing Top-Level MemoryBIST
	Second DFT Insertion Pass: Inserting Top-Level EDT, OCC, and SSN
	Synthesis for Top-Level Insertion
	Creating the Post-Synthesis TSDB View (Top-Level)
	Performing Scan Chain Insertion With Tessent Scan (Top- Level)
	Verifying the ICL-Based Patterns After Synthesis (Top- Level)
	Generating Top-Level ATPG Patterns
	Retargeting ATPG Patterns
	Performing Reverse Failure Mapping for SSN Pattern Diagnosis

	Advanced Topics
	Streaming-Through-IJTAG Scan Data
	On-Chip Compare With SSN
	Types of Clock Networks To Use With SSN
	Broadcast to Identical SSN Datapaths
	Yield Statistics on ATE With SSN
	Manufacturing Patterns With SSN
	Manufacturing Pattern Quick Reference
	SSN Pattern Structure
	How To Write Complete SSN Patterns
	How To Write ssn_setup and ssn_end Procedures to Separate Files
	How To Write SSN On-Chip Compare Patterns
	How To Write Streaming-Through-IJTAG Patterns
	SSN Debug on the Tester

	Signoff Patterns With SSN
	Block-Level Signoff Patterns
	Top-Level Signoff Patterns
	Signoff Pattern Quick Reference

	SSN SDC Constraints in the Design Flow
	Overview of SSN-Related SDC Procs and Constraints
	Changes to SDC Procs for SSN Timing
	SSN/SDC Proc Usage

	SSN/SSH SDC Constraint Descriptions
	SSN Bus Clock and SSN Bus Port Timing Constraints
	SSN Bus Data Port Delays
	SSN Datapath Timing Constraints
	SSN FIFO Timing Constraints
	SSN ScanHost Timing Constraints

	Tessent SSN Examples and Solutions
	Third-Party OCCs With SSN

	SSN Frequently Asked Questions
	SSN Limitations

	Chapter 9 Tessent Examples and Solutions
	How to Avoid Simulation Issues When Using the Two-Pin Serial Port Controller
	How to Handle Clocks Sourced by Embedded PLLs During Logic Test
	How to Design Capture Windows for Hybrid TK/LBIST
	How to Use Boundary Scan in a Wrapped Core
	How to Use an Older Core TSDB With Newly- Inserted DFT Cores
	TAP Configuration
	Insert a Stand-Alone TAP in a Design
	Insert a TAP with an IJTAG Host Scan Interface
	Insert a Compliance Enable TAP with an IJTAG Interface
	Insert a Daisychained TAP
	Insert a Primary TAP
	Insert a Secondary TAP
	Connecting to a Third-Party TAP

	How to Set Up Third-Party Synthesis
	How to Set Up Support for Third-Party OCCs
	How to Configure Files for Third-Party OCCs
	Test Logic Insertion
	Configuration for Scan Insertion
	Pattern Generation and Simulation

	Post-Synthesis Update
	ICL and TCD Post-Synthesis Update
	Limitations Related to SystemVerilog Interface Arrays
	Updating ICL Attributes From the Design
	Matching Requirements for Port Names in Post- Synthesis Update
	Design Name Mapping Commands
	Design Name Mapping
	Default Matching Rules for the get_pins, get_ports, and get_instances -match_rtl_reg Commands

	Chapter 10 Test Procedure File
	Test Procedure File Creation
	Test Procedure File Syntax
	Test Procedure File Structure
	#include Statement
	Set Statement
	Alias Definition
	Timing Variables
	Timeplate Definition
	Multiple-Pulse Clocks
	The pulse_clock Statement
	Inferred Timing
	Differences Between Default add_clock and 1x Multiplier Clock

	Always Block
	Procedure Definition
	Clock Control Definition

	The Procedures
	Test_Setup (Optional)
	Shift (Required)
	Alternate Shift Procedure (Optional)
	Load_Unload (Required)
	Shadow_Control (Optional)
	Master_Observe (Sometimes Required)
	Shadow_Observe (Optional)
	Skew_Load (Optional)
	Clock_run (Optional)
	Capture Procedures (Optional)
	Rules for Creating and Editing a Default Capture Procedure
	Rules for Creating and Editing Named Capture Procedures
	Slow and Load Types in the Cycle Statement
	launch_capture_pair Statement

	Clock_po (Optional)
	Clock_sequential (Optional)
	Init_force (Optional)
	Test_end (Optional, all ATPG tools)
	Sub_procedure

	Additional Support for Test Procedure Files
	Creating Test Procedure Files for End Measure Mode
	Serial Register Load and Unload for LogicBIST and ATPG
	Register Load and Unload Use Models
	Static Versus Dynamic Register Variables
	Test Procedure File Modifications
	Dofile Modifications
	Serial Load and Unload DRC Rules
	P13 and P54
	P66
	W5
	Procedure Examples

	Notes About Using the stil2mgc Tool
	Extraction of Strobe Timing Information from STIL (SPF)
	The STIL ClockStructures Block

	Test Procedure File Commands and Output Formats

	Chapter 11 Tessent Visualizer
	Invoking Tessent Visualizer
	Framework Overview
	Tessent Visualizer Components and Preferences
	Tables
	Table Toolbar Features
	Columns and Filters Editor
	Table Filters
	Data Sorting
	Row Highlighting

	Schematics
	Toolbar
	Schematic Symbols
	Object Types in Schematics
	Markers
	Buffer and Inverter Collapsing
	Folding and Unfolding Instances

	Context Tables
	Signal Net Tracing Strategies
	Displayed Property
	Tessent Shell Attributes
	Mouse Gestures

	Tessent Visualizer Preferences
	Macros
	Tooltips
	Gate Report Settings
	Saving and Restoring the Session State
	Window Title Prefixes

	Tessent Visualizer GUI Reference
	Hierarchical Schematic
	Flat Schematic
	Instance Browser
	Wave Generator
	Cell Library Browser
	DRC Browser
	Pin Data
	Transcript
	Text/HDL Viewer
	Diagnosis Report Viewer

	Search Features
	Using Tessent Visualizer to Debug Design Issues
	Accessing Tutorials for Tessent Visualizer
	Accessing Videos for Tessent Visualizer

	Chapter 12 Configuration Data Visualizer
	Modifying the Contents of the Configuration Data Visualizer
	Adding a Test Data Register to a SIB Example
	Adding a Multiplexer to a SIB Example
	Customizing the DFT Specification for EDT

	Chapter 13 Timing Constraints (SDC)
	Generating and Using SDC for Tessent Shell Embedded Test IP
	SDC File Generation with Tessent Shell
	SDC Design Synthesis with Tessent Shell
	Preparation Step 1: Sourcing SDC File
	Preparation Step 2: Setting and Redefining Tessent Tcl Variables
	Preparation Step 3: Verifying the Declaration of Functional Clocks
	Preparation Step 4: Redefining Other Tessent Tcl Variables
	Synthesis Step 1: Applying the SDC Constraints
	Synthesis Step 2: Preparing the DFT Logic for Synthesis
	Synthesis Step 3: Synthesizing Your Design
	Synthesis Step 4: Writing Out Your Final SDC
	Synthesis Step 5: Writing Out Your Final Netlist

	Running Layout with Tessent Shell DFT
	SDC for Modal Static Timing Analysis
	Checking Your Functional Logic Alone
	Checking Your Embedded Test Logic

	VHDL and Mixed Language Designs
	VHDL Generate Blocks

	SDC File Contents
	tessent_set_default_variables
	tessent_create_functional_clocks
	tessent_<design_name>_set_dft_signals
	<ltest_prefix>_disable
	tessent_set_non_modal
	tessent_<design_name>_kill_functional_paths
	IJTAG Instrument
	LOGICTEST Instruments
	MemoryBIST Instrument
	BoundaryScan Instrument
	Hierarchical STA in Tessent
	Mapping Procs
	Synthesis Helper Procs

	Example Scripts using Tessent Tool- Generated SDC
	Example Design Compiler Synthesis Script
	Example Genus Synthesis Script
	Example PrimeTime STA Script

	Appendix A The Tessent Tcl Interface
	General Tcl Guidelines in Tessent Shell
	Guidelines for Modifying Existing Dofiles for Use with Tcl
	Special Tcl Characters
	Custom Tcl Packages in Tessent Shell
	Tcl Resources

	Appendix B Synthesis Guidelines for RTL Designs with Tessent Inserted DFT
	DFT Insertion With Tessent
	Synthesis Guidelines
	SystemVerilog and Port Name Matching

	Appendix C Clocking Architecture Examples
	Clocks Driven by Primary Inputs
	Clock Generators Outside the Cores
	Clock Generators Inside the Cores
	Clock Sourced From A Core With Embedded PLL
	Clock Mesh Synthesis

	Appendix D Tessent Visualizer Keyboard Shortcuts
	Appendix E Formal Verification
	Constraints for Formality Scripts
	Constraints for Conformal Scripts

	Appendix F Transitioning from the Classic Point Tools
	Transitioning from the Classic FastScan Point Tool
	Transitioning from the Classic TestKompress Point Tool
	Transitioning from the Classic DFTAdvisor Tool
	Transitioning from the Classic Diagnosis Tool

	Appendix G Getting Help
	The Tessent Documentation System
	Global Customer Support and Success

	Index
	Third-Party Information
	Documentation Feedback

